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We study finite size effects for the gap of the quasiparticle excitation spectrum in the weakly
interacting regime one-dimensional Hubbard model with on-site attraction. Two type of corrections
to the result of the thermodynamic limit are obtained. Aside from a power law (conformal) correction
due to gapless excitations which behaves as 1/Na, where Na is the number of lattice sites, we obtain
corrections related to the existence of gapped excitations. First of all, there is an exponential
correction which in the weakly interacting regime (|U | ≪ t) behaves as ∼ exp(−Na∆∞/4t) in the
extreme limit of Na∆∞/t ≫ 1, where t is the hopping amplitude, U is the on-site energy, and ∆∞ is
the gap in the thermodynamic limit. Second, in a finite size system a spin-flip producing unpaired
fermions leads to the appearance of solitons with non-zero momenta, which provides an extra (non-
exponential) contribution δ. For moderate but still large values of Na∆∞/t, these corrections
significantly increase and may become comparable with the 1/Na conformal correction. Moreover,
in the case of weak interactions where ∆∞ ≪ t, the exponential correction exceeds higher order
power law corrections in a wide range of parameters, namely for Na . (8t/∆∞) ln(4t/|U |), and so
does δ even in a wider range of Na. For sufficiently small number of particles, which can be of the
order of thousands in the weakly interacting regime, the gap is fully dominated by finite size effects.

I. INTRODUCTION

The one-dimensional (1D) Hubbard model with only on-site interaction is exactly solvable by the Bethe Ansatz,
and the properties of this model have been widely studied [1]. Low lying excitations of the Hubbard model with
attraction are gapless charge excitations and gapped spin excitations, whereas for the repulsive model the gap exists
only at half filling in the charge sector.
Finite size corrections to the ground state energy E0, due to the gapless part of the spectrum, follow from conformal

field theory [2, 3, 4, 5] and have the form: E0 − ǫ0L = −πv~/6L, where L = Naa is the size of the system, Na is
the number of lattice sites, a is the lattice constant, ǫ0 is the energy per unit length in the thermodynamic limit,
and v is the velocity of gapless excitations. Finite size corrections to the energies of low-lying gapless excitations are
also proportional to v/Na, and the proportionality coefficient depends on the scaling dimensions of the primary fields.
However, finite size corrections originating from the gapped sector remained unknown for the Hubbard model. Finite
size effects are expected to be important for sufficiently small systems, such as cold atoms in a 1D optical lattice,
where the number of particles and lattice sites ranges from several tens to several hundreds [6, 7].
In this paper we solve the Bethe Ansatz equations for a finite number of particles and calculate finite size corrections

to the gap for the attractive Hubbard model. As expected, there are power law 1/Na corrections due to gapless
excitations, and we also find contributions related to the existence of gapped excitations. First of all, there is
an exponential correction which in the weakly interacting regime (|U | ≪ t) behaves as ∼ exp(−Na∆∞/4t) in the
extreme limit of Na∆∞/t ≫ 1, where t is the hopping amplitude, U is the on-site interaction, and ∆∞ is the gap in the
thermodynamic limit. Second, in a finite size system a spin-flip producing unpaired fermions leads to the appearance
of solitons with non-zero momenta, which provides an extra (non-exponential) contribution. For moderate but still
large values of Na∆∞/t, these corrections may become comparable with the 1/Na conformal correction. Moreover, in
the case of weak interactions where ∆∞ ≪ t, the exponential correction exceeds higher order power law corrections
in a wide range of parameters, namely for Na . (8t/∆∞) ln(4t/|U |), and so does δ even in a wider range of Na. We
find that the value of the gap increases with decreasing the system size and show how the gap becomes dominated by
finite size effects in sufficiently small systems.
The paper is organized as follows. In section II we introduce the Hubbard model together with related Bethe Ansatz

equations, and discuss the thermodynamic limit. In section III we present a general approach for finding finite size
corrections to the ground state energy and to the gap and discuss the structure of the gap. Section IV contains our
results for corrections due to the gapped sector at half filling, and section V the results for power law corrections. In
Section VI we discuss our numerical and analytical results, and in Section VII present for completeness a perturbative
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approach for solving the Bethe Ansatz equations in the limiting case of L ≪ at/U . In Section VIII we conclude.

II. GENERAL EQUATIONS, THERMODYNAMIC LIMIT

The Hubbard model for a system of interacting spin-1/2 fermions on a lattice is described by the Hamiltonian

H = −t

Na
∑

σ=↑,↓;j=1

(c†j,σcj+1,σ + c†j+1,σcj,σ) + U

Na
∑

j=1

nj,↑nj,↓, (1)

where the subscript j labels the lattice sites. The index σ labels the spin projection, c†j,σ and cj,σ are the creation and

annihilation fermion operators, and nj,σ = c†j,σcj,σ are the particle number operators. Below we express all quantities
having the dimension of energy in units of t, and quantities having the dimension of length in units of the lattice
constant a.
Lieb and Wu have solved the Fermi-Hubbard model by means of the Bethe Ansatz [8]. The corresponding eigenvalue

equations read

N
∑

j=1

2 arctan

(

λα − sin kj
u

)

= 2πJα +
M
∑

β=1

2 arctan

(

λα − λβ

2u

)

, α = 1, ...M, (2)

Nakj = 2πIj −
M
∑

β=1

2 arctan

(

sinkj − λβ

u

)

, j = 1, ...N, (3)

where u = |U |/4t, M is the number of spin-down fermions, and N is the total number of particles. The energy of a
given state is expressed through the charge momenta kj :

EN = −2
N
∑

j=1

cos kj , (4)

and it depends on the spin rapidities λα only implicitly through the coupled equations (2) and (3). For the ground
state the quantum numbers Ij and Jα are integers or half-odd integers depending on the parities of N and M :

Jα =
N +M + 1

2
(mod 1), Ij =

M

2
(mod 1). (5)

