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Correspondence
magdalena.goetz@
helmholtz-muenchen.de

In Brief

The physical properties of stem cell

niches are thought to mediate important

regulatory functions. Here we provide a

proteomic resource of the neural stem

cell niche in comparison to gliogenic

brain parenchyma, highlighting stiffness

and the enzyme transglutaminase 2 as

key regulators of neurogenesis.
.

mailto:magdalena.goetz@helmholtz-muenchen.�de
mailto:magdalena.goetz@helmholtz-muenchen.�de
https://doi.org/10.1016/j.stem.2020.01.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.stem.2020.01.002&domain=pdf


Cell Stem Cell

Resource
Defining the Adult Neural Stem Cell Niche Proteome
Identifies Key Regulators of Adult Neurogenesis
Jacob Kjell,1,2,9 Judith Fischer-Sternjak,1,2 Amelia J. Thompson,3 Christian Friess,1 Matthew J. Sticco,4 Favio Salinas,5

J€urgen Cox,5 David C. Martinelli,4 Jovica Ninkovic,2,6,8 Kristian Franze,3,10 Herbert B. Schiller,5,7,10

and Magdalena Götz1,2,8,10,11,*
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SUMMARY

The mammalian brain contains few niches for neural
stem cells (NSCs) capable of generating new neu-
rons, whereas other regions are primarily gliogenic.
Here we leverage the spatial separation of the sub-
ependymal zone NSC niche and the olfactory bulb,
the region to which newly generated neurons from
the sub-ependymal zone migrate and integrate, and
present a comprehensive proteomic characteriza-
tion of these regions in comparison to the cerebral
cortex, which is not conducive to neurogenesis and
integration of new neurons. We find differing compo-
sitions of regulatory extracellular matrix (ECM) com-
ponents in the neurogenic niche. We further show
that quiescent NSCs are the main source of their
local ECM, including the multi-functional enzyme
transglutaminase 2, whichwe show is crucial for neu-
rogenesis. Atomic force microscopy corroborated
indications from the proteomic analyses that neuro-
genic niches are significantly stiffer than non-neuro-
genic parenchyma. Together these findings provide
a powerful resource for unraveling unique composi-
tions of neurogenic niches.

INTRODUCTION

Adult stem cell niches provide complex regulatory architectures

that maintain the stem cell population and prevent terminal differ-

entiation (Crane et al., 2017; Donnelly et al., 2018; Gonzales and

Fuchs, 2017; Meran et al., 2017; Vining and Mooney, 2017). In

the adult mammalian brain, the neural stem cell (NSC) niches

are unique in supporting neurogenesis (Conover and Todd,

2017; Ruddy and Morshead, 2018), as only gliogenesis takes
Cell Stem Cell 26, 277–293, Fe
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place in the remainder of the brain (see e.g., Götz et al., 2016;

Lim and Alvarez-Buylla, 2016). The brain parenchyma outside

these niches (e.g., neocortex; Figure 1A) even limits the neuro-

genic potential of transplanted NSCs or neuroblasts (Barker

et al., 2018; Englund et al., 2002; Fricker et al., 1999; Seidenfaden

et al., 2006; Winkler et al., 1998). The largest NSC niche, the sub-

ependymal zone (SEZ), generates neuroblasts that migrate to the

distant olfactory bulb (OB), where they differentiate and integrate

(Figures 1B and 1C) (Lim and Alvarez-Buylla, 2016). This spatial

separation allows the determination of the composition of the

NSC niche (SEZ) that maintains the stem cells and generation of

neuroblasts in comparison to the OB niche as an environment

fostering neuronal differentiation and integration of new neurons.

The SEZ, located at the lateral wall of the lateral ventricles that

are lined by ependymal cells, harbors nestin+ quiescent NSCs

that can be activated and give rise to transit-amplifying progen-

itors (TAPs) that then generate doublecortin (Dcx)-positive neu-

roblasts (Figure 1C). The medial side of the lateral ventricle, the

medial sub-ependymal zone (MEZ), also shares ependymal cell

lining and access to the cerebrospinal fluid (CSF). As it contains

many fewer NSCs and Dcx+ neuroblasts (Figure 1C) than the

SEZ, this region provides a useful comparative tissue to identify

specific components of the NSC and neurogenesis-associated

environment. Individual proteins and ECM structures (Kerever

et al., 2007) have been described as specific for the NSC niches

in the adult murine brain, such as the ECM proteins Tenascin-C

(Tnc) and Thrombospondin 4 (Thbs4) that both may regulate as-

pects of migration (Faissner et al., 2017; Garcion et al., 2001; Gir-

ard et al., 2014; Kazanis et al., 2007) or the matrix-associated

protein Plexin-b2 that regulates proliferation and migration

(Saha et al., 2012). However, no comprehensive proteomic anal-

ysis of this important niche has yet been performed. Likewise, in

the OB, two matrix proteins, Reelin (Reln) and Tenascin-R (Tnr),

have been reported to regulate the change from tangential to

radial neuroblast migration (Figure 1B) (David et al., 2013; Hack

et al., 2002), and, besides neuronal activity, little is known about

factors allowing the integration of new neurons into pre-existing
bruary 6, 2020 ª 2020 The Authors. Published by Elsevier Inc. 277
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networks in the adult brain (Hardy and Saghatelyan, 2017; Lledo

and Valley, 2016).

In contrast to the above-described niches, the mature brain

parenchyma allows neither neurogenesis nor integration of

new neurons in the absence of injury (Frisén, 2016). It contains

a specialized extracellular matrix called ‘‘perineuronal nets’’

(PNNs) that is built up around neurons late in development and

serves to restrict neuronal plasticity (Deepa et al., 2006). As the

NSC niche contains no neurons, and hence no PNNs, its ECM

composition is expected to differ from the brain parenchyma,

but the actual composition is largely unknown, as are potential

differences in ECM composition between the OB and brain

parenchyma.

The ECM, the ‘‘matrisome,’’ consists of core ECM proteins

often forming ECM structures, such as the basement membrane

(BM) and associated ECM proteins, many with primarily protein-

regulatory functions. The latter is essential for the enrichment

and function of many growth factors and other signaling factors

and, hence, is of key interest to mediate regulatory functions of a

local niche. The proteins associated with the structural ECM can

be enriched through detergent de-cellularization (Naba et al.,

2012), but this has not yet been done in the NSC niches.

In contrast to the paucity of proteome data, the transcriptomes

of SEZ NSCs, their progeny, and the surrounding niche cells are

well studied (Beckervordersandforth et al., 2010; Codega et al.,

2014; Kalamakis et al., 2019; Llorens-Bobadilla et al., 2015). How-

ever, gene expression analysis has proven inadequate to fully

describe the proteome, including the tissue matrix environment

(Angelidis et al., 2019; Schiller et al., 2015). For example, neuro-

genic and neuronal mRNAs are upregulated in NSCs and progen-

itors, but translation is inhibited to avoid premature differentiation

and allow amplification of the lineage, a phenomenon referred to

as ‘‘lineage priming’’ (Baser et al., 2019; Beckervordersandforth

et al., 2010; Götz et al., 2016; Lepko et al., 2019). Moreover,

proteins may be derived from the CSF that is contributing to the

maintenance of the SEZ stem cell niche (Lepko et al., 2019;

Silva-Vargas et al., 2016). Determining the composition of the pro-
Figure 1. High-Resolution Proteome of the Somatosensory Cortex and

(A–C) The schematic drawing indicates a sagittal section of the adult murine brain

neurogenic somatosensory cortex (A), the olfactory bulb (OB), where new neuron

zone (SEZ) where most NSCs reside, whereas only a few are located in the media

the panels and are confocal z stacks.

(D) Experimental workflow using loss-less nano-fractionation for library-matched

(E) Schematic of the high-precision cryo-dissection of the SEZ and the MEZ.

(F) Picture of a 50-mm frozen coronal section (white, ventral down) with cortex, c

dissected region visible as a thin gray line.

(G) Photomicrographs of cryo-dissected SEZ and MEZ (separated from striatu

dissected SEZ stained for GFAP, collagen 4 (Col4), myelin-associated glycoprot

(H) Number of proteins quantified in the library sample measurements and the lib

are shown as mean ± standard deviation (n = 1 library sample per region, n = 4 s

(I) Principal component analysis (PCA) for each brain region. Components 1 a

components.

(J) Colors indicate three categories that are enriched, respectively, in the Cx, the

(K) Heatmap of 4,786 proteins found to be of different abundance comparing

quantification (LFQ) intensities after unsupervised hierarchical clustering (ANOVA

(L) The datasets were annotated with Uniprot keywords and the matrisome anno

Cx were then scored (0 to 1) and are displayed in a bar graph (1D-annotation enr

enriched in the Cx compared to the OB.

(M) Enriched features of the SEZ in comparison to the Cx were analyzed in the s

Scale bars as indicated in the panels.
teome, including the matrisome of the neurogenic niches, is thus

important, particularly given the influence of the ECMcomposition

on mechanical tissue properties, which regulate fate decisions of

adult stem cells, such as muscle or mesenchymal SCs (Engler

et al., 2006; Gilbert et al., 2010; Vining and Mooney, 2017). Neural

crest SCs have been found to differentiate into smooth muscle

cells on stiffer substrates and glial cells on softer substrates

(Zhu et al., 2019), consistentwithCNS tissuebelonging to the soft-

est tissues in our body (Franze et al., 2013). This softness of CNS

tissue ismost likely due to low expression of certain structuralma-

trix constituents, such as collagen I, and the soft nuclear matrix of

neurons, given their low content of lamin A (Swift et al., 2013).

