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The recently discovered hormone, ghrelin, has been recog-
nized as an important regulator of GH secretion and energy
homeostasis. Orexigenic and adipogenic ghrelin is produced
by the stomach, intestine, placenta, pituitary, and possibly in
the hypothalamus. The concentration of circulating ghrelin,
principally derived from the stomach, is influenced by acute
and chronic changes in nutritional state. To date, most studies
focused on the role of ghrelin in GH secretion or its function
in complementing leptin action to prevent energy deficits.
The potential significance of ghrelin in the etiology of obesity

and cachexia as well as in the regulation of growth processes
is the subject of ongoing discussions. A large quantity of in-
formation based on clinical trials and experimental studies
with ghrelin and previously available synthetic ghrelin re-
ceptor agonists (GH secretagogues) must now be integrated
with a rapidly increasing amount of data on the central reg-
ulation of metabolism and appetite. In this overview, we sum-
marize recent findings and strategies on the integration of
ghrelin into neuroendocrine networks that regulate energy
homeostasis. (Endocrinology 142: 4163–4169, 2001)

OBESITY AND RELATED disorders are among the lead-
ing causes of illness and mortality in the developed

world (1). To better understand the pathophysiological
mechanisms that underlie metabolic disorders, increasing
attention has been paid to central regulatory elements in
energy homeostasis, including food intake and energy ex-
penditure (2–5). The past two decades have provided over-
whelming evidence of the critical role that hypothalamic
peptidergic systems play in the central regulation of appetite
and metabolism (6, 7). The discovery of ghrelin (8–11) and
its influence on appetite, fuel utilization, body weight, and
body composition that is complementary to ghrelin’s GH-
releasing effect (12) adds yet another component to the com-
plexity in the central regulation of energy balance.

Discovery of Ghrelin

Reverse pharmacology may be an appropriate term to
describe the road to ghrelin’s discovery. First, synthetic
agonists with ghrelin-like activity [GH-releasing peptides
(GHRPs) and GH secretagogues (GHSs)] were discovered by
Bowers and co-workers in the late seventies (9, 13–15), fol-
lowed by the cloning of ghrelin-GHS-receptor (GHS-R) in
1996 by Smith and co-workers (16–18). Subsequently, the
elegant studies by Kojima and co-workers led to the iden-
tification of an acylated 28 residue peptide as an endogenous
bioactive ligand for the GHS-R (8–11). It was called ghrelin,
a term that contains “ghre-” as the etymological root for
“growth” in many languages. “GH” and “relin,” a suffix for
releasing substances in generic names according to the USP

Dictionary of USAN and International Drug Names, also
represents an abbreviation for “growth-hormone-release,” a
characteristic effect of ghrelin (8, 11). The Ser3-acylation that
seems to be responsible for bioactivity of ghrelin is a mod-
ification that has been observed for the first time in mam-
malian physiology. There are no data to support the tempting
speculation that the purpose of this modification is to in-
crease ghrelin’s lipophilic properties to facilitate transport
across the blood brain barrier. However, the octanoyl side
chain is essential for binding and activation of the GHS-R
subtype-1a in vitro (19). Ghrelin might also bind to different
GHS-R subtypes or receptor families where the octanoyl side
chain is not needed. Detection and purification of the gastric
enzyme responsible for the acylation of ghrelin may shed
light on this fascinating question and will possibly even
reveal the existence of other putative hormones carrying this
modification.

Sources of Ghrelin

Ghrelin is predominantly produced by the stomach (8,
20–22), whereas substantially lower amounts are derived
from bowel (21, 22), pituitary (23), kidney (24), placenta (25),
and hypothalamus (8, 22). Although the majority of circu-
lating ghrelin is produced in the stomach, other sources may
increase ghrelin secretion in a compensatory manner. After
gastrectomy, for example, plasma ghrelin level is surpris-
ingly reduced only by 65% (26).