For the Hubbard model with attraction (U < 0), there is a gap in the spectrum of spin excitations. Considering a
finite number of particles we define the gap ∆ as:

2∆ = EN+2(N↑ + 2, N↓, U) + EN−2(N↑ − 2, N↓, U)− 2EN (N↑, N↓, U), (6)

where EN (N↑, N↓;U) is the ground state energy for a system with N↑ spin-up and N↓ = N −N↑ spin-down fermions
in a lattice with Na lattice sites, at the interaction strength U . This definition is convenient as it does not change the
parity of the quantum numbers Ij and Jα. Without loss of generality, we may put N↓ ≤ N↑.
In the thermodynamic limit, whereN → ∞ andNa → ∞ while keeping constant densities n = N/L and n↓ = N↓/L,

Eq. (6) leads to the same result as the definition ∆ = ENa
(N↑ + 1, N↓;U)− 2ENa

(N↑, N↓;U) + ENa
(N↑ − 1, N↓;U)

introduced in Refs. [8, 14].
In the thermodynamic limit the density of momenta k and the density of rapidities λ are defined as ρ(k) = L−1∂I/∂k

and σ(λ) = L−1∂J/∂λ, respectively. Then, the Bethe Ansatz equations for the ground state of the repulsive model
become:

ρ∞(k) =
1

2π
+

cos k

π

∫ B

−B

u

u2 + (λ− sin k)2
σ∞(λ)dλ, (7)

σ∞(λ) +
1

π

∫ B

−B

2u

4u2 + (λ− λ′)2
σ∞(λ′)dλ′ =

1

π

∫ Q

−Q

u

u2 + (λ− sin k)2
ρ∞(k)dk, (8)

where the constants B and Q are given by

N

Na
= n =

∫ Q

−Q

ρ∞(k)dk,
N↓

Na
= n↓ =

∫ B

−B

σ∞(λ)dλ, (9)
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and the ground state energy follows from the relation:

E∞ = −2Na

∫ Q

−Q

ρ∞(k) cos k dk. (10)

The value of the spin gap for an arbitrary filling factor has been calculated in the thermodynamic limit in Refs.
[14, 15]. In the case of weak attraction the result is

∆∞ =
16 sin3/2(πn/2)

√
u

π
exp

(

−π sin (πn/2)

2u

)

, (11)

and the validity of Eq. (11) requires large values of the exponent.
The particle-hole symmetry and the symmetry with respect to interchanging spin-up and spin-down fermions allow

one to establish relations between ground state energies of the repulsive and attractive Hubbard models [8]:

E(N↑, N↓;U) = −(Na −N↑ −N↓)U + E(Na −N↑, Na −N↓;U)

= N↑U + E(N↑, Na −N↓;−U) = N↓U + E(Na −N↑, N↓;−U). (12)

Using Eqs. (6) and (12) we can express the spin gap for the attractive Hubbard model through the energies of the
repulsive model:

2∆ = 2|U |+ ENa−2(M − 2, Na −M, |U |) + ENa−2(Na −M − 2,M, |U |)− 2ENa
(M,Na −M, |U |). (13)

For the half-filled case (N = 2M = Na), with N↑ = N↓ = M , Eq. (13) takes the form:

∆ = |U |+ ENa−2(Na/2, Na/2− 2, |U |)− ENa
(Na/2, Na/2, |U |). (14)

Below we calculate the gap for the attractive Hubbard model. For this purpose we first perform calculations of
ground state energies for the repulsive Hubbard model, where the momenta kj are real numbers, and then obtain ∆
for the attractive model by using Eq. (13) (Eq. (14) for the half filled case). This allows us to find exponential finite
size corrections, which is not possible in direct calculations for the case of attraction where kj are complex and can
be found only with an exponential accuracy.

III. FINITE SIZE CORRECTIONS. GENERAL APPROACH

Thus, in order to calculate finite size corrections to the gap we have to obtain the three energies of a finite size
system, entering the right hand side of Eq. (13). We will follow the scheme proposed by de Vega and Woynarovich
[10], which introduces a formalism allowing us to use the Bethe Ansatz in order to calculate finite size corrections to
the energy of the ground state. The scheme consists of writing the Bethe Ansatz equations (2) and (3) in the form:

Zs(λ) =
1

Na

N
∑

j

1

π
arctan

λ− sin kj
u

− 1

Na

M
∑

β

1

π
arctan

λ− λβ

2u
, Zs(λα) =

Jα
Na

, (15)

Zc(k) =
k

2π
+

1

Na

M
∑

α

1

π
arctan

sin k − λα

u
, Zc(kj) =

Ij
Na

. (16)

We then define the densities of momenta k and rapidities λ for a finite size system as

σN (λ) ≡ dZs

dλ
=

1

2πNa

N
∑

j=1

K1(λ− sin kj)−
1

2πNa

M
∑

β=1

K2(λ− λβ), (17)

ρN (k) ≡ dZc

dk
=

1

2π
+

1

Na

cos k

2π

M
∑

α=1

K1(sin k − λα), (18)

where K1(x) = 2u/(u2 + x2), and K2 = 4u/(4u2 + x2). The densities satisfy the relations:

∫ Λ+

Λ−

σN (λ)dλ =
M

Na
,

∫ Q+

Q−

ρN (k)dk =
N

Na
, (19)
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where Q±, Λ± are determined from the equations

Zc(Q+) =
I+
Na

=
Imax + 1/2

Na
; Zs(Λ+) =

J+
Na

=
Jmax + 1/2

Na
. (20)

We first perform calculations for the half-filled case. According to Eq. (14) we have to calculate
ENa

(Na/2, Na/2; |U |) and ENa
(Na/2, Na/2−2; |U |). In the former case we have N = Na and N↑ = N↓ = Na/2 = M ,

and the quantum numbers for the ground state are

Jα = {−M − 1

2
, ...,−1, 0, 1, ...,

M − 1

2
},

Ij = {−N − 1

2
, ...,−1

2
,
1

2
, ...,

N − 1

2
}. (21)