Tissue stiffness has been shown to potently influence neurite

outgrowth (Koser et al., 2016; Stukel and Willits, 2018), and

NSCs possess mechanosensitive ion channels whose activity

affects their self-renewal and differentiation (Pathak et al., 2014;

Petrik et al., 2018). However, the mechanical properties of the

adult stem cell niche are currently unknown.

Here we set out to provide a first in-depth characterization of

whatmakes the composition and architecture of the adult brain’s

neurogenic niche uniquely different from the non-neurogenic

brain parenchyma.

RESULTS

High-Resolution Proteome Defines Niche-Specific
Features
For ultra-deep proteomic assessment of the neurogenic niches,

we used library-matched single shot (LMSS) proteomics (see

STAR Methods). Cerebral cortex (Cx) gray matter (GM, omitting

thewhitematter [WM] andmeninges) was comparedwith theOB

(also omitting the meninges), the SEZ, and the MEZ (Figure 1D).

To obtain SEZ andMEZ samples, we performed cryo-micro-dis-

sections on 100-mm-thick tissue sections after removing cortex

with corpus callosum and choroid plexus (10 sections per

sample) (Figures 1E, 1F, and 1F0). The combination of methods

allowed very high precision and proteome-measurement depth
Neurogenic Niches

with example photomicrographs of the regions used in this analysis—the non-

s (labeled for doublecortin [Dcx]) integrate (B), and the lateral sub-ependymal

l sub-ependymal zone (MEZ) (C). Sections were immunostained as indicated in

single shot measurements.

orpus callosum, and choroid plexus removed. (F0) shows magnification of the

m [Str] and septum [Sep]) stained for GFAP and DAPI (left panel) and cryo-

ein (MAG), and DAPI (right panel).

rary-matched single shot (LMSS) sample measurements for each region. Data

ingle shot samples per region). See also Figures S1A–S1D.

nd 2 separate the main regions. The SEZ and the MEZ are similar in these

OB, and both the SEZ and the MEZ (FDR is presented for each category).

the four brain regions (n = 4 per region). Intensities are based on label-free

with Benjamin-Hochberg post hoc test, FDR = 0.05).

tation (see STAR Methods). Enriched features of the OB in comparison to the

ichment, FDR = 0.05). Conversely, features with a negative score (0 to �1) are

ame manner (1D-annotation enrichment, FDR = 0.05).
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of the small SEZ and MEZ regions, avoiding the myelin-associ-

ated-glycoprotein-rich (MAG+) brain parenchyma (Figure 1G).

We identified a total of 10,923 proteins in the library samples

(four pooled tissue samples from each region) and 6,690 in

LMSS samples (n = 4 per region) (Figure 1H; Table S1). Among

the library-exclusive proteins, transcription factors (p = 1.68 3

10�6), cytokines, and neurogenesis-associated mitogens (e.g.,

interleukin-18, insulin growth factor, Vegf-a, etc.) were signifi-

cantly enriched. As these are low-abundance proteins, in vivo

proteome measurements of such factors have previously been

unattainable. Our library measurements demonstrate that the

mitogens and transcription factors known to be required for neu-

rogenesis (e.g., Pax6) (Ninkovic et al., 2013) can be revealed and

quantified in vivo with a proteome depth of 10,000 proteins (Fig-

ures S1A–S1D; Table S1).

The principal component analysis (PCA) of the four regions re-

vealed that the SEZ and the MEZ have a more similar proteome

than the other two regions (Figure 1I). An enriched common cate-

gory was cilium movement (p = 3.93 3 10�6) (Figure 1J), high-

lighting that proteins from a single cell layer, the ependymal cells

lining the ventricle, can be detected: e.g., Tektin (Tek1), a protein

exclusive to ependymal cells and NSCs at the SEZ (https://shiny.

mdc-berlin.de/SVZapp/).

In total, 4,786 proteins had a differential abundance among the

four regions (ANOVA, FDR = 0.05) (Figure 1K). To identify fea-

tures enriched in the neurogenic niche, we analyzed differences

in protein abundance for either the OB or the SEZ in comparison

to the Cx. Proteins were annotated with Uniprot keywords and

the improved ECM annotation (http://matrisome.org; see STAR

Methods). Enriched features of the OB included several nuclear

and gene-regulatory processes (1D-annotation enrichment,

FDR = 0.05) (Figures 1L and S1F; Table S2). This suggested

that the OB has a larger proportion of gene-regulatory proteins,

possibly because of the large population of maturing neuro-

blasts. Processes less pronounced in the OB compared to the

Cx included synapse-associated features and core-matrisome

proteins.

Proteins enriched in the SEZ, like in the OB, were associated

with gene regulation and also oxidative phosphorylation (Figures

1M and S1E; Table S2), which is consistent with the fact that

NSCs are largely glycolytic and the metabolism has to change

as they differentiate into neuroblasts (Beckervordersandforth,

2017; Knobloch and Jessberger, 2017). Annexin-family proteins

were found enriched in the SEZ compared to the Cx (Figure 1M),

a notable observation given their importance in regulating the

proliferation and migration of cancer cells (Lauritzen et al.,

2015). Core matrisome proteins demonstrated the highest abun-

dance in Cx (p % 0.0001, Kruskal-Wallis test with Dunn’s multi-

ple comparison test) (Figure 2A), and several proteins of the

PNNs had higher abundance in the Cx and the MEZ compared

to the SEZ and the OB (Figures 1L and 1M). None of the proteo-

glycans associated with migration during developmental neuro-

genesis, such as neurocan, aggrecan, or versican (Long and

Huttner, 2019; Maeda, 2015), were an enriched component of

the matrisome at the SEZ; instead, aggrecan was enriched in

the OB in line with an association to neuroblasts (Figures 2B,

2C, and S2A–S2C). These data validate the quality of the dataset

and provide a rich resource that can be accessed as a web-

based database (https://neuronicheproteome.org).
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Identification of Niche-Specific Marker Proteins
The abundance of neurogenesis-associated proteins was lower

in the MEZ compared to the SEZ but still detectable, further sup-

porting the depth of our analysis. One such protein is Tnc, the

neurogenic niche-associated ECM protein discussed above

(Roll and Faissner, 2014) that was enriched in the SEZ versus

the MEZ, as expected (Figures 2A and 2B). We then compared

the relative abundance of proteins in the SEZ, the MEZ, and

the OB to the Cx as a control. These region-specific compari-

sons determined, S100a6 and C1ql3 among others, to be

distinctly enriched among matrisome-associated proteins of

the SEZ (Figures 2B, 2C, S2B, and S2C). We therefore aimed

to determine which cells produce these SEZ-enriched proteins.

Immunostaining for S100a6 was high in the SEZ and comparably

absent in the MEZ (Figure 2D) and low to absent in astrocytes in

the Cx parenchyma (Figures S3G and S3H), in agreement with

our analysis. Excitingly, however, S100a6 staining labeled

NSCs (slow dividing nestin+ cells in the SEZ; Figures S3B,

S3C, and S3F), but not neuroblasts (Dcx+; Figures 2D, 2G, and

S3A–S3C). Likewise, S100a6 staining also extends into the

rostral migratory stream (RMS), co-localizing with GFAP+ cells,

but not Dcx+ neuroblasts (Figures S3I and S3K). It is worth noting

that NSCs, expressing GFAP, have been identified also at these

more rostral positions (Alonso et al., 2008). Moreover, we also

found S100a6+ GFAP+ cells in the WM (Figures S3E and S3J),

consistent with the presence of some NSCs there (Lim and Al-

varez-Buylla, 2016). Thus, S100a6 not only labels NSCs in the

dentate gyrus (DG) (Yamada and Jinno, 2014) but more broadly

allows distinguishing NSCs from astrocytes, which is important

as especially reactive astrocytes and NSCs share most of the

so-called ‘‘astrocyte markers’’ (Beckervordersandforth et al.,

2010; Götz et al., 2015).

Interestingly, single-cell RNA sequencing (scRNA-seq) data

from the SEZ (Kalamakis et al., 2019) also showed enrichment

of S100a6 specifically in a primed-quiescent subtype of NSCs,

qNSC2 (Figure S6A), identifying these cells as the main source

for the specific enrichment of S100a6 in the SEZ. Most notably,

this proved to be the case for most mRNAs encoding for matrix

proteins that are highest in quiescent NSCs, whereas activated

NSCs, TAPs, and neuroblasts express very few ECM compo-

nents (Figure S6A). Thus, NSCs contribute to the composition

of their own niche (see also Faissner et al., 2017).

Some proteins enriched in the SEZ were also enriched at

mRNA levels as seen by in situ hybridizations in the Allen Brain

Atlas (Figures 2I and S4J). The systematic comparison of RNA

and protein enrichment in the SEZ compared to the Cx and the

OB, however, showed profound differences (Figures S6B and

S6C; Table S5). For example, some RNAs were expressed at

significantly higher levels in the SEZ compared to the Cx, but

the respective proteins were lower abundance or not much

different between the SEZ compared to the Cx (Figure S6B; Ta-

ble S6). This is to be expected from the ‘‘lineage priming’’ as

introduced above (Beckervordersandforth et al., 2010; Götz

et al., 2016; Lepko et al., 2019) and would lead to ‘‘false posi-

tives’’ if relying on RNA data only. Even more misleading could

be the class of proteins that we found enriched in the SEZ

compared to the Cx, which had lower mRNA levels in SEZ

compared to the Cx (Figure S6B). For example, the C1ql3 protein

is enriched at protein level in the SEZ, but mRNA is lower in the

https://shiny.mdc-berlin.de/SVZapp/
https://shiny.mdc-berlin.de/SVZapp/
http://matrisome.org
https://neuronicheproteome.org


Figure 2. Niche-Specific ECM and NSC Markers

(A) Distribution plots of each brain region in the different categories of the matrisome as indicated. Average LFQ intensities for each protein were Z scored and

displayed in whisker plots (ANOVA, Kruskal-Wallis test with Dunn’s multiple comparison test, *p = 0.05, **p = 0.01, and ***p = 0.001).