One of the most urgent and debatable hypotheses is
whether ghrelin is produced in physiologically relevant
amounts in the hypothalamus. This unresolved issue is the
focus of several research groups. Data published or pre-
sented at recent meetings, in accordance with our own on-

Abbreviations: AGRP, Agouti-related protein; GHRP, GH-releasing
peptide; GHS, GH-secretagogue; GHS-R, GHS receptor.
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going investigations, have shown ghrelin to be present in
several regions of the hypothalamus through the use of im-
munohistochemical detection methods (8, 22). Depending on
the ghrelin epitope recognized by the antibody in use,
ghrelin-positive cells have been identified in varying hypo-
thalamic areas, whereas all of these antisera have been suc-
cessfully used in RIAs. Detection of hypothalamic ghrelin
mRNA by use of PCR has been accomplished (8); however,
this issue needs to be further investigated by the detection
and regional distribution of ghrelin mRNA by in situ
hybridization. At this point, it is not clear if the detection of
ghrelin in the hypothalamus using immunohistochemistry
reflects ghrelin peptide that is produced by hypothalamic
neurons or ghrelin peptide that is derived from the stomach.
It seems logical that gastric ghrelin reflects an acute nutri-
tional state. However, even minimal ghrelin expression in
the hypothalamus (8, 12) or circulating placental ghrelin
during pregnancy (25) may significantly influence food in-
take, nutrition partitioning, and fat utilization. Regardless of
the source, in the end it is most likely the modulation of
hypothalamic circuits by ghrelin that mediates changes in
energy homeostasis.

Ghrelin and GH Secretion

Based on rodent experiments (27–29) and clinical studies
(30–33), it is evident that ghrelin is indeed a potent GH-
releasing agent. However, no significant correlation seems to
exist between plasma ghrelin concentrations and circulating
levels of GH or IGF-I (unpublished data, Tschöp et al.) even
though both ghrelin and GH increase during fasting (34, 35).
Very recent data indicate that most of the ghrelin-induced
GH secretion is not only directly opposed by somatostatin
action, but also involves mediation through GHRH (33, 36,
37). However, ghrelin also releases GH in vitro from primary
rat pituitary cells (8, 12), and GHRP-2, a potent ghrelin re-
ceptor agonist, releases GH in vivo in patients with GHRH
receptor mutations (38). This indicates the existence of
GHRH-independent effects of ghrelin on GH secretion me-
diated by hypophyseal GHS-Rs, which were originally
cloned from the pituitary (16). Alternatively, ghrelin may
stimulate an unidentified hypothalamic agent (U-factor) that,
in turn, stimulates GH release (39).

Ghrelin and Energy Balance

The first published evidence for the involvement of ghrelin
in the regulation of appetite was provided by Ghigo and
co-workers (30). They described that 3 out of 4 healthy vol-
unteers spontaneously reported hunger following ghrelin
administration as a “side effect” in a clinical study analyzing
GH release (30). This hunger-inducing effect of ghrelin has
now been confirmed in two more studies, where, again, 3 out
of 7 (33) and 9 out of 11 individuals report hunger as the only
sensation after ghrelin injection (40). A large number of an-
imal studies added strength to the argument that ghrelin is
involved in the regulation of energy balance. For example,
exogenous ghrelin induces adiposity in rodents by stimu-
lating an acute increase in food intake, as well as a reduction
in fat utilization (12, 41–46). Adipogenic as well as orexigenic
effects of ghrelin are independent from its ability to stimulate

GH secretion (12, 46) and are most likely mediated by a
specific central network of neurons that is also modulated by
leptin (2–7, 9, 12, 41–46). Regulation of ghrelin secretion, as
well as its biological effects, appear to be opposite those of
leptin. However, from a teleological point of view, ghrelin
and leptin might really be complementary players of one
regulatory system that has developed to inform the central
nervous system about the current status of acute and chronic
energy balance (12, 38–49). In addition, a specific role for
ghrelin might be to ensure the provision of calories that GH
requires for growth and repair (41).