With N = Na and M = Na/2, from Eq. (21) we have

Jmax =
Na/2− 1

2
; Imax =

Na − 1

2
. (22)

Then, from Eq. (20) we obtain

J+ =
Na

4
, Zs(Λ+) =

1

4
,

I+ =
Na

2
, Zc(Q+) =

1

2
, (23)

and Eqs. (15) and (16) lead to

Λ+ = ∞; Q+ = π. (24)

When calculating the energy ENa
(Na/2, Na/2− 2; |U |) we have N = Na − 2, N↑ = Na/2, and N↓ = Na/2− 2. It is

convenient to introduce two additional particles with momenta kh = {k1, kNa
} and spin rapidities λh = {λ1, λNa/2}

in order to satisfy the conditions Q± = ±π and Λ± = ±∞. The discrete Bethe Ansatz equations in this case read

Na
∑

j=1

2 arctan

(

λα − sin kj
u

)

= 2πJα +

Na/2
∑

β=1

2 arctan

(

λα − λβ

2u

)

+
∑

kh

2 arctan

(

λα − sin kh
u

)

−
∑

λh

2 arctan

(

λα − λh

2u

)

, α = 1, ...Na/2, (25)

Nakj = 2πIj −
Na/2
∑

β=1

2 arctan

(

sinkj − λβ

u

)

+
∑

λh

2 arctan

(

sinkj − λh

u

)

, j = 1, ...Na. (26)

Note that we added only 4 additional equations for defining the numbers kh, λh. Other equations are exactly the
Bethe Ansatz equations for Na− 2 particles. The sets Jα, Ij are the same as for the ground state of Na particles (21).
For the case N = Na we rewrite equations (17) and(18) in the form of integral equations for the densities σNa

(λ),
ρNa

(k):

σNa
(λ) =

1

2π

∫ π

−π

K1(λ− sink)ρNa
(k)dk − 1

2π

∫ ∞

−∞

K2(λ− µ)σNa
(µ)dµ

+
1

2π

∫ π

−π

K1(λ− sink)Xc
Na

(k)dk − 1

2π

∫ ∞

−∞

K2(λ− µ)Xs
Na

(µ)dµ, (27)

ρNa
(k) =

1

2π
+

1

2π

∫ ∞

−∞

K1(sin k − λ) cos k σNa
(λ)dλ

+
1

2π

∫ ∞

−∞

cos k K1(sin k − λ)Xs
Na

(λ)dλ, (28)
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with the quantities Xs
Na

and Xc
Na

defined as

Xc
Na

(k) =
1

Na





Na
∑

j=1

δ(k − kj)



 − ρNa
(k), (29)

Xs
Na

(λ) =
1

Na





Na/2
∑

α=1

δ(λ− λα)



− σNa
(λ). (30)

For N = Na − 2 we do the same and obtain

σNa−2(λ) =
1

2π

∫ π

−π

K1(λ− sin k)ρNa−2(k) dk − 1

2π

∫ ∞

−∞

K2(λ− µ)σNa−2(µ) dµ

+
1

2π

∫ π

−π

K1(λ− sin k)Xc
Na−2(k) dk − 1

2π

∫ ∞

−∞

K2(λ− µ)Xs
Na−2(µ) dµ

− 1

2πNa

∑

kh

K1(λ− sin kh) +
1

2πNa

∑

λh

K2(λ− λh), (31)

ρNa−2(k) =
1

2π
+

1

2π

∫ ∞

−∞

K1(sin k − λ)σNa−2(λ) cos k dλ

+
1

2π

∫ ∞

−∞

K1(sin k − λ)Xs
Na−2(λ) cos k dλ− 1

2πNa

∑

λh

K1(sin k − λh) cos k. (32)

The functions Xs,c
Na−2 are given by

Xs
Na−2(λ) =

1

Na

Na/2
∑

α=1

δ(λ− λα)− σNa−2(λ), (33)

Xc
Na−2(k) =

1

Na

Na
∑

j=1

δ(k − kj)− ρNa−2(k), (34)

where the summation over kj , λα includes the additional numbers kh, λh.
We first consider the thermodynamic limit where the terms Xs,c in Eqs. (27), (28), (31) and (32) vanish. For the

half-filled case of N = Na the solution is known [8]:

ρ∞,Na
(k) =

1

2π
+

cos k

2π

∫ ∞

0

cos(ω sin k) exp(−ωu)

coshωu
J0(ω)dω, (35)

σ∞,Na
(λ) =

1

2π

∫ ∞

0

cosωλ

coshωu
J0(ω)dω. (36)

Integrating the density of momenta over dk we obtain

Zc
∞,Na

(k) =
k

2π
+

1

2π

∫ ∞

0

sin(ω sin k) exp(−ωu)

ω coshωu
J0(ω)dω. (37)

For the case of N = Na − 2 the solution is easily found:

σ∞,Na−2 = σ∞,Na
− 1

2πNa

∑

kh

π

2u

1

cosh[π(λ− sin kh)/2u]

+
1

2πNa

∑

λh

∫ ∞

0

cos[ω(λ− λh)]

coshωu
exp(−ωu) dω, (38)

ρ∞,Na−2 = ρ∞,Na
− cos k

2πNa

∑

kh

∫ ∞

0

cos[ω(sin k − sin kh)]

coshωu
exp(−ωu) dω

− cos k

2πNa

∑

λh

π

2u

1

cosh[π(sin k − λh)/2u]
, (39)
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and

Zc
∞,Na−2(k) = Zc

∞,Na
(k)− 1

2πNa

∑

kh

∫ ∞

0

sin [ω(sin k − sin kh)] exp(−ωu)

ω coshωu
dω

− 1

2πNa

∑

λh

2 arctan
[

tanh
( π

4u
(sin k − λh)