(B) Scatterplot with the matrisome (black) and matrisome significantly different (FDR % 0.1) comparing the SEZ and the MEZ (red) highlighted.

(C) Scatterplot with the relative SEZ and OB values and significant differences (FDR % 0.1) between intensities for the SEZ and the OB. Both plots highlight

S100a6 and C1ql3 as enriched in the SEZ. See also Figures S2B and S2C.

(D–H) Photomicrographs of the ventricle and the SEZ and the MEZ from coronal brain sections of C57BL/6J mouse or mVenus/C1ql3 transcriptional reporter

mouse immunostained as indicated. Note that S100a6 and C1ql3 are not found in Dcx+ neuroblasts or parenchymal astrocytes and, typically, neither in

ependymal cells. Scale bars as indicated, and (D) and (E) are z stacks of confocal images, while (F)–(H) are single optical sections. See also Figures S3 and

S4A–S4I.

(I) In situ hybridization shows mRNA expression in the SEZ. Image credit: Allen Institute for Brain Science.
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Figure 3. Regional Matrisome Distribution and Neurogenic Niche-Specific Matrisome
We compared 158 matrisome proteins and 78 of these had a significantly different distribution in the respective regions, of which the somatosensory cortex was

found to be most abundant with extracellular matrix proteins. The heatmap displays unsupervised hierarchical clustering of the matrisome proteins with

significantly different abundance when comparing the four brain regions (ANOVA with Benjamin-Hochberg post hoc test, FDR = 0.05). Members of different

clusters (indicated by bars on the right of the heatmap) are listed on the further right of the heatmap in colored areas.
SEZ compared to the Cx. Moreover, C1ql3 was not detectable

among the stem cell stages in the published scRNA-seq data

(Figure S6C). This prompted us to examine the source of this pro-

tein in the SEZ.

To do so, we took advantage of the C1ql3-mVenus reporter

mouse line (Martinelli et al., 2016). With this allele, any cell that

expresses C1ql3 is marked by expression of cytoplasmic

mVenus (not a fusion protein). In brain, C1ql3 has thus far

been identified as a synaptic protein and, accordingly,

mVenus+ cells in this reporter line in the brain parenchyma

are mostly neurons (Martinelli et al., 2016). In the SEZ, however,

C1ql3-mVenus+ cells were Dcx negative, i.e., not neuroblasts

but nestin+ and S100a6+ NSCs (Figures 2E, 2F, S4A–S4C,

and S4F). Conversely, we could not detect mVenus+ astrocytes

in the brain parenchyma and the OB (Figures S4D, S4E, and

S4G–S4I). Ependymal cells located at the ventricle and

S100b+ did not contain S100a6 levels above background

nor co-localized with C1ql3-mVenus (Figures 2G and 2H).

Hence our analysis not only identified two SEZ-enriched NSC

proteins whose role may extend beyond being niche-specific

marker proteins but also showed a multitude of SEZ enriched

proteins that were not detected by RNA analysis (Figures

S6B and S6C).
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Biochemical Profiling of the Neurogenic Niche-Specific
Matrisome
Here we present an overview of the regional distribution of all

matrisome proteins with significant abundance differences

across conditions (Figure 3; unsupervised hierarchical clus-

tering, Pearson correlation). The OB and the SEZ are particularly

rich in serpins, vitronectin, and Tnc, whereas the SEZ and the

MEZ share high levels of annexin and several S100 proteins (Fig-

ure 3). Interestingly, annexin and S100 proteins interact and

regulate a variety of processes, including membrane fusion

and repair (Jaiswal and Nylandsted, 2015). These may be of

particular relevance in migrating cells present in both of these re-

gions. Additional ECM-associated proteins in both the SEZ and

the MEZ included the well-known Thrombospondin 4 (Thbs4)

and the ECM cross-linking protein Transglutaminase 2 (Tgm2)

that has so far not been described at protein level in the neuro-

genic niches (see below).

Matrisome proteins provide structural support and tether cell-

surface proteins or soluble growth factors and thereby regulate

their signaling functions. A way of experimentally enriching

ECM proteins is to de-cellularize tissue using detergents and

analyze the detergent-insoluble ECM components (Naba et al.,

2012). However, such a method inherently loses ECM-affiliated
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proteins that associate with weaker affinity with the ECM. In

contrast, methods that use protein-abundance correlation

across fractions of protein derived by stepwise centrifugation

or differential detergent extraction can be used to assess

biochemical properties of proteins, including their association

strength with ECM, in a proteome-wide fashion. We therefore

used the quantitative detergent solubility profiling (QDSP)

method (Schiller et al., 2015) and sequentially separated Cx,

OB, and SEZ tissue samples into four protein fractions.

Tissue proteins were separated by extraction with increasing

stringency using consecutive extraction with four distinct deter-

gent mixtures (Figure 4A), leading to the identification of 8,308

proteins (Figure 4B; Table S3). For comparison of protein solubi-

lity profiles, their intensities were Z scoredwithin each region and

relative protein abundancewas compared in the four fractions by

averaging the profile between regions to permit ‘‘brain’’ solubility

profile comparisons for specific categories. As expected, we

found ‘‘brain’’ core matrisome proteins, such as collagens and

laminins, to be enriched in the fourth fraction and thus more

insoluble, whereas matrisome-associated proteins, such as

S100 proteins and serpins, were most abundant in the first

fraction and thus more soluble (p % 0.0001, Kruskal-Wallis

test) (Figures 4C, S5A, and S5B). Notably, the brain-specific

ECM proteins associated with the PNNs (Figures 4C and S2G)

form a soft structural matrix in the Cx, since they typically enrich

in fraction three with much lower abundance in the insoluble

fraction four (p = 0.0002, Kruskal-Wallis test). The PNN proteins

neurocan (Ncan) and hyaluronan and proteoglycan link protein 1

(Hapln1) were distinctly more soluble in the OB compared to

other regions (Figure S2G), an observation possibly related to

the integration of new neurons into the network and a high de-

gree of synaptogenesis.

Comparing all solubility profiles between the three regions, we

found 1,208 proteins to have significantly different profiles (two-

way ANOVA, p % 0.05) (Figure 4D). Unsupervised hierarchical

cluster analysis revealed the OB to have many profiles that differ

in their solubility from Cx and the SEZ, in particular in the fourth

fraction. Since such solubility shifts may contain information

concerning protein functions, we assessed the cellular features

associated with proteins either more or less soluble (only fourth

fraction) in the OB compared to the Cx (1D-annotation analysis,

FDR = 0.05). Enriched features among the more insoluble pro-

teins in the OB were associated with gene regulation and cell
Figure 4. Compartment Analysis with In-Depth Quantitative Proteome

(A) With stepwise de-cellularization we determined insoluble and various diffusib

(B) Total number of quantified proteins for all regions (top, black and gray) and pro

(bottom, color). Each sample fraction is shown as mean ± standard deviation (n

(C) Solubility profile overview and distribution plot for the proteins in the displayed

these categories shown in whisker plots with number of proteins in each category

and soluble proteins distribute toward fraction one (significance analyzed with Kr

S5A, and S5B.

(D) Heatmap of 1,216 proteins with significantly different solubility among our thr

(E and F) Significantly enriched features among the more soluble (E) and insoluble

the LFQ intensities in the fourth fraction (1D-annotation enrichment, FDR = 0.05).

perineural nets annotation (see STAR Methods).

(G) From the relatively more soluble and insoluble proteins in the OB, we displ

associated proteins (two-way ANOVA). Data are presented as mean ± SEM.

(H) Matrisome proteins with significantly different solubility profiles comparing the

Rows have undergone unsupervised hierarchical clustering.
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adhesion, aswell as core-matrisome proteins and proteoglycans

(Figure 4F; Table S4). Lamin b1 and Lamin b2 were significantly

more insoluble in the OB, suggesting that some or many cells

have a nuclear matrix that is more insoluble (Figure 4G; Table

S4). It should be noted that many, but not all, gene regulatory-

associated proteins had a more insoluble profile in the OB, high-

lighting possible differences in nuclear architecture that remain

to be explored. Along these lines, we observed that the presence

of transcriptional and epigenetic regulators in different solubility

fractions with tissue specificity, e.g., Sp8 and Dnmt3a, were less

soluble, whereas Stat3, Meis2, and Gsk3b were more soluble in

SEZ tissue (Figure 4G). Meis2 is an important regulator of neuro-

genesis in the SEZ (Kolb et al., 2018), prompting the suggestion

that different solubility may reveal tissue-specific differences in

transcriptional function. Another category in the more insoluble

group of the OB included matrisome proteins, e.g., all three de-

tected glypicans (Gpc1, Gpc4, and Gpc5) (Figure 4H). Thus, its

less soluble ECM and nuclear lamina predict potentially higher

tissue stiffness of the OB, a prediction that we tested and

confirmed below.

