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ABSTRACT

Fibroblast growth factor (FGF) signaling controls axis for-
mation during endoderm development. Studies in lower
vertebrates have demonstrated that FGF2 primarily pat-
terns the ventral foregut endoderm into liver and lung,
whereas FGF4 exhibits broad anterior-posterior and left-
right patterning activities. Furthermore, an inductive role
of FGF2 during dorsal pancreas formation has been
shown. However, whether FGF2 plays a similar role dur-
ing human endoderm development remains unknown.
Here, we show that FGF2 specifies hESC-derived defini-
tive endoderm (DE) into different foregut lineages in a
dosage-dependent manner. Specifically, increasing concen-
trations of FGF2 inhibits hepatocyte differentiation,
whereas intermediate concentration of FGF2 promotes dif-
ferentiation toward a pancreatic cell fate. At high FGF2
levels specification of midgut endoderm into small intesti-

nal progenitors is increased at the expense of PDX1" pan-
creatic progenitors. High FGF2 concentrations also
promote differentiation toward an anterior foregut pulmo-
nary cell fate. Finally, by dissecting the FGF receptor in-
tracellular pathway that regulates pancreas specification,
we demonstrate for the first time to the best of our knowl-
edge that induction of PDXI" pancreatic progenitors
relies on FGF2-mediated activation of the MAPK signal-
ing pathway. Altogether, these observations suggest a
broader gut endodermal patterning activity of FGF2 that
corresponds to what has previously been advocated for
FGF4, implying a functional switch from FGF4 to FGF2
during evolution. Thus, our results provide new knowledge
of how cell fate specification of human DE is controlled—
facts that will be of great value for future regenerative
cell therapies. STEM CELLS 2010,28:45-56
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INTRODUCTION

Many internal organs, such as the pancreas, lung, thyroid,
liver, esophagus, and stomach, are induced along the anterior-
posterior axis of the definitive endoderm (DE)-derived primi-
tive gut [1, 2]. The first sign of regionalization of the DE is
the expression of specific transcription factors that are
expressed in a precise manner along the anterior and posterior
axis (A-P axis) of the DE, which eventually forms the primi-
tive gut tube. In the anterior portion of the foregut endoderm,
regions that are destined to become lung and thyroid express
NKX2-1, whereas liver and the ventral pancreas develop from
a region expressing HHEX ! and PDXI, respectively. The dor-
sal pancreas and duodenum originate from the posterior por-
tion of the foregut endoderm expressing PDX/. The posterior
portion of the gut endoderm that expresses CDX/ and CDX2
develops into mid- and hindgut, which later give rise to the
small and large intestine [3]. FOXAI and FOXA2 are both
expressed in the entire gut tube and are thus important

for the development of all gastrointestinal tract-derived
organs [4].

Fibroblast growth factor (FGF) signaling has been impli-
cated in patterning of the gut tube along the A-P axis [3, 5,
6] and in pancreatic differentiation [7-9]. FGF4 acts as a pos-
teriorizing growth factor with broad anterior-posterior and
left-right patterning activities [3, 10, 11], whereas FGF2 plays
a more restricted role [3, 12]. However, mouse studies have
shown that FGF2, which is secreted from the cardiac meso-
derm, patterns the adjacent multipotent ventral foregut endo-
derm in a concentration-dependent manner into liver and lung
[12, 13]. In the absence of cardiac mesoderm and FGFs a
ventral pancreatic fate is promoted [12, 14]. In contrast, an in-
ductive role of FGF2 during dorsal pancreas formation has
been demonstrated in mouse and chick [15, 16]. However,
whether FGF2 plays a similar role during human endoderm
organ formation has not been determined. In contrast to the
chick and mouse studies, we recently demonstrated that FGF4
neither patterns hESC-derived DE nor induces PDX1" pan-
creatic progenitors from hESC-derived DE [17], suggesting
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that FGF4 is not responsible for anterior-posterior patterning
of the primitive gut during human development.

The aim of the present study was to investigate whether
FGF2’s role in foregut endoderm specification is evolutionary
conserved between mouse and human, and whether FGF2 in
addition plays a more general role in primitive gut endoderm
anterior-posterior patterning. Here, we show for the first time
to the best of our knowledge that FGF2 specifies hESC-
derived DE into foregut/midgut organ-specific lineages, such
as hepatic, pancreatic, pulmonary, and intestinal progenitors,
in a concentration-dependent manner. Thus, FGF2’s function
in foregut endoderm patterning is conserved in humans. How-
ever, the posteriorizing activity of high concentrations of
FGF2 on foregut-midgut specification suggests that FGF4’s
role in lower vertebrates may have been replaced by FGF2
during evolution. Finally, we demonstrate for the first time to
the best of our knowledge that induction of PDX1" pancreatic
progenitors relies on FGF2-mediated activation of the mito-
gen-activated protein kinase (MAPK) signaling pathway.