In humans, circulating ghrelin levels are decreased in
chronic (obesity) (48) and acute (caloric intake) (26, 34, 47)
states of positive energy balance, whereas plasma levels of
ghrelin are increased by fasting (12, 34) and in cachectic
patients with anorexia nervosa (26). Of course, it has yet to
be proven that the rather modest changes in circulating
ghrelin, in the 100 fmol range, have physiological relevance
for hypothalamic receptor sites. One plausible explanation is
that if ghrelin is indeed a hormone signaling the need to
conserve energy (12), ghrelin secretion is triggered to counter
further deficit of energy storage and to prevent starvation or
cachexia. A very recent study shows a pre-meal rise of hu-
man plasma ghrelin, suggesting a possible role of ghrelin as
a hunger signal triggering meal initiation (34). In rodents,
fasting and hypoglycemia increase ghrelin levels, whereas
intake of food, especially carbohydrates (dextrose), decreases
ghrelin secretion (12, 41, 50). We speculate that this obvious
connection between glucose levels, ghrelin secretion and GH
secretion is likely to be involved in the physiological mech-
anism of diagnostic procedures such as oral glucose tolerance
testing (for acromegaly) and insulin tolerance testing (for GH
deficiency). Differential effects of ghrelin might be mediated
by separate ghrelin (GHS-R) subtypes as recently suggested
by Thorner and co-workers (51). Based on a series of elab-
orate studies using GHS-R antagonists ([d-Lys3]GHRP-6 and
BMS-265711, also an NPY-antagonist) and an NPY-Y1-R an-
tagonist ([d-Trp32]NPY), they showed that the orexigenic
effect of ghrelin can be dissociated from its GH releasing
effects, suggesting distinct GHS-R-subtypes. Based on the
observation of differential orexigenic effects of hexarelin and
its analogs and GH secretagogue actions at the pituitary
gland (52, 53), the existence of additional subtypes of the
GHS-R (16–18) had previously been hypothesized. The pu-
tative adipogenic effects of ghrelin in humans remains to be
shown because it is possible that ghrelin has different effects
on energy balance in humans and rodents. In addition, gh-
relin-induced adiposity could be only a transient effect and
the therapeutic potential of ghrelin in cachectic humans
might therefore turn out to be as disappointing as the efficacy
of leptin for the therapy of human obesity (5, 54). Carefully
conducted clinical studies focusing on body composition as
well as long-term studies on ghrelin treatment in rodents are
necessary to further address this question.

Ghrelin and Brain Centers of Energy Balance

Our current understanding of the involvement of different
hypothalamic systems in metabolic regulation arises from
early degeneration studies in rats. Destruction of distinct
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hypothalamic regions, particularly the ventromedial nucleus
but also the areas of the paraventricular and dorsomedial
nuclei, induced hyperphagia (55–60). In contrast, discrete
lesions placed in the lateral hypothalamus (61, 62) reduced
food intake. During the last two decades, a substantial
amount of research demonstrated that NPY, administered
into the cerebral ventricles (63) or other specific hypotha-
lamic sites (64), induced food intake. However, in addition
to NPY, several other hypothalamic peptides were found to
affect appetite and feeding behavior (for details see Refs.
2–7). Appetite- stimulating neuropeptides include melanin
concentrating hormone, hypocretins/orexins (produced in a
distinct subset of neurons of the lateral hypothalamus peri-
fornical region) (65–68) and agouti-related protein (AGRP,
coproduced with NPY in the same arcuate nucleus neurons)
(69–71). Appetite-suppressing neuropeptides include the
POMC derivate, �-MSH (6, 7, 72) that is produced in arcuate
nucleus perikarya (73).