Next, we focused on the solubility profiles of ECM compo-

nents, providing a heatmap of the ‘‘brain’’ matrisome solubility

profiles (Figure 5A; unsupervised hierarchical clustering, Pear-

son correlation). This highlights that familiar neurogenic niche

ECM proteins are surprisingly soluble (Figures 5B and 5C). Inter-

estingly, the solubility profile of C1ql3 in the SEZ is distinctly

different from the one in the OB and the Cx (Figure 5D), suggest-

ing its localization in a different more soluble compartment

compared to its normal synaptic membrane association. Indeed,

matrisome proteins were generally more enriched in the soluble

compartments of neurogenic niche-specific ECM-associated

proteins (p % 0.0001, Kruskal-Wallis test) in the SEZ (n = 26) or

the OB (n = 19) compared to the Cx in the LMSS data (FDR =

0.1) (Figure 5E). The solubility of proteins enriched in the Cx

(n = 40) compared to either the SEZ or the OB (FDR = 0.1) in

contrast had either a more membrane-associated or non-diffus-

ible solubility profile. The structural ECM is thus not enriched in

the neurogenic niche, including the typical ‘‘soft’’ structural brain

ECM, although individual proteins with these properties can be

found enriched in both the SEZ and the OB. Reln is uniquely

insoluble in the OB (Figure 5C), whereas Tgm2 is one of the

few proteins that was enriched in the SEZ (and the MEZ) that

has a largely insoluble profile (Figure 5A).
s of the Somatosensory Cortex and the Neurogenic Niches

le grades of ECM and other cellular compartment-associated proteins.

teins quantified in each detergent fraction from each of the three brain regions

= 4 in each brain region).

categories. Abundances were Z scored and then averaged for each protein in

displayed in the graphs. Insoluble proteins distribute more toward fraction four

uskal-Wallis test with Dunn’s multiple comparison test). See also Figures S2G,

ee regions (FDR R 0.05).

(F) proteins in the OB when compared to the Cx using the relative difference of

The dataset was annotated with Uniprot keywords, matrisome, and a custom

ay the quantitative profile of lamins of the nuclear matrix and neurogenesis-

three brain regions (Z scored LFQ intensity values, two-way ANOVA, pR 0.05).



A

B

C

D E

Figure 5. Brain- and Niche-Matrisome Composition

(A) The matrisome protein solubility profiles are displayed using unsupervised hierarchical clustering of the detergent solubility profiles derived from averaged

Z scores from each brain region (the Cx, the OB, and the SEZ).

(B–D) Detergent solubility profiles for the SEZ-associated ECM proteins (B) Tenascin-C (Tnc), Thrombospondin-4 (Thbs4), and Plexin-b2 (Plxnb2); the

OB-associated proteins (C) Tenascin-R (Tnr), Reelin (Reln), and Pleiotrophin (Ptn); and the two neurogenic niche-specific proteins (D) S100a6 and C1ql3

(p = 0.0948). Data are presented as mean ± SEM.

(E) Solubility profiles for Cx-, SEZ-, and OB-enriched matrisome proteins shown in whisker plots (ANOVA, p values in graphs).
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Figure 6. Transglutaminase 2 Promotes Neurogenesis

(A) NSCswere identified as hGFAP-GFP+ cells in the SEZ in sagittal sections counterstainedwith Tgm2 and inserted to the right indicated by the dashed line in the

lower magnification picture on the left. Both NSCs and ependymal cells were labeled with Tgm2. LV, lateral ventricle.

(legend continued on next page)
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Transglutaminase 2 Regulates Adult Neurogenesis
Given the specific enrichment and solubility profile of Tgm2 in

both the SEZ and the MEZ (Figure S5D), we determined its

cellular origin. Tgm2 immunoreactivity was found in ependymal

cells (Figures 6A and 6B) and NSCs (hGFAP-GFP+; see Becker-

vordersandforth et al., 2010; Codega et al., 2014) that extend an

apical process to the ventricle (Figure 6B), but not in neuroblasts

(Dcx+) (Figure 6C). Consistent with ependymal cells and NSCs

containing the highest protein levels, these cells isolated by fluo-

rescence-activated cell sorting (Beckervordersandforth et al.,

2010; Fischer et al., 2011) also had high Tgm2 mRNA levels,

whereas TAPs and neuroblasts contained very low mRNA levels

(Figure 6D). Notably, Tgm2 is the only family member detectable

in the SEZ (Tgm1, Tgm3, Tgm5, and Tgm6 were not detectable).

The expression of Tgm2 in ependymal cells explains its similar

levels in the SEZ and the MEZ (Figure S5D), but its additional

presence in NSCs implies possible autocrine or cell-intrinsic ef-

fects that we explored next.

To do so, we used primary SEZ cultures as described before

(Costa et al., 2011); cells were cultured without growth factors

and in the absence of matrix proteins (Figure 6F). Often a single

GFAP+ NSC is surrounded by the Dcx+ neuroblast progeny (Fig-

ures 6E and 6I) with the former Tgm2+, whereas neuroblasts

were negative, consistent with the data shown above (Figures 6C

and 6D). To probe Tgm2 function in this culture system, we used

10 mM of the Tgm2 inhibitor Z-DON. Cells were transduced 2 h

after plating with retroviral vectors containing CAG-IRES-GFP

at low titer to label few cells and allow detection of the progeny

of a single cell as a distinct cluster of cells, i.e., a clone (Ortega

et al., 2011). Notably, a single dose of Z-DON (at 4 h after plating)

drastically reduced the number of clones (Figure 6G; comprising

all clusters of GFP+ cells irrespective of their identity), suggest-

ing a possible role of Tgm2 in promoting proliferation or survival.

When we analyzed the composition of the clones, we noted a

specific effect of the Tgm2 inhibitor on the clones comprising

only neuroblasts (referred to as ‘‘neuronal clones’’ in Figures

6H and 6I) that are generated by proliferating TAPs or neuro-
(B) Whole-mount section of the SEZ showing an hGFAP-GFP+ Tgm2+ apical en

(C) Single-plane confocal picture of the coronal section of the SEZ immunostain

(D) Tgm2 expression analysis by qRT-PCR in cells isolated from the SEZ by fluoresc

the apicalmembranemarkerCD133+, ependymal cells (EP) ashGFAP-GFP-/CD133

(NA). Note that NSCs and ependymal cells express high levels of Tgm2 mRNA. Th

EGFR+, CD133-, PSA-NCAM-, and neuroblasts, isolated as PSA-NCAM+ also har

(E) Primary culture from the SEZ stained as indicated showing that Tgm2+ cells

(F) Experimental setup for the primary SEZ culture and clonal analysis followin

membrane impermeable and irreversible Tgm2 inhibitor).

(G) 10-mMZ-DON treatment at 4 h after plating significantly reduced the number o

origin), whereas 100-mM Boc-DON did not alter the number of clones. Data are p

(H) With Z-DON, but not Boc-DON, the proportion of GFP+ clones containing new

and glial clones arising from NSCs was conversely increased. Data are presented

**p % 0.01 and ***p % 0.001.

(I) Examples of retrovirally labeled (CAG-IRES-GFP) clones composed of neuron

(J) Primary SEZ cultures were treated with 10-nM siRNAs against Tgm2 and show

siRNA) (n = 4, Data are presented as mean ± SEM, two-way ANOVA with Bonfer

(K) Countings of DAPI stainings from representative tiles (n = 4, with nine tiles co

(L) Experimental setup for osmotic pump experiment with two time-points, 4 and 7 d

(M) On the contralateral side of the infusion, we quantified EdU+ cells that were

significant reduction in TAPs (EdU+/Dcx�), whereas proliferating neuroblasts (E

*p% 0.05, two-tailed t test). This trend continued after 7 days treatment (Data are p

from 6 sections were quantified per brain.
blasts in these cultures (Costa et al., 2011). Conversely, NSC

clones (containing one or few GFAP+ cells and Dcx+ neuro-

blasts, referred to as ‘‘mixed’’ in Figures 6H and 6I) or clones

containing only GFAP+ cells (referred to as ‘‘glial’’ in Figures

6H and 6I) were favored by Tgm2 inhibition (Figure 6H).

Tgm2 has multiple modes of action, including intracellular

and extracellular functions (Eckert et al., 2014; Lee and Park,

2017), and the above inhibitor blocks all of them. The inhibitor

Boc-DON cannot enter the cells and hence specifically blocks

extracellular Tgm2 but had no effects in these cultures (Figures

6G and 6H), suggesting that on this artificial glass substrate

with high abundant media volume, extracellular functions of

Tgm2 play no roles. Importantly, we confirmed the specific role

of Tgm2 using Tgm2 small interfering RNA (siRNA) (Fig-

ure 6J). Notably, the reduced number of neuronal progeny

after knockdown of Tgm2 was not due to cell death, as the con-

trol and knockdown condition had equal numbers of cells

(Figure 6K).

Since Z-DON was as effective as siRNA in vitro, we sought to

determine whether it would have a similar effect in vivo. Osmotic

minipumps loaded with 100 mM Z-DON in artificial CSF were im-

planted intra-ventricular in mice and inhibitor was administered

for either 4 or 7 days. A pulse of EdU (1 h prior perfusion) allowed

quantification of proliferating neuroblasts (Dcx+ and EdU+ cells)

or TAPs (Dcx� and EdU+ cells) at the SEZ. Interestingly, block-

ing Tgm2 for 4 days affectedmostly the number of TAPs, and this

trend was largely maintained after 7 days of administrating

Z-DON (Figure 6M). This phenotype obtained in vivo is consistent

with reduced clone numbers (Figure 6G) and effects on pure

neuronal clones (Figures 6H and 6J) in vitro, as TAPs almost

exclusively generate neuroblasts. Thus, the proteome analysis

allowed the identification of Tgm2 in promoting neurogenesis

from NSCs.