)]

. (40)

For calculating the finite size corrections we should find the differences between the densities ρNa
(k), σNa

(λ),
σNa−2(λ), ρNa−2(k) and their thermodynamic limit values. Subtracting equations of the thermodynamic limit from
Eqs. (27), (28) for the case N = Na we obtain:

δσNa
(λ) = σNa

(λ)− σ∞,Na
(λ) =

1

2π

∫ π

−π

K1(λ− sin k)δρNa
(k) dk − 1

2π

∫ ∞

−∞

K2(λ − µ)δσNa
(µ) dµ

+
1

2π

∫ π

−π

K1(λ − sink)Xc
Na

(k) dk − 1

2π

∫ ∞

−∞

K2(λ− µ)Xs
Na

(µ) dµ, (41)

δρNa
(k) = ρNa

(k)− ρ∞,Na
(k) =

1

2π

∫ ∞

−∞

K1(sin k − λ) cos k δσNa
(λ) dλ

+
1

2π

∫ ∞

−∞

cos k K1(sin k − λ)Xs
Na

(λ) dλ. (42)

Equations (41) and(42) lead to algebraic equations for the Fourier transforms of δσNa
(λ) and δρNa

(k), which yields:

δσNa
(λ) =

∫ π

−π

π

2u

1

cosh [π(λ− sin k)/2u]
Xc

Na
(k)

dk

2π

−
∫ ∞

−∞

dµ

∫ ∞

0

cos[ω(λ− µ)]

cosh(ωu)
exp(−ωu)Xs

Na
(µ)

dω

2π
. (43)

δρNa
(k) = cos k

∫ ∞

0

dω

2π

∫ π

−π

exp(−ωu)

cosh(ωu)
cos[ω(sin k − sin q)]Xc

Na
(q) dq

+
cos k

2π

∫ ∞

−∞

π

2u

1

cosh [π(sin k − λ)/2u]
Xs

Na
(λ) dλ. (44)

Equations for δσNa−2(λ) and δρNa−2(k) are obtained in a similar way taking into account that in the thermodynamic
limit kh = ±π and λh = ±∞. This gives Eqs. (41), (42) and (43), (44) where Na is replaced by Na − 2 and Xs,c by

X̃s,c. The quantity X̃s
Na−2 is given by Eq.(33) in which the values of λh are put equal to +∞ and −∞:

X̃s
Na−2(λ) =

1

Na

Na/2−2
∑

α=1

δ(λ − λα)− σNa−2(λ), (45)

and X̃c
Na−2 by Eq. (34) where the values kh are put equal to +π and −π:

X̃c
Na−2(k) =

1

Na





Na−2
∑

j=1

δ(k − kj) + δ(k − π) + δ(k + π)



 − ρNa−2(k). (46)

The ground state energies (4) for the considered states can be rewritten as

ENa

Na
= −2

∫ π

−π

ρNa
(k) cos k dk − 2

∫ π

−π

Xc
Na

(k) cos k dk, (47)

ENa−2

Na
= −2

∫ π

−π

ρNa−2(k) cos k dk − 2

∫ π

−π

Xc
Na−2(k) cos k dk +

2

Na

∑

kh

cos kh

= −2

∫ π

−π

ρNa−2(k) cos k dk − 2

∫ π

−π

X̃c
Na−2(k) cos k dk − 4

Na
. (48)

The finite size corrections to the ground state energy are given by

δEN = EN − E∞,N , (49)
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where the energies E∞,N in the thermodynamic limit are

E∞,Na

Na
= −2

∫ π

−π

ρ∞,Na
(k) cos k dk, (50)

E∞,Na−2

Na
= −2

∫ π

π

ρ∞,Na−2(k) cos k dk − 4

Na
, (51)

with ρ∞,Na
(k) given by Eq. (35) and ρ∞,Na−2(k) by Eq. (39) with kh = ±π and λh = ±∞.

Using Eqs. (47), (48), (46), (44), and Eq. (51) with ρ∞,Na
and ρ∞,Na−2 following from Eqs. (35) and Eq. (39), we

obtain

δENa

Na
= −

∫ π

−π

ǫc(k)X
c
Na

(k) dk −
∫ ∞

−∞

ǫs(λ)X
s
Na

(λ) dλ, (52)

δENa−2

Na
= −

∫ π

−π

ǫc(k)X̃
c
Na−2(k) dk −

∫ ∞

−∞

ǫs(λ)X
s
Na−2(λ) dλ, (53)

where

ǫc(k) = 2 cos k + 2

∫ ∞

0

J1(ω) exp(−ωu)

ω cosh(ωu)
cos(ω sink) dω, (54)

ǫs(λ) = 2

∫ ∞

0

J1(ω)

ω cosh(ωu)
cos(ωλ) dω, (55)

and we used the fact that ǫs(±∞) = 0, so that X̃s
Na−2(λ) can be replaced by Xs

Na−2(λ) in Eq. (53).
For the repulsive Hubbard model at half filling, the gap is in the charge sector and the spin sector is gapless.

Accordingly, the first term in the right-hand side of Eq. (52) describes the contribution of gapped charge excitations,
and the second term is due to the contribution of gapless spin excitations.
We now return to Eq. (14) and using Eqs. (52), (53) write the finite size corrections to the gap of the attractive

case in the form

δ∆ = δENa−2 − δENa
= δ∆ng + δ∆g + δ, (56)

where

δ∆ng/Na =

∫ ∞

−∞

ǫs(λ)X
s
Na

dλ −
∫ ∞

−∞

ǫs(λ)X
s
Na−2 dλ, (57)

is the contribution of the gapless sector,

δ∆g/Na =

∫ π

−π

ǫc(k)X
c
Na

dk −
∫ π

−π

ǫc(k)X
c
Na−2 dk, (58)

is due to gapped excitations, and we used a relation

X̃c
Na−2 = Xc

Na−2 −
1

Na

2
∑

h=1

δ(k − kh) +
1

Na
[δ(k − π) + δ(k + π)] .