MATERIALS AND METHODS

In Vitro Culture of Human ES Cells

Undifferentiated hESCs (trypsin adapted SA181 and SA121 [Cel-
lartis, Gothenburg, Sweden, http://www.cellartis.com], HUES-3,
HUES-4, and HUES-15 obtained from D.A. Melton, Howard
Hughes Medical Institute [Harvard University, Cambridge, MA])
were propagated as previously described [18, 19] protocols are
also available at http://mcb.harvard.edu/melton/hues. Briefly, cells
were maintained on mitotically inactivated mouse embryonic
fibroblasts (Department of Experimental Biomedicine/TCF from
Sahlgrenska Academy at the University of Gothenburg, Gothen-
burg, Sweden) in a medium containing knockout-Dulbecco’s
modified Eagle’s medium (KO-DMEM), 10% knockout serum
replacement (KO-SR), 10 ng/ml bFGF, 1% nonessential amino
acids (NEAA), 1% Glutamax, 1% penicillin-streptomycin (PEST),
and f-mercaptoethanol (all reagents from Gibco, Invitrogen, Grand
Island, NY, http://www.invitrogen.com) and 10% plasmanate
(Talecris Biotherapeutics Inc., Research Triangle Park, NC, http://
www.talecris.com). Cells were passaged with 0.05% trypsin/EDTA
(Gibco, Invitrogen) and re-plated at a split ratio between 1:3 and
1:6.

Differentiation of hESCs

hESCs were seeded at a density of 12,000-24,000 cells per cm?
and cultured until confluency. hESCs were then differentiated
into definitive endoderm as previously described [20]. At day 3,
cells were washed with phosphate-buffered saline (PBS) and
human FGF2 (Invitrogen, Carlsbad, CA, http://www.invitrogen.
com) was added at different concentrations (0-256 ng/ml accord-
ing to specifications in the Results) in a KO-DMEM-based me-
dium containing 1% PEST, 1% GlutaMAX, 1% NEAA, 0.1 mM
f-mercaptoethanol, and 12% KO-SR. Medium was changed every
day. Control cultures without FGF2 were grown in parallel and
cell morphology was monitored daily. Bright-field images of cells
were taken on an inverted microscope (Eclipse TE2000-U)
(Nikon Instruments Inc., Melville, NY, http://www.nikoninstru-
ments.com). At each time point, two to four biological replicates
were taken for each independent experiment. More specifically,
each well was divided into four to five equal pieces depending on
the number of time points analyzed. With the exception of the
data presented in Figure S4, all of the data were generated using
the HUES-3 cell line.

FGF Inhibition Assays

FGF receptor inhibition assays were performed by adding SU5402
(10 uM; Calbiochem, San Diego, http://www.emdbiosciences.com),
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LY294002 (12.5 puM; Cell Signaling Technology, Beverly, MA,
http://www.cellsignal.com), and U1026 (10 uM; Cell Signaling
Technology) to the medium following DE induction at day 3. Con-
trol cultures were treated with an equal volume of the diluent di-
methyl sulfoxide. Fresh medium supplemented with appropriate in-
hibitor was added daily. Two to three samples were taken from
separate wells at different time points (days 9-12) for mRNA analy-
sis for each independent experiment.

RNA Extraction, Reverse Transcription, and
Real-Time Polymerase Chain Reaction

Total RNA was extracted with GenElute Mammalian total RNA
kit (Sigma-Aldrich, St. Louis, http://www.sigmaaldrich.com) and
RNA concentrations were measured with the NanoDrop ND-1000
spectrophotometer (NanoDrop Technologies, Wilmington, DE,
http://www.nanodrop.com). Reverse transcription was performed
with SuperScript III, according to the manufacturer’s instructions,
using 2.5 uM random hexamer and 2.5 uM oligo(dT) (Invitro-
gen). Each experiment used a fixed amount of mRNA (500 ng to
1 pg) for cDNA synthesis. Real-time polymerase chain reaction
(PCR) measurements were performed on an ABI PRISM 7900HT
Sequence Detector System (Applied BioSystems, Foster City,
CA, http://www.appliedbiosystems.com). Twenty-microliter reac-
tions containing 10 ul of SuperMix-UDG w/ROX, 400 nM of
each primer, 0.125x SYBR Green I (all reagents from Invitro-
gen) were used. Primer sequences are available in supporting in-
formation Table S1. Formation of expected PCR products was
confirmed by agarose gel electrophoresis and melting curve anal-
ysis. Gene expression data were normalized against ACTB or
RPL7 expression. As an extra normalization control, data were
also normalized against total RNA concentrations, which resulted
in similar data. Real-time PCR data analysis was performed as
described [21, 22]. Raw data from real-time PCR measurements
were exported from SDS 2.2.1 and analyzed by Microsoft Excel
graph pad. In cases where no gene expression was measured, as
for some genes of untreated control cells, for example, PDXI,
cycles of threshold (Ct) values were set to 45, that is, the maxi-
mum amount of cycles run. The data are shown as mean expres-
sion * standard error of the mean (SEM). The graphs represent
the fold increase in comparison to the control samples at days 9
or 11. The control sample was arbitrarily set to a value of 1.