Higher Tissue Stiffness in Neurogenic Niches
The above-described tissue-specific distribution of potentially

mechanically important proteins and the susceptibility of adult
dfoot between ependymal cells delineated by b-catenin+ junctions.

ed for Dcx and Tgm2 showing no double-positive cells.

ence-activated cell sorting (FACS). NSCs were identified by hGFAP-eGFP+ and

+and hGFAP-GFP+, andCD133-, PSA-NCAM-,EGFR- cells asniche astrocytes

e direct progeny of NSCs, the transit-amplifying progenitors (TAPs), isolated as

dly expressed Tgm2. Data are presented as mean ± standard deviation.

were also GFAP+.

g Tgm2 inhibition with Z-DON (irreversible Tgm2 inhibitor) or Boc-DON (cell

f retrovirally labeled cell clusters (clones, i.e., a cluster of cells sharing the cell of

resented as mean ± SEM. *p % 0.05, two-tailed Mann-Whitney test.

ly generated neuroblasts (Dcx+) was reduced, whereas the proportion of mixed

as mean ± SEM, two-way ANOVA with Bonferroni’s multiple comparison test,

al, glial, and mixed cell types stained as indicated. Scale bars as indicated.

ed a reduced number of neuronal clones compared to the control (scrambled

roni’s multiple comparison test, *p % 0.05).

unted in each n).

ays, with continuous intra-ventricular infusion of 100-mMZ-DON in artificial CSF.

either Dcx+ or Dcx� at the SEZ. After 4 days Z-DON treatment, we found a

dU+/Dcx+) remained similar to control (Data are presented as mean ± SEM.

resented asmean ± SEM. p = 0.0537, two-tailed t test). Confocal image stacks
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Figure 7. Higher Stiffness of the Neurogenic

Niches

(A) Schematic drawing of the stiffness measure-

ments on coronal slices (300 mm) with AFM.

(B) Stiffness was assessed in the SEZ, the MEZ,

the striatum, and the Cx. Both ventricular regions

are significantly stiffer than the Cx and the striatum

that both have similar tissue stiffness. The SEZ

was significantly stiffer than the MEZ. Data shown

as whisker plots, *p = 0.05 and **p = 0.01.

(C) Representative tissue heatmap of OB mea-

surements with scale bar as indicated.

(D) In the OB, the end of the RMS was less stiff in

comparison to the adjacent olfactory tract. The

granule cell layer (GCL) was even stiffer still, as well

as the internal and external plexiform layer (IPL/

EPL) and the glomerular layer (GL). Data shown as

whisker plots, Mann-Whitney test (two tailed),

*p = 0.05 and ***p = 0.001.

(E) Experimental setup for the primary SEZ culture

plated on hydrogels with 100- or 200-Pa stiffness.

(F) Number of DAPI cells was similar at the end of

the 5-day experimental period.

(G) Representative images of the Dcx+ cells at

5 days after plating.

(H) Hydrogels with 200-Pa stiffness significantly

increased the percentage of Dcx+ cells in compar-

ison to the same primary SEZ culture on hydrogels

with 100 Pa stiffness. Data are presented asmean±

standard deviation. *p = 0.05, paired t test.
NSCs to mechanical signals (Pathak et al., 2014; Petrik et al.,

2018) prompted us to examine the stiffness of these regions

in coronal slices using atomic force microscopy (AFM)

(Figure 7A). The brain parenchymal regions, the cortex (GM)

and the striatum, had a similar stiffness (Figure 7B). Both the

SEZ and the MEZ regions were significantly stiffer (Figure 7B),

and the SEZ, the main site of neurogenesis, was significantly

stiffer than the MEZ, where few neuroblasts arise (Bordiuk

et al., 2014) (p % 0.05, Mann-Whitney, two tailed). These data

suggested a close correlation between higher tissue stiffness

and more NSCs dedicated to adult neurogenesis. To examine

the extent to which the stiffness differences of about 100 Pa

are relevant for neurogenesis, we cultured the above-described

primary SEZ cells on gels with the stiffness of 100 and 200 Pa.

Cells were fixed and stained after 5 days, and no difference in

total cell number was observed (Figures 7E and 7F). However,

more than double the number of neuroblasts was detected on
288 Cell Stem Cell 26, 277–293, February 6, 2020
the stiffer 200-Pa substrate (Figures 7G

and 7H), even though the outcome of

this difference appears to depend on

cell density (data not shown). In sum-

mary, these data support the concept

that neurogenesis is responsive to such

differences in stiffness.

Assessing the OB, we also found an in-

crease in stiffness from the RMS toward

the granule cell layer (GCL), which was

stiffer throughout the OB parenchyma

(Figures 7C and 7D). Thus, both neuro-

genic niches were significantly stiffer
than the brain parenchyma, suggesting that components of the

proteome contribute to regulate these niche-specific mechani-

cal properties, which affects neurogenesis.

DISCUSSION

Here we provide a comprehensive characterization of the neuro-

genic niche proteome compared to normal brain parenchyma

and make the data available on an easy-to-use webpage

(https://neuronicheproteome.org). Our two proteome datasets

(LMSS and QDSP) allowed expanding the set of neurogenic

niche-specificproteinsanddefining their region-specificcompart-

ment association. These data are an important complement to the

RNA expression data, as RNA and protein enrichment are only

partially congruent. This has been described in detail when

comparing scRNA-seq and deep proteome data in the aging

lung (Angelidis et al., 2019) and was also apparent in our

https://neuronicheproteome.org


comparison of RNA and proteome data (Figure S6). The possible

mechanisms for this are multiple. RNA stability and RNA-binding

proteinsmay differ between brain regions, and the latter (including

microRNAs [miRNAs]) may differentially regulate translation,

leading to different abundances of newly produced proteins.

Conversely, protein degradation may be regulated differently be-

tween regions, such that RNA could be enriched, but protein

may be fast degraded and hence reduced. Likewise, especially

for thematrisomeproteins, the secretory pathways leading to their

final localization in the ECM could be differentially regulated,

causing a discrepancy between the mRNA coding for the protein

and its amount in the ECM. Lastly, the location of the SEZ at the

ventricleputsNSCs indirectcontactwith theCSF,andseveral fac-

tors releasedby thechoroidplexus into theCSFhavealreadybeen

identified to regulate adult neurogenesis (Lepko et al., 2019; Silva-

Vargas et al., 2016), including miRNAs (Lepko et al., 2019) or pro-

teins (Silva-Vargas et al., 2016). In the latter case, wewould detect

the protein in our proteome analysis, but no RNA would be found,

which is the case for many. Interestingly, especially proteins of the

matrisome enriched in the SEZ were not enriched at RNA levels

(Figure S7A), consistent with data obtained in lung (Angelidis

et al., 2019). Prominent categories of proteins enriched in the OB

compared to the cortex, not enriched at RNA level, were related

to splicing (Figure S7B). Therefore, this proteome analysis

provides an important resource, as proteins play key roles in the

function of this unique niche.

Specific Matrisome of the NSC Niche
Various soluble factors are the most explored cell-extrinsic sig-

nals that regulate the adult NSC. Indeed, many matrix-associ-

ated proteins are more soluble in the neurogenic niches, and

we even found several core-matrix proteins to be more soluble

in the neurogenic niches compared to other brain regions and

tissues (Figure S5C). This includes Hapln1, Tnc, and Thbs4. In

addition to binding other core-matrisome proteins, such as

collagens and fibronectin, Tnc interacts with a diverse set of

ligands, such as growth factors (e.g., Wnt3a and transforming

growth factor b [Tgf-b]) and receptors (e.g., Toll-like receptor 4

[TLR-4] and Rptpb) (De Laporte et al., 2013; Midwood et al.,

2016). Thbs4 may act as, e.g., a voltage-gated ion-channel

blocker or have intracellular functions (Brody et al., 2015; Girard

et al., 2014; Lana et al., 2016; Narouz-Ott et al., 2000). The other

niche-specific ECM proteins with a soluble profile include ser-

pins, S100 proteins, and annexins that form a core interaction

hub in the SEZ-enriched matrisome (Figure S7C). Soluble ECM

proteins such as these may stem from the various cell types in

the brain or blood (Geyer et al., 2016). However, we found no

evidence for a general increase in blood proteins from allegedly

leaky vessels (Tavazoie et al., 2008) in the SEZ tissue (Figures

S2D and S2E) but rather expression of these genes (e.g., ser-

pinb6, annexin 1, and annexin 5) by cells in the SEZ (Figure 2I),

mostly qNSCs (Figure S6A). Another interesting protein in this

category enriched in both the SEZ and the OB is Kininogen 1

(Kng1). Kng1 is a precursor for bradykinin (Figures 2B and 2C),

which has been found to promote neurogenesis versus gliogen-

esis in vitro (Pillat et al., 2016). Interaction analysis of the niche-

specific matrix protein in the SEZ highlights annexin-S100

protein interactions and calcium-binding and catalytic activity

regulation, whereas in the OB, several serpins have known inter-
actions with other negative regulators of endopeptidase activity

(Figures S7C and S7D).

Notably, the SEZ-enriched matrisome unraveled here differs

profoundly from the enrichments found recently by RNA-seq of

NSC niches in the developing Cx of murine or human samples

(Fietz et al., 2012). Although RNA and proteome discrepancies

may contribute, it is important to note that some of the crucial

core matrisome proteins regulating embryonic SVZ expansion

and cortex folding are not enriched in the adult NSC niche

(Long et al., 2018; Long and Huttner, 2019). Indeed, many of

the SEZ-enriched proteins are upregulated at early postnatal

stages when the adult NSC niche forms (F.V., P.S., and M.

Götz, unpublished data). Thus, as in many other organs, the

niche maintaining adult stem cells differs profoundly from the

niche regulating expansion in development.

S100a6andC1ql3wereboth soluble ECM-associatedproteins

that we found enriched in NSCs of the SEZ. Interestingly, S100a6

also marks NSCs in the DG (Yamada and Jinno, 2014) and is

hencecommon toNSCsacross regions.S100a6hasextracellular

and intracellular functions (Donato et al., 2017); some of the latter

are calcium dependent and involved in promoting proliferation in

various cancer cells (Lerchenm€uller et al., 2016; Li et al., 2015).