The term δ which is present in the gapped sector is given by

δ =
∑

h

ǫ(kh)− ǫ(π)− ǫ(−π) (59)

and for Na∆∞ & 1 it reduces to

δ ≈ ǫ′′c (π)(k
+
h − π)2,
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where k+h is the value of kh which is close to π at large Na. This term behaves as 1/N2
a for large Na. In the limit

of u ≪ 1 the value of k+h can be found from Eqs. (37) and (40) using the condition ZNa−2 = 1/2 − 1/2Na. For
Na∆∞ ≫ 1 we then obtain

δ

∆∞

= 2

(

2π

Na∆∞

)2

, (60)

where at half filling the gap of the thermodynamic limit ∆∞ is given by

∆∞ = 4u− 4 + 4

∫ ∞

0

exp(−ωu)J1(ω)

ω coshωu
dω (61)

at any interaction strength. As we will see below, the term δ (60) can become comparable with the (conformal) 1/Na

correction for Na∆∞ . 40 and exceeds higher order power law corrections up to much larger values of Na.
Note that the contribution of the gapped charge excitations for the repulsive Hubbard model corresponds to the

contribution of gapped spin excitations for the attractive model, and the contribution of gapless spin excitations
corresponds to the contribution of gapless charge excitations in the attractive case.
The origin of the term δ is the following. The state with two additional or two missing spin-up (or spin-down)

particles of the initial attractive Hubbard model contains unpaired fermions with energies above the gap. Gapped
excitations of the model are S = 1/2 - solitons which appear only in pairs. We thus calculate the exact energy of the
states with 2 solitons which have different nonzero momenta and energies near the bottom of the excitation band. The
contribution (59) takes into account these nonzero kinetic energies of the solitons and is proportional to the curvature
of the excitation spectrum.
It is worth noting that the term δ is independent of the definition of the gap, except for minor changes for a

relatively small number of particles. For example, it remains the same (as well as all other results of our work) if we
consider the gap in the spectrum of triplet excitations: 2∆ = E(N/2 + 1, N/2 − 1,−|U |) − E((N/2, N/2,−|U |). In
this case we just get two unpaired spin-up fermions.
The calculation for excited states of the system with unpaired fermions is the same as above. It simply assumes that

kh are no longer fixed by the condition Zc(kh) = (Na − 1)/2Na, but are related to the momenta ±p of the solitons.

For the energy of the state containing two solitons with momenta p and −p we have ǫ = 2∆̃ + 2[ǫc(π − p) − ǫc(π)],

and for low-lying excitations at sufficiently large number of particles it is reduced to ǫ = 2∆̃ + ǫ′′(π)p2, where

∆̃ = ∆∞ + δ∆ng + δg. The minimum value of ǫ is achieved at the minimum possible value of p which is equal
to (π − k+h ), and we arrive at the gap ∆ = ∆∞ + δ∆, with δ∆ given by Eq.(56) and thus including δ (59). It is
important that this ∆ is just the gap that is measured by the radiospectroscopy method used for obtaining the gap
in experiments with two-component 3D Fermi gases [9].

IV. EXPONENTIAL CORRECTIONS FOR HALF FILLING

Throughout the paper we discuss the case where the inequality

Nau ≫ 1 (62)

is satisfied (except for Section VII), so that all analytical formulas obtained below remain valid for arbitrarily large
Na. It is convinient to present the results in terms of the parameters Na∆∞(u) and u because in the limit of u ≪ 1
the most important contributions to both δ∆g/∆∞ and δ∆ng/∆∞ depend only on Na∆∞ (see below).
In this Section we calculate the finite size corrections to the gap, originating from the gapped sector and given by

Eq. (58). Using Eqs. (16), (29), (23) and the Poisson relation
∑

m δ(x −mn) =
∑

m exp[2πxmi] we obtain

∫ π

−π

ǫc(k)X
c
N (k) dk = −

∫ π

−π

ǫc(k)

[

ρN (k)

exp[−2πiNaZc
N (k + i0)] + 1

+
ρN (k)

exp[2πiNaZc
N(k − i0)] + 1

]

dk. (63)

To lowest order, we take the functions ρN (k) and Zc
N(k) equal to their values in the thermodynamic limit. So, they

are given by Eq. (35) and Eq. (37) for the case N = Na, and by Eq. (39) and Eq. (40) for N = Na−2, with kh = ±π
and λh = ±∞. One can show that the integral from −π to π in the right -hand side of Eq. (63) is equal to the
integral from −π+ iarcsinhu to π+ iarcsinhu for the first term of the integrand plus the integral from−π− iarcsinhu
to π − iarcsinhu for the second term.
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FIG. 1: The correction δ∆g/∆∞ versus Na∆∞. The solid curve is the result of exact calculations from Eq. (58), and the
dashed curve represents the result of Eq. (64). In a) u = 1, in b) u = 0.5, and in c) u = 0.25 with the dotted curve showing
the result of Eq. (73), with the replacement Na → Na(1 − u/π) (see text after Eq. (73)). The inset in c) shows the relative
difference between the exact δ∆g and the exponential result of equation (73), κ = (δ∆exact

g − δ∆exp
g )/δ∆exact

g .