Immunofluorescence Analysis of hESCs

hESCs were fixed in 4% paraformaldehyde for 15 minutes at
room temperature and washed three times in PBS-T (0.1% Triton
X-100 in PBS). Fixed cells were permeabilized with 0.5% Triton
X-100 in PBS for 15 minutes and blocked in PBS-T supple-
mented with 5% normal donkey serum (Jackson Immunoresearch
Laboratories, West Grove, PA, http://www.jacksonimmuno.com)
for 1 hour at room temperature before overnight incubation (at
4°C) with the following primary antibodies: goat anti-FOXA-2
(Palle Serup; 1:200; Santa Cruz Biotechnology Inc., Santa Cruz,
CA, http://www.scbt.com), guinea pig anti-PDX1 (Chris Wright;
1:1500; Beta Cell Biology Consortium, http://www.betacell.org),
goat anti-PDX1 (Chris Wright; 1:1500; Beta Cell Biology Con-
sortium), rabbit anti-NKX6.1 (1:4000; Beta Cell Biology Consor-
tium), mouse anti-CDX-2 (Jonathan Draper; 1:500; BioGenex
Laboratories, Inc., San Ramon, CA, http://www.biogenex.com),
rabbbit anti-SOX-9 (1:500; Chemicon, Temecula, CA, http://
www.chemicon.com), rabbit anti-HNF-6 (1:400; Santa Cruz Bio-
technology), mouse anti-PH-3 (1:50; Cell Signaling Technology),
rabbit anti-MKi67 (1:200; Novocastra Ltd., Newcastle upon
Tyne, U.K., http://www.novocastra.co.uk), rabbit anti-SOX2
(Palle Serup; 1:250; Chemicon), goat anti-albumin (1:300; Bethyl
Laboratories, Montgomery, TX, http://www.bethyl.com), mouse
anti-AFP (1:500; Sigma), and rabbit anti-SOX17 (1:200; Beta
Cell Biology Consortium). After overnight incubation cells were
washed three times for 5 minutes in PBS and incubated with cor-
responding fluorescent secondary antibodies (Alexa 488 and 647,
and Cy3; 1:500; Jackson Immunoresearch Laboratories and
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Invitrogen) for 60 minutes in PBS-T supplemented with 5% se-
rum at room temperature. Cell nuclei were visualized by 4'-
6/diamidino-2-phenylindole  (DAPI) (Sigma-Aldrich; 1:1000)
incubation for 4 minutes. Immunofluorescence stainings were
detected and analyzed on a Zeiss Axioplan 2.

Data Analysis

The percentage of ALB™ cells was calculated using Imaris Imag-
ing software (Bitplane, Zurich, Switzerland, http://www.bitplane.-
com). Ten randomly selected fileds were chosen for each parame-
ter. The total area of nuclei was estimated by DAPI staining,
whereas the ALB" area was visualized by ALB antibody stain-
ing. Finally, the percentage of ALB™ cells was calculated by
dividing the ALB™" area by the DAPI" area. Imaris Imaging soft-
ware was also used in a similar manner for quantification of
PDX1, CDX2, SOX17, and PDX1"/NKX6-1" cells. The percent-
age of PDX1%/NKX6-1" nuclei was calculated by dividing the
NKX6-1" area by the PDX1" area. This could be performed as
all NKX6-1" cells colocalize with PDX1. For quantification of
PDX1/SOX9, PDX1/HNF6, PDX1/CDX2, and PDX1/PH3 dou-
ble-positive cells, the analysis tool in Adobe Photoshop CS3
Extended version 10.0.1 was used. Roughly, 1000-2000 PDX1*
cells from two to four separate experiments were counted in total
for each double staining. All data were statistically analyzed by
multivariate comparison (one-way ANOVA) with Bonferroni cor-
rection. All values are depicted as mean = SEM and considered
significant if p < .05.

RESuLTS

Activin A/Wnt3a-Treated hESCs Spontaneously
Differentiate into Foregut and Midgut Endoderm

Human ESCs were differentiated into DE by Activin A/
Wnt3a treatment in low serum for 3 days as previously
described [20]. Formation of anterior DE was confirmed by
an upregulation of SOXI7 [23], CXCR4 [24], CERI [25],
GSC [26], HHEX [27], and FOXA2 [4, 28] (supporting infor-
mation Figs. S1, S2A). Furthermore, the self-renewal gene
OCT-4, which is highly upregulated in the undifferentiated
hESCs, was downregulated both at day 3 and at day 11 (sup-
porting information Figs. S1, S12). In addition, SOX17 and
FOXA2 co-staining of hESC-derived DE at day 3 showed
that more than 90% of the cells treated with Activin A/Wnt3a
co-express SOX17 and FOXA2 (supporting information Fig.
S2B). By assessing the expression of characteristic foregut/
midgut markers, we show that a fraction of the FOXA2*/
AFP" hESCs treated with Activin A/Wnt3a differentiate into
foregut endoderm, including liver progenitors (Fig. 1C, 1D,
supporting information Figs. S3, S4), and midgut endoderm
(Fig. 5). Altogether, these findings suggest that anterior fore-
gut endoderm differentiates into liver but not into other fore-
gut-derived cell types, such as pancreatic and pulmonary
endoderm in the absence of exogenous FGF2.