This may explain its higher levels in late-stage quiescent NSCs

compared to postmitotic parenchymal astrocytes. Moreover,

S100a6 may be involved in the signal transduction cascade of

flow- or stretch-sensitive channels, such as the epithelial sodium

channel that is also absent from non-proliferating astrocytes but

present in NSCs and increases the frequency of Ca signals

when promoting proliferation (Petrik et al., 2018).

In brain, C1ql3 has thus far only been identified as a synapse-

associated protein (Chew et al., 2017; Martinelli et al., 2016; Mat-

suda et al., 2016). Here we found it enriched with a specific

solubility profile in the SEZ-niche and identified NSCs as the ma-

jor source. Thus, C1ql3 also allows the discrimination of NSCs

from parenchymal astrocytes, an urgent need given the labeling

of NSCs by most astrocyte markers (see also Beckervorder-

sandforth et al., 2010). Notably, C1ql3 is enriched in the SEZ

only at the protein level and was hence not identified as a NSC

marker in RNA analysis (Figure S6B). C1ql3’s differential solubi-

lity at the SEZ suggests its localization in a different compart-

ment that is unrelated to its reported synapse function in other

brain regions. Outside the brain, extracellular C1ql3 has been re-

ported to control cellular glucose homeostasis (Wei et al., 2011),

which makes C1ql3 interesting as a potential regulator of NSC

metabolism and perhaps part of the metabolism-enriched

machinery we identified in the SEZ (Figure 1M). In order to

further demonstrate the functional relevance of the proteome

differences detected in this resource, we showed that the

niche-candidate Tgm2 regulates proliferation and neurogenesis

in vitro and in vivo. Tgm2 is a multifunctional enzyme and may

regulate neurogenesis by intracellular and extracellular mecha-

nisms in vivo. Worth noting is its predominant insoluble profile

in the SEZ. Most importantly, it serves to substantiate the rele-

vance of proteins found to be enriched in the SEZ.

Specific Matrisome of the OB, the Niche for Neuronal
Integration
A key aspect of adult neurogenesis is the integration of the

new neurons into pre-existing circuitry. However, the niche
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conditions allowing this integration in the DG and the OB are not

characterized. PNNs in the brain parenchyma have spurred

much interest because of their role in plasticity (Sorg et al.,

2016). Overall, many of the PNN-associated proteins are present

at a lower degree in the SEZ and the OB compared to the Cx and

the MEZ. In the OB, we found two PNN proteins (Hapln1 and

Ncan) to be substantially more soluble than in the Cx and the

SEZ, which suggests that these proteins may contribute less to

PNNs in the OB compared to the Cx and hence constitute a

composition of PNN proteins that may be involved in allowing

constant synaptic plasticity in the OB. Indeed, Hapln1 is crucial

for the formation of new PNNs and is key in mediating plasticity

(Carulli et al., 2010). Ncan can act as repellent signal for PSA-

NCAM and Epha3 signaling and may be integral to neuroblast

migration and circuitry integration (Sullivan et al., 2018). We

could further corroborate the absence of a typical PNN compo-

sition in the OB by staining with Wisteria floribunda agglutinin

(WFA), a lectin-binding carbohydrate of the PNN, e.g., in the

Cx, although it does not mark any nets around neurons of the

OB (Figure S4K). The limited matrix association of PNN-associ-

ated proteins in the OB and the absence of typical PNNs makes

them key candidates for the OB’s distinct capacity to permit the

integration of new neurons into the pre-existing circuitry.

Unique Stiffness of the Neurogenic Niches
An ECM that increases tissue stiffness typically contains insol-

uble proteins, such as the BM proteins, including collagens

and laminins (Swift et al., 2013). Our solubility profiles show

that the neuron-associated ECM clearly has a different composi-

tion and architecture compared to the insoluble BM proteins,

and our data suggest it has very little contribution to tissue stiff-

ness. Conversely, we found more insoluble ECM components

that may relate to the increased stiffness of the SEZ, such as

Laminin-b2 (Lamb2), Nidogen-1 (Nid1), and Perlecan (Hspg2)

in the SEZ compared to the MEZ (Figure S2B), which suggests

that the SEZ contains more or larger BM structures. This is in

line with previous observations suggesting the specific BM

structures in the SEZ, referred to as fractones, as sites for

growth-factor accumulation (Kerever et al., 2007). Moreover,

the higher expression of the ECM cross-linker Tgm2 originating

from ependymal cells and NSCs may further contribute to the

increased mechanical stiffness of this niche, besides its possible

intracellular functions shown here in vitro. Transglutaminases

have previously been shown to stiffen tissue (Majkut et al.,

2013), and increased substrate stiffness promotes neurogenesis

in vitro shown here and previously (Pathak et al., 2014).

We found no general enrichment of the insoluble ECM in the

OB parenchyma, except for Reln, which suggests unique inter-

connections here that may be linked to its role in promoting

neuroblast chain-migration detachment (Hack et al., 2002).

Nevertheless, the OB was the stiffest among the investigated

brain regions. The OB is altogether a cell dense region and cell

density is known to correlate with tissue stiffness (Koser et al.,

2015; Thompson et al., 2019). However, we also found all lamins

of the nuclear matrix to be enriched in the OB, and lamin A cor-

relates with tissue stiffness (Swift et al., 2013) (Figure S2F). The

lamins were also more insoluble in the OB, which suggests

they may have a different composition or associate to cytoskel-

etal proteins through proteins such as Nesprin-2 (Syne2), which
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had similar distinct solubility characteristics in the OB. Nesprin-2

regulates nuclear movement during neurogenesis (Zhang et al.,

2009) and may hence be involved in neuroblast migration in

the OB. Cell migration is also regulated by tissue stiffness, and

durotaxis (migration toward stiff substrate) has been described

for several stem cells (Choi et al., 2012; Vincent et al., 2013).

Moreover, the nuclear envelope can act as a mechanosensor

(Donnaloja et al., 2019), highlighting the importance of nuclear

envelope and cytoskeletal interactions. Importantly, stiffness

has been found to regulate NSC differentiation in vitro (Saha

et al., 2008), and we showed here the relevance of the 100-Pa

difference measured in vivo exerting effects on neurogenesis

in vitro. Thus, the unique properties of the SEZ niche are

functionally relevant. Therefore, the niche-specific proteome

described here provides a rich resource for a deeper under-

standing of the unique properties of this NSC niche in compari-

son to other adult stem cell niches.
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Götz, M., Sirko, S., Beckers, J., and Irmler, M. (2015). Reactive astrocytes as

neural stem or progenitor cells: In vivo lineage, In vitro potential, and Genome-

wide expression analysis. Glia 63, 1452–1468.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Beta-catenin (1/2000) BD bioscience Cat# 610153; RRID:AB_397554

Collagen 4 (1/100) Millipore AB756P; RRID:AB_2276457

DCX (1/500) Millipore Cat# AB2253; RRID:AB_1586992

GFAP (rb) (1/500) DAKO Cat# Z0334; RRID:AB_10013382

GFAP (ms) (1/500) Sigma Cat# G3893; RRID:AB_477010

GFAP (goat) (1/500) abcam Cat# ab53554; RRID:AB_880202

GFP (1/1000) Millipore Cat# MAB3580; RRID:AB_94936

GFP (1/2000-4000) Aves lab Cat# GFP-1020; RRID:AB_10000240

MAG (1/400) Millipore Cat# MAB1567; RRID:AB_2137847

MAP2 (1/1000) Sigma Cat# M4403; RRID:AB_477193

Nestin (1/100) Millipore Cat# MAB353; RRID:AB_94911

NeuN (1/100) Millipore Cat# MAB377; RRID:AB_2298772

S100a6 (1/500) Abcam Cat# ab181975

S100B (ms) 1/500) Sigma Cat# S2532; RRID:AB_477499

Tgm2 (1/100) Labvision Cat# MS-224-B0; RRID:AB_62201

WFA (biotin conjugated) (1/500) Sigma Cat# L1516-2MG; RRID:AB_2620171

Secondary antibodies

Alexa Fluor� secondary antibodies (488, 555, 647)

(1/1000)

ThermoFisher Scientific Cat# A-11001; RRID:AB_2534069

555 Alexa Fluor� conjugated streptavidin ThermoFisher Scientific Cat# S32355; RRID:AB_2571525

FACS antibodies

CD133-PE (1/250) eBioscience Cat# 12-1331-82; RRID:AB_465849

EGF–Alexa Fluor 647 (1/300) Molecular Probes Cat# E-35351

Anti-PSA-NCAM-PE (1/250) Miltenyi Cat# 130-093-274; RRID:AB_1036069

Rat IgG1 K isotype control PE (1/250) eBioscience Cat# 12-4301-81; RRID:AB_470046

Mouse IgM-PE antibody (isotype control (1/250)) Miltenyi Cat# 130-093-177; RRID:AB_871723

Chemicals, Peptides, Recombinant Proteins and Kits

IGPAL-CA-630 Sigma Cat# I8896

Phosphatase inhibitors Roche Cat# 04906837001

Benzonase Merck Cat# 70746-3

Protease inhibitors (+EDTA) LifeTech Cat# 78430

Sodium deoxycholate Sigma Cat# D6750

TCEP Sigma Cat# 646547

2-Chloroacetamide Sigma Cat# C0267

Ammonium acetate Sigma Cat# V800034

Formic acid Sigma Cat# 543804

Gaudinium Sigma Cat# G4505

Thio-urea Sigma Cat# T8656

SDS Sigma Cat# L4509

HEPES Sigma Cat# H3375

Trypsin Sigma Cat# T9201

Hyaluronidase Sigma Cat# H3884

DMEM/F12 Life Technologies Cat# 21331020

B27 Supplement Life Technologies Cat# 17504044

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Poly-D-lysine hydrobromide Sigma Cat# P0899