Equation (58) then reduces to

δ∆g

Na
=

∫ π+iγ

−π+iγ

[

ρNa
(k)ǫc(k)

1 + exp
[

−2πiNaZc
Na

(k)
] − ρNa−2(k)ǫc(k)

1 + exp
[

−2πiNaZc
Na−2(k)

]

]

dk

+c.c. =
1

2πiNa

∫ π+iγ

−π+iγ

ǫ′c(k) ln

(

1 + exp[2πiNaZ
c
Na

(k)]

1 + exp[2πiNaZc
Na−2(k)]

)

dk + c.c., (64)

where γ = arcsinhu.
It is convenient to present the ratio δ∆g/∆∞ as a function of Na∆∞ and u. In Fig. 1 we show δ∆g/∆∞ versus

Na∆∞ for several values of u, and one clearly sees that for not very large Na∆∞ this correction becomes significant.
The edge points of the integration k0 = ±π± iarcsinhu are the saddle points at which ρNa

(k) = dZNa
/dk = 0. For
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sufficiently large Na we may use the saddle point approximation, and the expression for δ∆g becomes

δ∆g ≈ C
|ǫ′c(k0)|

π
√

Na|ρ′(k0)|
exp[−S0], (65)

where

ǫ′c(k0) = i

[

2u− 2
√

u2 + 1

∫ ∞

0

J1(ω) tanh(ωu) exp(−ωu) dω

]

, (66)

ρ′(k0) =
i

2π

[

u√
u2 + 1

+ (u2 + 1)

∫ ∞

0

ω tanh(ωu) J0(ω) exp(−ωu) dω

]

, (67)

S0 = −2πi(Zc
Na

(k0)− 1/2) = Na

[

γ −
∫ ∞

0

tanh(ωu) exp(−ωu)

ω
J0(ω)dω

]

, (68)

C =

[

1−
(

Γ(3/4)

2Γ(5/4)

)4
]

, (69)

and we used the relation

Zc
Na−2(k0) = Zc

Na
(k0) +

i

πNa

∫ ∞

0

tanh(ωu)

ω
exp(−ωu) dω = Zc

Na
(k0) +

2i

πNa
ln

[

2Γ(5/4)

Γ(3/4)

]

. (70)

The saddle point approximation assumes that the exponent in Eq. (65) is large:

S0 ≫ 1. (71)

In the case of strong interaction, u ≫ 1, Eq. (65) gives

δ∆g ≈ 1√
Na uNa−1

, (72)

and one sees that in this limit the correction δ∆g is negligible.
The situation changes for u < 1. In the limit of u ≪ 1, from Eq. (65) we obtain:

δ∆g ≈ C

√

2

π

∆∞ exp[−∆∞Na/4]√
∆∞Na

≈ 0.63
∆∞ exp[−∆∞Na/4]√

∆∞Na

, (73)

where the gap in the thermodynamic limit, ∆∞, is given by Eq. (11). The criterion (71) then becomes Na∆∞ ≫ 1.
The obtained relation (73) is in accordance with the universal scaling behavior of the gap in massive quantum field
theories [19], which is expected for the Hubbard model at u ≪ 1. For not very small u we should take into account
corrections which are linear in u in the expression for S0 and in the preexponential factor for ∆∞. This proves to be
equivalent to the replacement Na → Na(1 − u/π) in Eq. (73). Higher order corrections become important only for
Na∆∞ which are so large that the exponential contribution δ∆g is no longer important.

V. POWER LAW CORRECTIONS

The correction to the gap provided by the gapless sector, δ∆ng, we calculate using the conformal field theory 1/Na

expansion for the energy [11, 12, 13]:

ENa
− E0 =

2π

Na
vs(∆+ +∆−), E0 = ǫNa −

π

6Na
vs, (74)

where ǫNa is the energy in the thermodynamic limit, and the velocity of spin excitations is given by

vs =
dǫ

dp
=

ǫ′s(B)

2πσ(B)
, (75)

where B is defined by Eq. (9). The conformal dimensions of primary operators are equal to

∆± =
1

2

(

ξs(B)Ds ±
∆Ns

2ξs(B)

)2

. (76)
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FIG. 2: The correction δ∆ng/∆∞ versus Na∆∞ for u = 1. The solid curve shows the result of exact calculation from Eq. (57)

and the dashed curve the result of Eq. (83). The dotted curve represents higher order power law corrections δ∆̃ng (see text).

Integer or half-odd integer numbers ∆Ns, Ds are characterizing the excitation states. The component of the charge
dressed matrix ξs is determined from the equation

ξs(λ) = 1− 1

2π

∫ B

−B

K2(λ− η)ξs(η)dη. (77)

For the zero-field case (B = ∞) the solution is ξs = 1/
√
2. The energy and momentum of a spin excitation are given

by

ǫs(λ) = 2

∫ ∞

0

cosωλ

coshωu
J1(ω)

dω

ω
, (78)

ps(λ) =
π

2
−
∫ ∞

0

sinωλ

coshωu
J0(ω)

dω

ω
, (79)

dps
dλ

= −2πσ(λ). (80)

The excitation state with the energy E(Na/2, Na/2 − 2) is characterized by the numbers Ds = 0, ∆Ns = 1 .
According to Eq. (14), this leads to the correction

δ∆ng =
π

2Na

vs
ξ2s

. (81)

For the half-filled case we obtain

δ∆ng =
2π

Na

I1(π/2u)

I0(π/2u)
. (82)

A more accurate result following from the calculations in Refs. [11, 13] reads:

δ∆ng =
2π

Na

I1(π/2u)

I0(π/2u)

(

1− 1

2 ln[NaI0(π/2u)]

)

. (83)

The comparison of Eq. (83) with the result of exact calculations from Eq. (57) shows the validity of Eq. (83) even
for not very large Na (see Fig. 2). For example, at u = 1 even for Na = 10 (Na∆∞ ≈ 13 ) the relative difference is
∼ 20%. The substraction of ∆ng (83) from the exact result of Eq. (57) gives higher order power law corrections which

we denote as δ∆̃ng. For u = 1 they are represented by the dotted curve in Fig. 2.
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In the limit of strong coupling Eq. (82) yields:

δ∆ng ⋍
π2

2Nau
; u ≫ 1, (84)

and the power law correction (84) always dominates over the negligible exponential correction (72). The situation
changes for u > 1. For not very large Na∆∞, the exponential correction δ∆g originating from gapped excitations
becomes comparable with δ∆ng and exceeds higher order power law corrections. We provide a detailed comparison
of ∆g with power law corrections in the next section.
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FIG. 3: The result of exact calculations from Eqs. (57), (58) and (59). In the left part the solid curve shows δ∆ng/∆∞ versus
Na∆∞, the dashed curve δ∆g/∆∞, and the dotted curve δ/∆∞. In the right part the solid curve shows the ratio of the higher

order power law corrections δ∆̃ng to the exponential correction δ∆g . In a) u = 1, in b) u = 0.5, and in c) u = 0.25.
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VI. DISCUSSION OF THE RESULTS

We start the comparson of the non-conformal exponential correction to the gap with power law corrections in the
limiting case of u ≪ 1 and Na∆∞ ≫ 1, so that Eq. (73) is applicable. Then, comparing the result of Eq. (73)
with that of Eq. (83) we see that the power law 1/Na correction dominates over the exponential correction for
any Na∆∞ significantly larger than unity. However, the exponential corection (73) is still larger than higher order
power law corections in a wide range of Na. In the limit of Na → ∞ the higher order corrections contain terms
ln[ln(Na)]/(Na ln

q(Na)), 1/(Na ln
q(Na), 1/N

2
a , etc., where q ≥ 2 is an integer [11]. Thus, for reasonable values of Na

the term that should be compared with δ∆g (73) is ∼ 1/[Na ln
2(Na)]. The argument of the logarithm may contain an

u-dependent multiple B ∼ exp(π/2u) like the logarithm in the second term of Eq. (83). This is however not important.
According to Eq. (11), in the limit of u ≪ 1 the gap is exponentially small, ∆∞ ∼ exp(−π/2u) ≪ 1. Hence, for
Na at which the exponential corection can still be important we have Na∆∞ ≪ ∆−1

∞ and ln(Na) ≈ ln(∆−1
∞ ) ∼ 1/u.

So, irrespective of the presence of the u-dependent multiple B, the higher order power law corection becomes ∼
(u2/Na) ln(1/u) and it is smaller than the exponential correction (73) for Na satisfying the inequality

Na∆∞ . 8 ln

(

1

u

)

; u ≪ 1. (85)

Thus, at u ≪ 1 for Na∆∞ significantly larger than unity but still satisfying the condition (85), the exponential
correction (73) is legitimate and can be kept together with the power law correction (83).
The situation is similar for intermediate values of u smaller than unity. This is seen from Fig. 3 where we present

our numerical results or u = 0.25 and u = 0.5. However, already for u = 1 the exponential correction is smaller than
the higher order power law terms (see Fig. 3) and should be omitted. As far as the term δ is concerned, for u ≪ 1 it
is comparable with the power law correction up to Na∆∞ ∼ 40 and exceeds higher order power law corrections for
much larger Na. Even if we compare δ with the second term of Eq. (83), the latter is smaller at Na∆∞ . 1/u.
In Fig. 4 we present the results of exact calculations for the gap ∆ at half filling from Eqs. (2), (3), (4) and (14) for

the same u as in Fig. 3. A direct comparison of ∆ with the gap of the thermodynamic linit ∆∞ (61) shows that finite
size corrections can be safely omitted for Na∆∞ > 40. On the other hand, already at Na∆∞ < 10, they dominate
the gap. For u = 0.25 where ∆∞ = 5 · 10−3 this occurs already at Na < 1.5 · 103. For u = 1 we have ∆∞ = 1.28 and
finite size corrections are important only for Na < 30.
It is important that for Na∆∞ ∼ 10 or even somewhat larger the non-conformal corrections originating from the

gapped sector become comparable with power law corrections coming from the gapless sector. This is seen in Fig. 3.
The exponential correction δ∆g is about 20% of δ∆ng or smaller, and the correction δ approaches δ∆ng and can even
exceed it.
Qualitatively, the dependence ∆(Na) remains the same for smaller filling factors. This is seen from Fig. 5, where

we present our numerical results for n = 0.2. For u = 1 finite size effects become important only at a very small
number of lattice sites Na < 30. For u = 0.25 the thermodynamic-limit gap is ∆∞ ≈ 6 · 10−2 and finite size effects
are already important for Na ≈ 500.

VII. LIMIT OF Nau ≪ 1

In the limit of Nau ≪ 1, which can be realized for u ≪ 1, the energy spectrum of the attractive Hubbard Model
shows no exponential gap and both charge and spin sectors are conformal. The analysis of Lieb-Wu equations for
this case has been done in [20, 21], and found corrections ∼ u/Na. This can be understood from the conformal 1/Na

expansion as a consequence of the linear dependence of the velocities of elementary excitations on the interaction
constant u [20, 22].
Here we consider the limit of uNa ≪ 1 for completeness and present first order corrections in u to the ground

state energy and to the gap in the excitation spectrum. As in the previous sections, we calculate the energy for the
Hubbard model in the repulsive case, where the Bethe Ansatz equations are easily solved, and then restore the energy
for the attractive case using the particle-hole symmetry.
So, consider a system of N particles (N↓ spin-down and N − N↓ spin-up) with repulsive interaction. From the

Lieb-Wu equation (2) we obtain the momenta kj to first order in u:

exp(ikjNa) =

N↓
∏

α=1

sinkj − λα + iu

sinkj − λα − iu
⇒ δkj = kj − k0j =

1

Na

N↓
∑

α=1

2u

sin(k0j )− λ0
α

, (86)
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FIG. 4: The gap ∆ in units of t versus Na at half filling for u = 1 in a), u = 0.5 in b), and u = 0.25 in c). The dotted line is
the value of the gap in the thermodynamic limit. The sum δ∆ng + δ∆g + δ +∆∞ (solid curve) coincides with the value of the
gap found directly (crosses) from the Bethe Ansatz equations (2) and (3) using Eqs. (4) and (14).