An important milestone to link the central regulation of
metabolism with peripheral levels of energy storage was the
discovery of the adipose hormone, leptin. Genetic mouse or
rat mutants, including db/db and ob/ob mice and fa/fa rats
become strikingly obese. Molecular analysis has shown that
the primary genetic defect in these animals relates to either
abolished leptin production (ob/ob mice) or impaired leptin
receptors (db/db mice; fa/fa rats; leptin-R) (5, 74–77). Similar
examples of obesity in humans have been found and are
associated with a mutation of leptin or the leptin-receptor
(78–80). Leptin is released by adipose tissue and has been
suggested to be the key-signal reflecting adipose stores. Lep-
tin receptors are found in the hypothalamus, particularly in
the arcuate nucleus where leptin is thought to exert its pri-
mary feedback signaling (81–87). Recent experiments in ro-
dents and primates have been attempting to tie together the
diverse hypothalamic peptidergic systems with hormone re-
ceptors, including leptin receptors, to decipher the hypotha-
lamic signaling modality underlying the regulation of daily
energy homeostasis (81–92). A schematic illustration of some
of these interactions and the way ghrelin signaling may be
integrated into these circuits is shown on Fig. 1.

Peripheral ghrelin is mainly produced in the gastrointes-
tinal tract (8, 10, 22–24). It reaches ghrelin-receptors in the
anterior pituitary and potentially in the mediobasal and me-
diolateral hypothalamus through the general circulation to
stimulate GH release and to regulate energy homeostasis
(12). It remains to be determined whether circulating ghrelin
can reach brain areas outside of the blood brain barrier only,
such as the ventromedial arcuate nucleus (93), or it has the
ability to target areas protected by the blood brain barrier.
Areas protected by the blood brain barrier include most
hypothalamic nuclei and the rest of the brain (93). Ghrelin-
containing cells are also present in the mediobasal hypothal-
amus, where GHRH cells and the neuronal network that
regulates energy balance are located (8, 22). Detailed phe-
notypes and macroscopic connectivity of different hypotha-
lamic networks regulating metabolism have been described
by numerous recent outstanding reviews (2–7). Among hy-
pothalamic peptidergic circuits, particular significance is at-
tributed to the arcuate nucleus opiate neurons that produce
�-MSH, a main anorexigen and energy expenditure enhancer

(72), and to its interrelationship with another group of ar-
cuate nucleus neurons that produce both NPY and an en-
dogenous antagonist of �-MSH, AGRP (69). The interaction
between these two distinct populations of cells is currently
considered as a primum movens in the regulation of energy
homeostasis. However, there are other peptidergic circuits
within the hypothalamus, including the lateral hypothalamic
orexin/hypocretin- and melanin concentrating hormone-
producing cells, that appear to respond to peripheral met-
abolic signals and alter food intake as well as energy expen-
diture (65–68). In light of the aforementioned excellent
reviews (2–7), we will avoid an in-depth description of these
peptidergic systems here but will attempt to emphasize a
better appreciation of the neuronal doctrine for the integra-
tion of emerging experimental data on ghrelin.

In the brain, receptors for ghrelin were detected in mul-
tiple hypothalamic nuclei as well as in the hippocampus,
substantia nigra, ventral tegmental area, and dorsal and me-
dian raphe nuclei (8, 94–98). In a series of experiments, Dick-
son and co-workers, first using synthetic GHS-R agonist, and
then ghrelin, provided evidence that this novel metabolic
hormone, in fact, interacts with the aforementioned hypo-
thalamic peptidergic systems in the central regulation of
metabolism (99–103). For example, they found that following
central ghrelin administration, c-fos, an early proto-oncogen
that reflects cellular activity, is induced in the medial arcuate
nucleus where NPY/AGRP cells are located (103). It was also
shown that Y1-receptor antagonists as well as melanocortin
agonists and antisera to both NPY and AGRP may interfere
with ghrelin’s feeding-inducing effect (42, 43, 46). However,
absence of NPY in genetically engineered NPY-ko mice does
not diminish ghrelin-induced feeding or adiposity suggest-
ing a key-role for AGRP in the mediation of ghrelin’s effects
on energy balance (12). The effect of ghrelin on metabolism
seems to be the exact opposite to that of leptin (2–7, 9, 10, 12).
In obesity, when plasma leptin levels are elevated, ghrelin
plasma levels are decreased indicating physiological adap-
tations to the positive energy balance rather than an involve-
ment in the etiology of obesity (48, 49). Of course, it is im-
portant to note that, while ghrelin is regulated acutely like a
satiety factor, leptin levels are not regulated by meals, but
rather by actual increase in adipose stores.