GlutaMax Life Technologies Cat# 35050038

Trypsin-EDTA (0.05%) ThermoFisher Scientific Cat# 25300054

Poly-L-ornithin Sigma Cat# P4957

Laminin Roche Cat# 11243217001

TSA Tetramethylrhodamine kit PerkinElmer Cat# NEL702001KT

Acetonitrile Sigma Cat# 271004

Trifluoroacetic acid Sigma Cat# 302031

Micro BCA protein assay kit ThermoFisher Scientific Cat# 23235

Goat Serum ThermoFisher Scientific Cat# 16210072

RLT lysis buffer QIAGEN Cat# 79216

Triton X-100 Sigma Cat# T8787

RLT lysis buffer QIAGEN Cat# 79216

RNeasy Micro Kit QIAGEN Cat# 74004

RNeasy Mini Kit QIAGEN Cat# 74104

SuperScript III Invitrogen Cat# 18080093

iQ SYBR Green Supermix BIO-RAD Cat# 1708880

IsoFlo Abbott Laboratories Cat# NDC 0044-5260-03

DMSO Sigma Cat# D2438-10ML

ZDON Zedira Cat# Z006

BocDON Zedira Cat# B003

EdU ThermoFisher Scientific Cat# E10187

Click-iT EdU Alexa fluor 647 Imaging kit Invitrogen Cat# C10340

HiPerFect� transfection reagent QIAGEN Cat# 301704

Allstars Negative control siRNA QIAGEN Cat# 1027280

FlexiTube GeneSolution for Tgm2 QIAGEN Cat# GS21817

Glutaraldehyde Sigma Cat# G5882

(3-Aminopropyl) trimethoxysilane (APTMS) Sigma Cat# 281775

Acrylamide Sigma Cat# A4058

N-Hydroxyethyl-acrylamide Sigma Cat# 697931

Bis-acrylamide Fisher Scientific Cat# BP1404-250

Experimental Models: Organisms/Strains

C57Bl6/J mice In-house breeding N/A

C1ql3flox; C1ql3tm1.1Sud Martinelli et al., 2016 RRID: MGI_5779515

hGFAP-GFP mice (Tg(GFAP-EGFP)1Hket) Nolte et al., 2001 MGI:6188855

Deposited Data

Proteome dataset ProteomeXchange Consortium

at http://proteomecentral.

proteomexchange.org

PXD016632

Supplementary tables (of in-article analyzed data) The journal N/A

Proteome dataset https://neuronicheproteome.org N/A

Microarray dataset Gene Expression Omnibus at

https://www.ncbi.nlm.nih.gov/geo/

accession number GPL15692

Software and Algorithms

MATLAB, including custom-written scripts to

analyze AFM data

Mathworks: https://www.mathworks.

com/products/matlab/Custom MATLAB

scripts: https://github.com/FranzeLab

Version R2018b

Maxquant http://www.coxdocs.org/doku.php?id=

maxquant:start

Version 1.6.0.16
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REAGENT or RESOURCE SOURCE IDENTIFIER

Perseus http://www.coxdocs.org/doku.php?id=

perseus:start

Version 1.6.0.7

Prism Graphpad Version 5

Microarray analysis GeneSpring GX v11.5.1 software package Agilent Technologies

String https://string-db.org/ N/A

ZEN imaging software Carl Zeiss N/A

Other

CellHesion 200 AFM head JPK Instruments N/A

PetriDishHeater for maintaining constant

temperature during AFM-based stiffness

measurements

JPK Instruments N/A

Tipless silicon cantilevers for AFM-based

stiffness measurements

NanoWorld Arrow TL-1

Spherical probes for AFM cantilevers microParticles GMBH 37.28 mm polystyrene beads, PS-R-37.0
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Prof.

Magdalena Götz (magdalena.goetz@helmholtz-muenchen.de). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

WT Mice (Proteomics, Cell Culture, Osmotic Pumps, IHC, and AFM) and hGFAP-eGFP mice (FACS, IHC)
All experimental procedures in this study done at LMUMuenchen were performed in accordance with German and European Union

guidelines and were approved by the government of upper Bavaria. In addition, all procedures performed in Cambridge were carried

out in accordance with the UK Animals (Scientific Procedures) Act 1986 and with university guidelines. For the proteomics experi-

ments, only male C57BL/6Jmice between 8-10 weeks were used, for osmotic pump experiments, only male C57Bl6/J mice between

10-12 weeks were used, and for AFM experiments, only male C57Bl6/J mice aged 8 weeks were used (to reduce any potential vari-

ability). For other experiments both male and female C57BL/6J mice were used between 8-12 weeks. For FACS and IHC experi-

ments, we used both male and female 8-12 week old hGFAP-eGFP mice (Tg(GFAP-EGFP)1Hket, Nolte et al., 2001). Mice were

fed ad libitum and housed with a 12/12 h light and dark cycle and kept under specific-pathogen-free (SPF) conditions.

C1ql3 Reporter Mice
The analysis ofC1ql3 gene expression was performed using the IRES-mVenus knockin reporter allele (C1ql3flox; C1ql3tm1.1Sud RRID:

MGI_5779515) described in (Martinelli et al., 2016). The background strain of themice was C57BL/6. All procedures involving the use

of mice at the University of Connecticut Health Center were approved by the Institutional Animal Care and Use Committee, and in

accordance with guidelines set forth by the National Research Council of the National Academies Guide for the Care and Use of Lab-

oratory Animals.

Primary SEZ Culture
The sub-ependymal zones (SEZ) of 8 - 12 weeks old C57BL/6J wild-type mice were dissected in Hank’s Balanced Salt Solution

(HBSS) with 10 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) and after removing the dissection medium incu-

bated in 5 mL dissociation solution (HBSS containing 15 mMHEPES, 5.4 Glucose, 3.4 mg trypsin powder and 3.5 mg hyaluronidase

powder) at 37�C for 15 min. The SEZ pieces were triturated 10 times using a 5 mL glass pipette and incubated for another 15 min at

37�C. 5 mL ice-cold solution 3 (solution 3: EBSS (Earle’s Balanced Salt Solution) containing 20 mM HEPES and 0,04 g/mL BSA

(Bovine Serum Albumin); pH 7.5) were added and solutions were mixed by pipetting 10 times with a 10 mL pipette. The cell suspen-

sion was filtrated through a 70-mm cell strainer and centrifuged at 250 g for 5 min at 4�C. The supernatant was discarded and cells

were resuspended in 10 mL ice-cold solution 2 (solution 2: HBSS containing 0.9 M Sucrose; pH 7.5) and centrifuged at 650 g for

10 min at 4�C. After discarding the supernatant, cells were resuspended in 2 mL ice-cold solution 3. 2 mL of the cell suspension

were added to a 15 mL falcon tube with 12 mL ice-cold solution 3 and centrifuged at 350 g for 7 min at 4�C. The supernatant was

carefully removed and cells were resuspended in B27-supplemented culture medium (culture medium: DMEM/F12 (1:1) with 1x

GlutaMAX containing 1x B27 serum-free supplement, 100 units/mL penicillin, 100 mg/mL streptomycin, 8 mM HEPES) and seeded
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(2 SEZs per well) onto poly-D-lysine - coated (PDL) coverslips in 24-well tissue culture plates (Ortega et al., 2011). Cells were kept in

the incubator for 7d at 37�Cand 5%CO2, with the exception of cultures on hydrogels (see Hydroxy-AcrylamidGel Preparation for Cell

Culture) that were kept for 5 d.

METHOD DETAILS

Sample Preparation for Proteome Analysis
Library-Matched Single Shot (LMSS) Method. Mice were sacrificed by cervical dislocation and brains were subsequently extracted

and put into cold phosphate buffered saline (PBS). The ventricular walls were laid bare by removing the dorsal ventricular wall and all

tissue above it, as well as the choroid plexus. Brains were then snap-frozen on dry ice and cut into 100 mm sections on a cryostat

(Leica CM1000S). The medial (MEZ) and lateral ventricular (SEZ) walls were then manually dissected under a light microscope (Leica

MZ6). 8-10 sections from each animal were collected per sample (n = 8) and kept on dry ice until tissue lysis. Somatosensory cortex

(Cx) samples were dissected by removing corpus callosum and top layer of cortex (including meninges). Olfactory bulb (OB) was

dissected by cutting out the core of the OB approximately along the external plexiform layer. Both Cx and OB samples were subse-

quently snap-frozen on dry ice (n = 8). Tissueswere lysed in buffer containing 0.1MTris-HCl (pH 8.5), 1% (w/v) SodiumDeoxycholate,

10 mM tris(2-carboxyethyl)phosphine hydrochloride (TCEP), and 40 mM 2-Chloroacetamide at 99�C for 10 min. The lysates were

sonicated for 23 15min (or until homogeneous) (Bioruptor, model UCD-200, Diagenode) and protein concentration was determined

using the BCAmethod (Micro BCA protein assay kit) according tomanufacturer instructions. 25 mg of protein was digested with LysC

and trypsin overnight at 37�C. 250 ml Isopropanol with trifluoroacetic acid (TFA) (each sample contains 1% TFA) was added to each

sample and thenmixed strongly. Samples were desalted using the StageTipmethodwith SDB-RPS (styrene-divinyl-benzene reverse

phase sulfonate; 3M, #2241) filters (Kulak et al., 2014). Therefore, filters were activated with acetonitrile (ACN) and equilibrated with

30% methanol (MeOH) and 1% TFA. After washing with 0.2% TFA, the samples were added to the stage tips and then filters were

washed again. Elution was done using 1% Ammonia and 80% ACN. Four of the peptide samples from each region were combined

and used for the library proteome of each region. These pooled peptide samples were divided into 8 fractions with nano-fractionation

using a high pH reversed-phase fractionator that switches the elution flow every 90 s using a rotating valve (Kulak et al., 2017). The

four remaining single-shot samples from each region were analyzed without fractionation.