Low Doses of FGF2 Promote a Hepatic Cell Fate,
Whereas Intermediate FGF2 Levels Induce a
Pancreatic Cell Fate

To test whether FGF2 is capable of directing differentiation of
foregut endoderm into a pancreatic fate (presumably a dorsal
pancreatic fate), the ability of different FGF2 concentrations (0,
4, 16, 32, 64, and 256 ng/ml) to induce PDXI] expression was
assessed. The concentrations were in part based on mouse
explant studies [12, 29]. The differentiation protocol (Fig. 1A)
was applied on five different cell lines, HUES-3—subclone 52,
HUES-4, HUES-15, and the trypsin-adapted SA181 and
SA121—to allow more generally applicable conclusions. Cells
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grew denser and in larger clusters when treated with higher
FGF2 concentrations (16-256 ng/ml) (Fig. 1B). Hepatocyte-like
cells were primarily seen in hESC cultures treated with no
FGF2 or low doses of FGF2 (4 ng/ml) (Fig. 1B, 1C). Increasing
FGF2 concentrations downregulated expression of the cardiac
marker TNNT2 and the hepatic markers albumin (ALB) [30],
ONECUTI (previously known as HNF6) [31, 32], and HNF4A
[33], whereas HHEX [34] expression was only moderately
reduced. The latter is probably due to the fact that HHEX is also
expressed in anterior foregut-derived organs, such as in lung pro-
genitor cells, which are induced at this high FGF2 concentration
(see below) (Fig. 1D, supporting information Fig. S3).

Albumin expression was also confirmed at the protein
level. Although abundant ALB™ cells were seen in the ab-
sence (10.4%) of and at 4 ng/ml FGF2 (7.3%), no ALB™ cells
were observed at 256 ng/ml (Fig. 1C). Furthermore, all the
cells in the samples treated with Activin A/Wnt3a and 4 ng/
ml FGF2 expressed «-fetoprotein (AFP) at day 11 (Fig. 1C;
inset, supporting information Fig. S4).

To determine pancreatic cell fate commitment, a combina-
tion of markers associated with pancreatic progenitors was
chosen including PDXI [35, 36], SOX9 [37, 38], NKX6-1
[39], PTFIA [40, 41], NGN3 [42, 43], and FOXA2 [44].
Expression of posterior foregut-associated markers was
detected in all samples at days 9 and 11. SOX9 expression
was upregulated with increasing FGF2 concentrations,
whereas PDX/ and NKX6-1 expression peaked at 64 ng/ml
and was reduced at 256 ng/ml (Fig. 2A). Low levels of
NKX6-1 and NGN3 were (in the majority of the experiments)
detected already at day 9 (supporting information Fig. S5) but
expression increased at later time points (Fig. 2A). However,
PTFIA expression was detected only at low mRNA levels
(data not shown). FOXA2 was expressed in all samples both
at day 9 (supporting information Fig. S5) and day 11 (Fig.
2A) but was not influenced by FGF2 treatment.

PDX1" cells were exclusively found in samples treated
with 32-256 ng/ml FGF2 (Fig. 2B). The number of PDX1™"
cells was significantly higher in FGF2-treated cells (32-256 ng/
ml) compared to the number of control cells (not treated with
FGF2). The highest number of PDX1" cells (15%—20%) was
obtained in the presence of 64 ng/ml FGF2 at day 11 (Fig.
2B). Robust induction of PDX/ and NKX6-1 mRNA expression
at 64 ng/ml FGF2 was confirmed in multiple experiments using
five different hESC lines (supporting information Fig. S6).

Although all pancreatic tissue is derived from Pdx1-
expressing multipotent progenitor cells [45], Pdx1™ cells are
also found in the posterior stomach, duodenum, and CNS
(only mRNA transcript). Therefore, expression of additional
pancreatic markers was used to verify differentiation toward a
pancreatic cell fate. All PDX1" cells co-expressed FOXA2
(Fig. 3). Furthermore, the vast majority of the PDX1" cells
co-expressed SOX9 and ONECUTI, whereas only a few
PDX1"/CDX2" cells were detected (Fig. 3). PDXI1 and
NKX6-1 are normally co-expressed in mouse and human pan-
creatic epithelium but not in the duodenum and stomach [39,
46]. Notably, cells co-expressing PDX1 and NKX6-1 were
found only in samples treated with 32 ng/ml (data not shown)
and 64 ng/ml FGF2 (Fig. 3). The highest number of PDX1%/
NKX6-17" cells was detected at 64 ng/ml (9%). Only a frac-
tion of the PDX1" cells co-expressed NKX6-1, whereas all
NKX6-1" cells co-expressed PDX1. Interestingly, when the
concentration of FGF2 was raised to 256 ng/ml, formation of
pancreatic endoderm was blocked (Fig. 4). This was apparent
by the appearance of fewer PDX1% cells, but more impor-
tantly none of the remaining PDX1" cells co-expressed
NKX6-1 (Fig. 4). Thus, exogenous FGF2 promotes conver-
sion of hESC-derived foregut endoderm into a pancreatic cell
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Figure 1. Increased concentration of FGF2 inhibits specification of hepatocyte-like cells. (A): A schematic representation of the two-step differen-
tiation procedure for specification of mesendoderm/definitive endoderm (DE). The differentiation protocol includes a first step to direct differentia-
tion of mesendoderm/DE and a second step to specify mesendoderm/DE. (B): Phase contrast pictures of differentiated hESCs at the end of step 2
(day 11). The highest number of hepatocyte-like cells was seen in cultures treated with only Activin A (AA) or low FGF2 concentration (4 ng/ml).
Increasing FGF2 concentrations resulted in denser colonies and formation of thick clusters. Insets show higher magnification of a randomly chosen
area. Scale bar = 100 um for all the pictures except the insets that are 50 um. (C): Albumin stainings of hESCs treated with different FGF2 concen-
trations (ng/ml). Phase contrast image shows higher magnification of hepatocyte-like cells. The number of ALB* cells decreased with increasing
FGF2 concentration. In fact, at 256 ng/ml no ALB™ cells were seen. The estimated number of ALB™ cells at different FGF2 concentrations is as
follows: AA; 10.4%, 4 ng/ml; 7.3%, 32 ng/ml; 3.3%, 64 ng/ml; 0.24%, and 256 ng/ml; 0%. Inset shows that all ALB™ cells (green) co-express AFP
(red). Nuclear counterstaining with DAPI is shown in blue. Scale bars: 100 um for the phase contrast picture; 300 um for the pictures with albumin
staining; and 50 um for the inset. (D): Hepatocyte associated markers ALB, HNF4A, and ONECUTI and the cardiac marker TNNT2 were all down-
regulated with increasing FGF2 concentrations (ng/ml) in comparison to the control sample treated only with Activin A. HHEX was slightly downre-
gulated already at 4 ng/ml FGF2. Samples were taken for real-time polymerase chain reaction analysis at day 11. The data are shown as mean
expression = SEM (n = 4). The graphs represent the fold increase in comparison to that detected in the control samples at day 11. The control sam-
ple was arbitrarily set to a value of 1. Abbreviations: FBS, fetal bovine serum; FGF, fibroblast growth factor; KO-SR, knockout serum replacement.