Ghrelin’s Hypothalamic Signaling Requires Synapses

Figure 1 depicts a highly complex interaction between a
variety of hypothalamic peptidergic systems, including the
putative ghrelin network, in the central regulation of energy
balance. It has to be noted, however, that this drawing is not
all-inclusive and represents only the “tip of the iceberg.”
There are many more hypothalamic and extra-hypothalamic
neurotransmitters and neuropeptides that act via the afore-
mentioned circuits (for example coexistence of GABA with
NPY; 91) or in separate pathways [for example, ciliary neu-
rotrophic growth factor (CNTF), 104, 105], and are intercon-
nected with the illustrated systems (for further review see
Refs. 2, 6, 7). In addition, receptors for the different neu-
ropeptides as well as for peripheral hormones that affect
metabolism, including insulin, thyroid hormones, gonadal
steroids and glucocorticoids, are also present in these re-
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gions. During food deprivation when leptin levels rapidly
decline (106) and NPY/AGRP production is elevated, but
POMC neurons are suppressed (106–110), circulating ghrelin
levels increase (12, 33, 41, 48) suggesting that leptin and
ghrelin coregulate hypothalamic peptidergic systems in op-
posite ways. These observations further support the hypoth-
esis that ghrelin, as a “hunger signal,” is the counterpart of
leptin aiming to prevent further energy deficit. However,
considering the extreme complexity of hypothalamic inter-
actions of different peptidergic circuits and peripheral hor-
mone receptors, it is necessary to determine the hierarchy
and direction of signaling flow within these systems to un-
derstand ghrelin’s central effect on metabolic regulation. For
that, a multidisciplinary approach is mandatory.

The hypothalamus is composed of a complicated set of
regulatory neurons that in most cases cannot be identified by

traditional means of cell segregation, i.e. location, soma size,
or dendritic arbor. Therefore, to identify specific types of
neurons, cytochemistry must be used. In addition, as in all
other brain areas, the primary mode of communication be-
tween hypothalamic peptidergic circuits is via synapses. The
only reliable way for assessing synapses is by the use of
conventional electron microscopy and electrophysiology be-
cause proximity of different cells assessed by light micros-
copy is not a convincing indicator of neuronal interaction.
Thus, determination of the qualitative and quantitative syn-
aptological relationship between GHS-Rs, ghrelin-producing
neurons, and other key hypothalamic peptidergic systems
and their receptors will be an important step for gaining
insight into the hypothalamic signaling modality of ghrelin.
Of course, the anatomical experiments alone will not be
sufficient to determine the actual involvement of the pre-