where k0 and λ0 are the momenta and rapidities for u → 0. The energy itself and the interaction-induced change of
the energy are given by

E = −2

N
∑

j=1

cos kj , δE = E − E0 =
4u

Na

N
∑

j=1

N↓
∑

α=1

sin k0j
sin(k0j )− λ0

α

, (87)

where E0 is the ground state energy for u → 0. We now calculate the densities of momenta k and rapidities λ in the
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FIG. 5: The gap ∆ in units of t versus Na, calculated numerically for u = 0.25 in a), and u = 1.25 in b) for the filling factor
n = 0.2.

thermodynamic limit from Eqs. (7) and (8). To the lowest order in u we obtain:

2σ(λ) =

∫ Q

−Q

δ(λ − sink)ρ(k)dk, (88)

ρ(k) =
1

2π
+ cos k

∫ B

−B

δ(λ− sin k)σ(λ)dλ. (89)

The solution of Eqs. (88) and (89) is (n↓ ≤ n↑)

ρ(k) =

{

1/π; k ≤ πn↓,
1/2π; πn↓ < k ≤ π(n− n↓).

(90)

σ(λ) =
1

2π

1√
1− λ2

. (91)

Then, using Eq. (9) for the total number of particles and the number of spin-down particles, we find an expression
for the integration limits Q and B:

B = sin (πn↓) , Q = π(n− n↓). (92)

Using Eqs. (90) and (91) we obtain the interaction-induced change of the energy to first order in u:

δE

Na
= 4u

∫ Q

−Q

dk

∫ B

−B

sink

sink − λ
σ(λ)ρ(k) dλ =

=
4u

π2
(πn↓)

2 +
4u

π2

∫ π(n−n↓)

πn↓

dk

∫ πn↓

0

sin2 k

sin2 k − sin2 q
dq, (93)
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where we turned to the variable q = arcsinλ. For the case of attraction we should substitute n↑ → 1− n↑, n↓ → n↓,
in accordance with the symmetry properties (12). Integrating over dq we find:

δE(−u)

Na
= −4un↓ + 4un2

↓ +
2u

π2

(

2

∫ π/2

πn↓

−
∫ πn↑

πn↓

)

tank ln

(

tan k + tanπn↓

tan k − tanπn↓

)

dk, (94)

where n↓ and n↑ are already occupation numbers for the attractive Hubbard model, and we assume that n↓ ≤ n↑.
Eq. (94) leads to the following result for the interaction-induced change of the energy to first order in Nau:

δE(−u)

Na
= 4un2

↓ − 4un↓ +
4u

π
arctanπn↓ −

u

π2
ln

(

1 + tan2 πn↑

1 + tan2 πn↓

)

ln

(

tanπn↑ + tanπn↓

tanπn↑ − tanπn↓

)

+
2u

π2

(

−ReLi2

(

2 tanπn↓

tanπn↓ − i

)

− ReLi2

(

tanπn↑ + tanπn↓

tanπn↓ − i

)

+ReLi2

(

tanπn↑ − tanπn↓

− tanπn↓ − i

))

,

where Li2 (z) =
∑∞

k=1 z
k/k2 is a polylogarithmic function.

In the limit of small filling factors, N↑ ≪ Na and N↓ ≪ Na, after a straightforward algebra we obtain:

δE

Na
≈ u(−4n↓ − 4n↑n↓ + 2n2

↓) (95)

The limit of small filling factors in the Hubbard model corresponds to the gas phase of spin-1/2 fermions. For this
case the ground state energy at Nu ≪ 1 has been calculated in Refs. [16, 17, 18], and the result of Eq. (95) coincides
with that of Refs. [16, 17, 18] in the attractive case.
Using Eq. (6) we then find a small interaction-induced correction to the gap in the excitation spectrum (n↑ = n↓ =

n/2) of the attractive model to the lowest order in uNa. For small filling factors we have: δ∆ ≈ 4u/Na, and in the
considered limit of Nau ≪ 1 this correction is small compared to the level spacing ∼ 1/Na in our finite size system.

VIII. CONCLUSIONS

In conclusion, we have studied finite size effects for the gap in the excitation spectrum of the 1D Fermi Hubbard
model with one-site attraction. For the situation in which the thermodynamic-limit gap ∆∞ exceeds the level spacing
(near the Fermi energy) of the finite size system, there are two types of finite size corrections. For large interactions
(u ≫ 1) the leading is a power law conformal correction to ∆∞, which behaves as 1/Na and originates from the gapless
sector of the excitation spectrum. We also find non-conformal corrections originating from the gapped branch of the
spectrum. As found at half filling, in the weakly interacting regime (u > 1) the non-conformal corrections can become
of the order of the conformal correction even for the number of particles (lattice sites) as large as ∼ 20/∆∞. Also, for
u ≪ 1 and large Na∆∞, the exponential correction (73) is legitimate as long as the condition (85) is satisfied. Thus,
we have the full right to take it into acount together with the power law corection (83).
For sufficiently small number of lattice sites (particles) the gap ∆ is dominated by finite size effects. From a general

point of view, this happens when ∆∞ > 1/Na, i. e. ∆∞ is smaller than the level spacing of the finite size system at
energies close to the Fermi energy. Accordingly, for large interactions (u ≫ 1) the finite size effects are not important
as long as Na ≫ 1. However, in the weakly interacting regime (u > 1) they become dominant already at significantly
larger Na than a simple dimensional estimate 1/∆∞. This is clearly seen from our results in Fig. 3 and Fig. 4 for
∆(Na) at half filling.
Our findings are especially important for the studies of the 1D regime with cold atoms, where the number of

particles in a 1D tube ranges from several tens to several hundreds [6, 7]. For such a system in the weakly interacting
regime one can not use the result of the thermodynamic limit for the gap. Consequently, one can not employ the
local density approximation for ∆ based on this result, for finding the spectrum of isospin gapped excitations in an
external harmonic potential.
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