fate (Fig. 2A, supporting information Fig. S6), whereas it
inhibits hepatic cell fate (Fig. 1C, 1D, supporting information
Figs. S3, S6) in a concentration-dependent manner.

Expression of proliferation marker phospho-histone-H3
(PH3) [47] was detected only in a few PDX1™" cells at day 11
(Fig. 3), suggesting that at this time point there is no general
proliferation.

High Doses of FGF2 Direct Differentiation of
hESC-Derived DE into Anterior Foregut and

Small Intestinal Cells

As the expression of the hepatocyte markers ALB, HNF4A,
and ONECUTI decreased with increasing FGF2 concentra-

tions (Fig. 1C, 1D), the expression level of the anterior fore-
gut-associated marker SOX-2 [48, 49] increased, with the
highest level observed at 256 ng/ml (supporting information
Fig. S7). Consistently, Sox-2 expression was confined to an-
terior foregut derivatives, such as esophagus, lung, and
stomach in E13.5 mouse embryos (supporting information
Fig. S8C).

Since lung and thyroid arise from the same region of the
anterior foregut endoderm, the expression pattern of markers
associated with these organs was assessed at the mRNA
level (supporting information Fig. S7). The observation that
the thyroid-specific marker thyroglobulin (7G) [50] was
downregulated with increasing FGF2 concentrations (data
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Figure 2. FGF2 induces expression of pancreas specific genes in a concentration-dependent manner. (A): PDX/ and SOX9 were upregulated in
all FGF2-treated samples except when treated with low FGF2 concentration (4 ng/ml). Both PDX/ and NKX6-1 had peak expression at 64 ng/ml,
whereas NGN3 was downregulated at this concentration. FOXA2 was detected in all samples and remained unchanged. Data are shown as mean
expression = SEM (n = 4). The graphs represent the fold increase in comparison to that detected in the control samples at day 11. The control
sample was arbitrarily set to a value of 1. (B): PDXI1 stainings of hESCs treated with different FGF2 concentrations. PDX1" cells could not be
observed in cultures treated with Activin A only or 4 ng/ml FGF2, whereas PDX1" cells were always present in cultures treated with 32, 64, and
256 ng/ml FGF2. The highest percentage of PDX1" cells was seen at 64 ng/ml. This was assessed both by microscopy and the use of the Imaris
Imaging software. The data are presented as the mean + SEM (n = 7-10). The following p values were attained: control versus 32 ng/ml (p <
.01), control versus 64 ng/ml (p < .001), control versus 256 ng/ml (p < .001), 32 ng/ml versus 64 ng/ml (p < .001), 32 ng/ml versus 256 ng/ml
(p < .01), and 64 ng/ml versus 256 ng/ml (p < .01). p < .05 was considered to be significant. Scale bars: 300 um for the PDX1 staining pictures;

40 um for the inset. Abbreviation: FGF, fibroblast growth factor.

not shown), but that the earliest marker of lung and thyroid
specification NKX2-/ [51] was upregulated at 256 ng/ml,
suggested induction of pulmonary lineages. However, the
pulmonary surfactant protein C (SP-C), [52], and Clara cell
10 kDa protein (CC10) [53] mRNAs were undetectable,
suggesting that the NKX2-17 cells represent early lung pro-
genitor cells. Additional markers associated with, but not re-
stricted to, the induction of a pulmonary cell fate, including
FGF10 [54], SPRY2 [55], SHH [56, 57], and the SHH recep-
tor PTCHI [58], were also significantly upregulated at the
highest FGF2 concentration (supporting information Fig.
S7). To address whether the lack of mature lung markers
was due to too low FGF2 concentration, 500 ng/ml FGF2
was also tested. However, this resulted in no change in NKX2-
I expression, and no induction of SP-C or CCI0 expression
(data not shown). These results deviate from a recent study on
mouse ES cells [13] where both 50 and 500 ng/ml of FGF2
was sufficient to induce SP-C mRNA expression. Thus, it
remains to be determined if the absence of more mature lung
markers is caused by the lack of additional inductive factors
required during human lung development.