FIG. 1. Schematic representation of the interaction between key hypothalamic peptidergic systems in the central regulation of daily energy
homeostasis and their relationship to peripheral and putative hypothalamic ghrelin. Ghrelin, a hunger signal, is released from the stomach
into the circulation and may be produced (?) in a subset of hypothalamic neurons (red). Leptin, a satiety signal, is released from white adipose
tissue (WAT) into the circulatory system. Ghrelin (red arrows) and leptin (orange arrows) directly target the hypothalamus and brain stem areas.
While brain stem areas on this drawing are illustrated as efferent targets of hypothalamic circuits, critical pathways exists from the brain stem
to the hypothalamus, as well, that can mediate ascending ghrelin and leptin signaling. AGRP is produced in NPY cells (yellow) and acts to block
the inhibitory action of the POMC derivate, �-MSH (green), on feeding. Both AGRP/NPY and POMC cells are apparent targets of direct ghrelin
action via GHS-R (*). The NPY neurons that receive lateral hypothalamic input, including HCRT (brown) and melanin concentrating hormone
(MCH) (blue) innervation, project to a number of regions of the brain, particularly those implicated in feeding mechanisms, including the
paraventricular nucleus (PVN), lateral hypothalamus, LH, ventromedial nucleus (VMH), perifornical region (PF), and dorsomedial nucleus
(DMH). The same regions also receive direct lateral hypothalamic input as well as innervation from �-MSH cells. These regions, in turn, project
(large black arrow) widely throughout the brain to loci including the medial thalamic nuclei (MT), central gray (cg), dorsal motor nucleus of
the vagus (DMV), cortex, nucleus of the solitary tract (NTS), locus coeruleus (LC), spinal cord, and amygdala. Ghrelin-targeted arcuate nucleus
neurons may also affect neuroendocrine cells that are responsible for the regulation of pituitary hormone secretions, including gonadotrophs
(LH/FSH), TSH, ACTH, and GH. It is yet to be determined what role central vs. peripheral ghrelin plays in the regulation of this circuitry and
at what sites and subcellular levels ghrelin signaling is interacting with that of leptin.
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synaptic ghrelin system in the regulation of the postsynaptic
circuit, but provides an invaluable map that is necessary for
the correct interpretation of data gathered with other tools.
In fact, anatomical studies need to be complemented by
parallel electrophysiological analyses. An elegant example of
such an approach is the recent work by Cowley and col-
leagues (111), in which leptin’s effect was analyzed on ge-
netically tagged arcuate nucleus �-MSH cells and the qual-
itative synaptology of these cells was simultaneously
assessed. That approach not only eliminated the pitfalls of
the individual experimental techniques but immediately
provided a more comprehensive view on a given hypotha-
lamic neuronal system (111).

The significance in determining the spatial relationship
between different afferents using anatomical and electro-
physiological tools may further be appreciated when one
considers that a synapse is more potently able to affect
postsynaptic cells when located proximally either on the cell
body or postsynaptic dendrite than when it is located more
distally. In addition, both previous electrophysiological
(111–113) and morphological observations (92, 111) indicate
that an extensive interaction exists between presynaptic ter-
minals to affect hypothalamic cells both in the arcuate nu-
cleus where NPY/AGRP and �-MSH cell bodies are located
and in a model efferent target, the parvicellular paraven-
tricular nucleus. The impact of ghrelin on arcuate and par-
vicellular paraventricular nucleus neurons will be readily
dependent on their synaptic organization on the postsynap-
tic cells and their interaction with other systems presynap-
tically. One of the best examples to illustrate this synapto-
logic interaction is the relationship between the NPY/AGRP
and �-MSH systems. Electrophysiological and anatomical
observations pointed to both the arcuate and paraventricular
nuclei as primary sites for the interplay between AGRP and
�-MSH systems (111, 114). Because ghrelin’s action appears
to be mediated by the NPY/AGRP system, it is not unlikely
that ghrelin will act in the arcuate nucleus as well as in the
paraventricular nucleus to modulate the interaction between
NPY/AGRP and �-MSH. It may be that peripheral and cen-
tral ghrelin contribute equally to the regulation of both of
these hypothalamic areas, but it is also conceivable that stom-
ach-derived ghrelin affects the arcuate nucleus where the
blood-brain barrier is less effective, whereas hypothalamic
ghrelin is more involved in the modulation of hypothalamic
sites within the blood-brain barrier, such as the paraven-
tricular nucleus. An alternative and equally feasible pathway
for ghrelin signaling from the stomach is via an ascending
neural network through the vagus nerve and brain stem
nuclei that ultimately reaches the hypothalamus (43).

When electrophysiological and anatomical techniques are
combined with conventional physiological and molecular
biological approaches, as well as with the very recently de-
veloped revolutionary tracing technique of DeFalco et al.
[(115) which allows tracing of inputs of chemically identified
subpopulations of neurons], it is reasonable to expect that not
only a thorough understanding of ghrelin’s action will be
achieved at a faster pace, but great advances will be made
toward the general understanding of the hypothalamic ma-
chinery in metabolism regulation.
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