Expression of the midgut/hindgut markers CDX2 [59] and
MNX1 significantly increased at the highest FGF2 concentration
(256 ng/ml), suggesting that a high concentration of FGF2 also
induced formation of intestinal cell types (supporting informa-
tion Fig. S7). CDX2 expression was confirmed at the protein
level, confirming the highest number of CDX2 ™" cells at 256 ng/
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ml (Fig. 5). Moreover, CDX2" cells co-expressed FOXA2, con-
firming endodermal rather than trophectodermal identity of the
CDX2" cells [60] (Fig. 6A). In contrast, expression of another
hindgut marker CDX/ [61] remained unchanged (supporting in-
formation Fig. S7) and the large intestine marker CDX4 [62]
was not detected at any concentration. Altogether, these findings
support the notion that high levels of FGF2 also promote midgut
specification. The fact that 52.3% of the CDX2" cells were posi-
tive for the MKI67 antigen [63] suggests that CDX2" cells are
formed by proliferation and differentiation (supporting informa-
tion Fig. S§B).

To further characterize the PDX17/NKX6-1" cell popula-
tion at 256 ng/ml, PDX1/CDX2 and PDX1/SOX2 co-localiza-
tion studies were carried out. Although a few PDX17/CDX2"
cells were identified, the majority of the PDX1" cells were
CDX2™ (Fig. 4). Furthermore, none of the PDX1" cells co-
expressed SOX2 (Fig. 4). On the basis of similar colocalization
studies in E18.5 mouse embryos, we conclude that Pdx1™/
Sox2" and Pdx1"/Cdx2" cells represent posterior stomach and
posterior midgut (duodenal) cell types, respectively (supporting
information Figs. S8A-S8C). The Pdx17/Sox2 /Cdx2™~ cells
may represent either anterior midgut cells or differentiated pan-
creatic cells.

In summary, high levels of FGF2 direct differentiation of
foregut endoderm into anterior fates, such as pulmonary line-
ages, and increase midgut endoderm specification at the
expense of pancreatic posterior foregut endoderm commitment.
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Figure 3. Sixty-four nanograms per milliliter FGF2 induces PDX1™" pancreatic endoderm. Immunofluorescence analysis of the PDX1" cell pop-
ulation at 64 ng/ml FGF2. All PDX1" cells co-expressed FOXA2 (100%). The majority of the PDXI1" cells was also SOX9" (95%) and
ONECUT1" (95.2%). Notably, a fraction of the PDX1™ cells co-expressed NKX6-1 (9.0%). Furthermore, the majority of the PDX17 cells were
negative for the intestinal marker CDX2 (93%) and the proliferation marker PH-3 (99.6%). Scale bars: 150 um for all of the staining pictures
except for the insets, which are 50 um for the PDX1/NKX6-1 and 40 um for the PDX1/PH3.
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Figure 4. Immunofluorescence analysis of the PDX1" cell population at 256 ng/ml FGF2. The majority of the PDX1" cells were SOX9
(87.4%) and ONECUT!1 positive (95.4%). Although a few PDX17/CDX2" cells (7.1%) were found, the majority of PDX1™ cells (92.9%) were
CDX2 negative. Importantly, none of the PDX17 cells co-expressed NKX6-1 or SOX2. In addition, all SOX2" cells were CDX2 negative. Scale
bars = 150 um for all pictures except for the PDX1/SOX2 staining, that is, 300 pm.
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ERK1/2 Mitogen-Activated Protein Kinase Signaling
Is Required for PDX1 Induction

Multiple FGFs (FGF1, FGF2, FGF4, FGF7, and FGF10) and
their receptors (FGFRI and FGFR2) are expressed and
involved in early development of the pancreas [64—66]. Moni-
toring expression of FGF2, FGF4, FGF7, and FGFI0 during
hESC differentiation confirmed that all ligands are expressed
(supporting information Fig. S9). Upregulation of FGFI10
mRNA levels at 256 ng/ml FGF2 may be explained by
expression in pulmonary and potentially also esophagus pro-
genitors induced at this concentration (see above).

There are at least four different tyrosine kinase receptors
(FGFR1-FGFR4) that bind different FGF ligands with varying
affinities. In addition, alternative splicing of FGFR1-FGFR3
generates “IIIb” and “Illc” isoforms, which display distinct
expression patterns and ligand specificities [67]. FGF2 acts
mainly via the Illc isoforms of FGFR1, FGFR2, and FGFR3,
but it also binds with lower affinity to FGFR1b and FGFR4 [67,
68]. By binding to their respective receptors (FGFRs), FGFs
activate several signal transduction pathways, including phospha-
tidylinositol-3 kinase (PI3K) and ERK1/2 mitogen-activated pro-
tein kinases (MAPKs). FGFR mRNA expression analysis dem-
onstrated that FGFRI-FGFR4 were detected in all samples (Fig.
7A, supporting information Fig. S10). Furthermore, a tendency
toward elevated levels of FGFRI and FGFR3 and decreased
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Figure 5. The number of CDX2" cells is
upregulated with increasing FGF2 concen-
tration. Immunofluorescence analysis of the
CDX2" cell population demonstrated that
the number of CDX2" cells (red) was up-
regulated with increasing FGF2 concentra-
tions, except at 64 ng/ml. The highest
number was observed at 256 ng/ml. The
estimated number of CDX2" cells at differ-
ent FGF2 concentrations is as follows: AA;
26.9%, 4 ng/ml; 20.1%, 32 ng/ml; 37.8%,
64 ng/ml; 25.6%, and 256 ng/ml; 44.7%.
Nuclear counterstaining with DAPI is shown
in blue. Scale bar: 300 um.

levels of FGFR2 and FGFR4 was seen with increasing FGF2
concentrations (Fig. 7A, supporting information Fig. S10).

To determine whether FGFR-mediated signaling is required
for the induction of PDXI transcription, the effect of the FGFR
tyrosine kinase inhibitor SU5402, MAPK inhibitor, U1026, and
PI3K inhibitor, LY294002, was investigated (Fig. 7B). Treat-
ment with SU5402 significantly decreased the number of
PDXI" cells, indicating that FGF2 (64 ng/ml) mediates induc-
tion of PDX1™" cells via FGFR signaling. In addition, treatment
with FGF2 in the presence of U1026 diminished PDX/ expres-
sion, indicating that activation of the MAPK pathway is neces-
sary for induction of PDX/. In contrast, when cells were treated
with FGF2 in the presence of LY294002, PDXI/ expression
remained unchanged, suggesting that an active PI3K pathway is
not required for induction of PDX/ (Fig. 7C, supporting infor-
mation Fig. S11). In summary, these results demonstrate that
the MAPK pathway, and not the PI3K pathway, is necessary
for FGF2-mediated induction of PDX1 expression.

DiscussioN

FGF2 secreted from the cardiac mesoderm is a powerful in-
ducer of foregut-derived cell lineages, including hepatic, and
pulmonary cell types [12, 14], whereas notochord secreted
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Figure 6. CDX2" cells represent endodermal cells. (A): Co-local-
ization studies of CDX2 and FOXA?2 demonstrated that all CDX2"
cells (red) co-express the endodermal marker FOXA2 (green). Scale
bar: 150 um. (B): 52.3% of the CDX2" cells (green) co-expressed
MKI67 (red) at 256 ng/ml. Scale bar: 150 pum.

FGF2 controls dorsal pancreas induction [15, 16]. Impor-
tantly, it is the ability of multipotent foregut endodermal pro-
genitors to sense the timing and concentration of FGF2 that
determines the outcome of their fate determination. Currently,
there is a tremendous interest in generating foregut endoderm-
derived functional cell types, such as pancreatic beta cells and
hepatocytes, from human pluripotent stem cells to be used in
regenerative medicine, toxicology, and drug discovery.
Governed by the developmental biological principles that
normally control foregut endoderm specification, numerous
multistage/multifactor protocols for directing mature foregut-
derived cells from hESCs have been reported [20, 69-73].
However, to establish less complex and more robust proto-
cols, there is a need to further understand the mechanism of
action of individual growth and differentiation factors in spec-
ification of human pluripotent stem cells toward foregut-
derived cell lineages. Thus, the objective of this study is not
to recapitulate the effects of FGF during pancreatic endocrine
progression, but to expand the knowledge of how FGF signal-
ing, in particular, FGF2, controls foregut endoderm specifica-
tion. Here, we show that FGF2 specifies hESC-derived DE
into foregut/midgut organ-specific lineages, such as hepatic,
pancreatic, pulmonary, and intestinal progenitors, in a concen-
tration-dependent manner. Notably, in contrast to previous
studies in chick and mouse [3, 10], where it was demonstrated
that FGF4 exhibits significantly higher anterior-posterior gut
patterning activity than FGF2, at least at low concentrations
(1-10 ng/ml), our results suggest that FGF2, but not FGF4,
exhibits gut tube patterning activities in the hESC system.
Instead, FGF4’s main role is to promote cell viability [17].
Altogether, these results suggest that FGF4’s role in foregut-
midgut patterning may have been replaced by FGF2 during
evolution. Additionally, this discrepancy may be explained by

www.StemCells.com

53

the fact that previous studies in mouse and chick only exam-
ined the effects of low FGF2 concentrations (1-10 ng/ml) [10,
74, 75]. The reproducibility of responses in several hESC
lines suggests detection of a core response, relevant to human
organ/tissue development. Finally, we demonstrate for the first
time to the best of our knowledge that induction of PDX1"
pancreatic progenitors relies on FGF2-mediated activation of
the MAPK signaling pathway.

Definitive Endoderm—Naive or Pre-specified?

Signaling pathways controlling DE development are con-
served between invertebrates and mammalians, including pri-
mates [76]. Thus, mesendoderm/DE can be reliably generated
from both mouse and human ESCs through addition of Acti-
vin A [20, 77-81]. However, it remains unclear whether the
hESC-derived DE represents a naive or a prepatterned endo-
derm. In our study, a fraction of the SOXI17"/FOXA2"
hESCs treated with Activin A only differentiate toward fore-
gut and midgut/hindgut endoderm characterized by FOXA2"/
AFPT/ALB™ and FOXA2/AFPT/CDX2" expression, respec-
tively. Thus, hESC-induced DE most likely represents a heter-
ogeneous cell population, consisting of distinct foregut and
midgut/hindgut progenitors. We propose that these progenitors
respond differently to specific FGF2 concentrations. Specifi-
cally, within the foregut endoderm progenitors, induction of
hepatic fate occurs by default (most likely via endogenous
FGF2) and is sustained at low FGF2 concentrations (4 ng/ml),
whereas intermediate and higher FGF2 concentrations (32-256
ng/ml) inhibit hepatic cell formation and instead promote pan-
creatic and pulmonary cell fates.

Intermediate Levels of FGF2 Induce PDX1%
Pancreatic Endoderm

Ventral pancreatic cell fate occurs by default in mouse ante-
rior ventral foregut endoderm [14], whereas intermediate
FGF2 concentrations promote dorsal pancreas induction [15].
The observations that PDX/ expression is lost when FGFR
signaling is inhibited and that induction of PDX1"/NKX6-1"
pancreatic endoderm requires intermediate levels of exoge-
nous FGF2 suggest that the hESC-derived pancreatic progeni-
tors represent dorsal pancreatic endoderm. However, it cannot
be excluded that formation of human ventral pancreatic endo-
derm, in contrast to mouse/chicken ventral pancreatic endo-
derm, requires FGF2 signaling.

FGF2 Induces Pancreatic Endoderm Via the
MAPK Signaling Pathway

We show that FGFRI-FGFR4 are expressed during hESC
differentiation, indicating that exogenous FGF2 acts via any
of these receptors. To dissect by which intracellular signaling
pathway FGF2 induces pancreatic endoderm, various inhibi-
tors of FGF signaling were used. Inhibition of FGFR and
MAPK signaling diminished PDX/ expression, whereas a
block of the PI3K pathway did not affect induction of pancre-
atic endoderm. Previous studies have demonstrated that the
MAPK pathway stimulates the expansion of murine pancre-
atic epithelial cells downstream of FGF7 and FGF10 [82].
However, the MAPK pathway has not been implicated in the
induction of the PDXI" pancreatic progenitor cells to date.
Thus, these results support a novel model for FGF2-mediated
induction of PDX/] expression and pancreatic endoderm for-
mation via MAPK signaling. It remains to be investigated if
the mechanism by which FGF2 induces pancreatic endoderm
in the hESCs also applies to other FGF ligands such as FGF7
and FGF10. Interestingly, in a recent study by Melton and
colleagues [51], PKC signaling was implicated in the
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Figure 7. PDXI induction by FGF2 is mediated by MAPK signaling. (A): FGF receptor mRNA expression at day 11. FGFRI and FGFR3
expression were upregulated with higher FGF2 concentrations, whereas FGFR2 and FGFR4 were downregulated. (B): Schematic view of the in-
tracellular signaling pathways activated by FGF2, and the activity of pharmacological inhibitor. (C): Inhibition of FGF signaling diminished
PDX] expression in vitro. Antagonizing FGF signaling (64 ng/ml) with SU5402 (10 uM) or the MAPK inhibitor, U1026 (10 uM), significantly
reduced PDX] expression, whereas treatment with the PI3K inhibitor, LY294002 (12.5 uM), had no effect on PDX/ expression. (D): Schematic
illustration of how different FGF2 concentrations induce specification of hESC-derived DE into liver, pancreas, and lungs. Low FGF2 concentra-
tions promote differentiation toward hepatocyte-like cells (marked by ALB expression) and moderate FGF2 levels differentiate the hESC-derived
foregut endoderm into pancreas (marked by PDX/ expression), whereas high concentrations promote differentiation toward pulmonary and intes-
tinal cells (marked by NKX2-/ and CDX2 expression). All samples for real-time polymerase chain reaction analysis were taken at day 11. Data
are shown as mean expression = SEM, n = 3-4 for FGFR expression and n = 4-6 for inhibition analysis. The graphs represent the fold increase
in comparison to that detected in the control samples at day 11. As PDX/ expression could not be detected in the majority of the control samples,
the Ct values in these samples were set to 45, which correspond to the total number of cycles. The control sample was arbitrarily set to a value
of 1. Abbreviaton: FGF, fibroblast growth factor; FGFR, FGF receptor.

induction and maintenance of PDXI™ cells. Thus, it will be
interesting to investigate the interaction between PKC-MAPK
signaling during pancreas development both in mouse and in
humans.

CONCLUSIONS

In summary, these findings provide new insight into how FGF
signaling regulates human endoderm development and may be
of value when designing new hESCs-based differentiation
protocols for future regenerative cell therapies.
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