Quantitative Detergent Solubility Profile (QDSP) Method. Mice were sacrificed by cervical dislocation and brains were subse-

quently extracted and put into cold PBS. The OB was removed by dissection at its base. Somatosensory cortex (Cx) was dissected

using a 2.5 mm biopsy punch and the white matter was removed. Both subependymal zones (SEZ and MEZ) were dissected (Ortega

et al., 2011). All samples were homogenized using a (100 ml) dounce homogenizer (Wheaton #357844) in 100 ml PBS (with protease

inhibitor cocktail and Ethylenediaminetetraacetic acid (EDTA)) and directly frozen in liquid nitrogen and stored at �80�C until tissue

protein fractionation. Tissue lysates from 3 animals were pooled, resulting in 5 samples per region and then processed simulta-

neously (a total of 15mice). Following centrifugation, we collected the supernatant (protein fraction 0) and then sequentially extracted

proteins using the MS analysis adapted de-cellularization protocol of Schiller et al. (Schiller et al., 2015). Therefore, we resuspended

the pellet in three buffers, each followed by a centrifugation for 20 min at 16,000 g. The samples were incubated in buffer 1 (150 mM

NaCl, 50 mM Tris–HCl (pH 7.5), 5% glycerol, 1% IGEPAL, 1 mMMgCl2, protease inhibitors (+EDTA), 1% benzonase, 1 3 phospha-

tase inhibitors) and buffer 2 (150 mM NaCl, 50 mM Tris–HCl (pH 7.5), 5% glycerol, 1.0% IGEPAL, 0.5% sodium deoxycholate, 0.1%

SDS, 13 protease inhibitors (+EDTA), and 1% benzonase) for 20 min on ice, and in buffer 3 (500 mMNaCl, 50 mM Tris–HCl (pH 7.5),

5% glycerol, 1.0% IGEPAL, 2% sodium deoxycholate, 1% SDS, 13 protease inhibitors (+EDTA), and 1% benzonase) for 20 min at

RT. Each of the supernatant from the buffer treatment resulted in fraction 1, 2, and 3, with the residual insoluble material resulting in

fraction 4. Fraction 0 and 1 were combined to generate our first fraction. All four fractions were precipitated in 80% acetone and son-

icated for 5x30 s (Bioruptor, model UCD-200, Diagenode). Afterward, samples were incubated at �20�C for a minimum of 1 h and

were then centrifuged. The precipitation was repeated once in order to remove any residual detergent. Alkylation/reduction buffer

(100 mM Tris-HCl (pH 8.5), 6M GDmCl, 10 mM TCEP, and 50 mM 2-chloroacetamide) was added to the samples and then boiled

at 99�C for 15 min, followed by sonication for 10 3 30 s. Protein concentration was determined using the BCA method (Micro

BCA protein assay kit) according to manufacturer instructions. Enzymatic digestion was done in two steps. First, samples were incu-

bated at 37�C for 2 hwith LysC (1/50) and then with LysC (1/50) and Trypsin (1/25) overnight. Both digestions were aided by 103 30 s

sonification. Samples were then acidified by adding 1% TFA followed by desalting using the StageTip method with SDB-RPS filters

(Kulak et al., 2014). Therefore, filters were activated with acetonitrile (ACN) and equilibrated with 30%methanol (MeOH) and 1%TFA.

After washing with 0.2% TFA, the samples were added to the stage tips and then filters were washed again. Each protein lysate was

eluted into three peptide fractions using three buffers (buffer 1: 150 mMNH4HCO2, 40% acetonitrile, 0.5% Formic acid (FA); buffer 2:

150mMNH4HCO2, 60% acetonitrile, 0.5% FA and buffer 3: 5% ammonia (from 25% stock solution) and 80% acetonitrile) resulting in

a total of 12 fractions per sample.

Mass Spectrometry
For both the LMSS (including each library sample) and QDSP samples, we loaded approximately 2 mg of peptides in buffer A (0.1%

(v/v) formic acid). We separated peptides by a 2 h gradient in a 50 cm long C18 column (75 mm inner diameter filled in house with

ReproSil-Pur C18-AQ 1.9-lm resin (Dr. Maish GmbH)). Samples were eluted in 5%–60% buffer B (0.1% (v/v) formic acid, 80%

(v/v) acetonitrile) at a flow rate of 250 nL/ min using a nanoflow UHPLC (Easy nLC, Thermo Fisher Scientific) online coupled to the
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mass spectrometer (Q Exactive HF Orbitrap, Thermo Fisher Scientific). Each gradient was followed by a wash with buffer B and re-

calibration with buffer A. Survey scans had a resolution of 70,000 at m/z 400 with a maximum injection time of 20 ms. Target value for

the full scanMS spectra was 33 106 and isolation windowof 1.6m/zwith 10most abundant precursor ions chosen for fragmentation.

MS/MS scans had a resolution of 17,500 at m/z 400 with a maximum injection time of 120 ms. Ion target value for the MS/MS scan

was 1 3 105.

Immunohistochemistry
Brain Sections. For obtaining brain sections, mice (hGFAP-eGFP, mVenus/C1ql3, or C57BL/6J) were anaesthetized by intraperito-

neal injection of ketamine (100mg per kg of body weight) and xylazine (10mg per body weight) and then transcardially perfused first

with PBS followed by 4% Paraformaldehyde (PFA). Brains were dissected and cut at 80-100 mm thickness at the vibratome (Leica

VT1000S) or 30 mm at the cryostat (Leica CM3050S). Sections were stained with primary antibodies in PBS containing 0.1% Triton

X-100 and 10%normal goat serum (NGS) overnight at 4�C, washed and incubated with secondary antibodies in PBS containing 10%

NGS for 2 h at RT. mVenus/C1ql3 expression was detected using chicken anti-GFP (Aves, 1:4000).

Perfused brains from the osmotic pump experiments were sectioned coronally (20 mm) along the ventricles. Sections were stained

for Dcx and EdU according tomanufacturer instructions (Click-iTTM). Photomicrographs of the SEZ contralateral to the pump implan-

tation site for quantifications were acquired using confocal microscope LSM 710 (Zeiss).

Whole Mounts. Whole mounts of the SEZ from three months old hGFAP-eGFP transgenic mice were dissected (Mirzadeh et al.,

2010) and fixed for 15 min with 2% PFA. After washing with PBS, the tissue was stained for 48 h with primary antibodies in PBS con-

taining 0.1%Triton X-100 and 10%normal goat serum (NGS).Wholemounts werewashed three timeswith PBS at room temperature

and incubated with the secondary antibodies in PBS containing 10% NGS overnight at 4�C. After three washings in PBS, DAPI was

added for 5 min and washed again. Primary antibodies used were: mouse IgG1 anti-Tgm2 (Labvision, 1:100), rabbit anti-b-catenin

(Sigma, 1:2000) and chicken anti-GFP (Aves, 1:2000). Tyramide Signal Amplification was used to enhance the Tgm2 fluorescence

signal according to the manufacturer instructions (TSA Tetramethylrhodamine kit, PerkinElmer). Photomicrographs were acquired

using confocal microscope LSM 710 (Zeiss).

Primary SEZ Cultures. Primary SEZ cultures were fixed with 400 ml of 4% (wt/vol) PFA for 15 min at room temperature (RT) and

afterward washed twice with PBS. The staining solution contained primary antibodies in PBS with 0.5% Triton X-100 and 10%

NGS. Primary antibodies used were: mouse IgG1 anti-Tgm2 (Labvision, 1:100), chicken anti-GFP (Aves, 1:2000), rabbit anti-

GFAP (Dako, 1:500), and guinea pig anti-Dcx (Millipore, 1:500). Cells were incubated with the primary antibodies at 4�C overnight,

washed with PBS twice and incubated with secondary antibodies in PBS with 10% NGS for 2 h at RT. Photomicrographs were ac-

quired using fluorescent microscope AXIO Imager.Z1 (Zeiss).

All primary and secondary antibodies used can be found in the KEY RESOURCES TABLE (including the used concentration).

Fluorescence-activated Cell Sorting
SEZ from heterozygous hGFAP-eGFP (Nolte et al., 2001) and C57BL/6J (WT) mice were dissected in dissection medium (HBSS con-

taining 10mM HEPES) on ice and transferred into a 15 mL falcon tube containing 5 mL of solution 1 (solution 1 (HBSS-glucose), see

above, 0,81%glucose, 15mMHEPES inHBSS; pH 7.5). The tissuewasmechanically dissociated by pipetting up and down ten times

with a fire-polished glass Pasteur pipette. 100 ml of 0.05% trypsin was added to the sample, followed by an incubation step at 37�C for

15 min. Trituration was repeated after 15min with a fire-polished Pasteur pipette and cells were incubated for additional 15 min. Final

trituration was done ten times at the end of the incubation. 5mL of ice-cold solution 3 (solution 3 (BSA-EBSS-HEPES) 20mMHEPES,

0.04 g/mL BSA in EBSS; pH 7.5) was added and solutions were mixed by pipetting several times up and down. The cell suspension

was filtrated using a 70-mm cell strainer and centrifuged at 180 g for 5 min at 4�C. The supernatant was removed and cells were re-

suspended in 10 mL of ice-cold solution 2 (solution 2 (saccharose-HBSS) 0.9 M saccharose) in HBSS; pH 7.5) and centrifuged at

510 g for 20 min at 4�C. The pellet was resuspended in 2 mL of ice-cold solution 3 and pured on top of 12 mL of ice-cold solution

3 and centrifuged at 290 g for 12 min at 4�C. Staining solution (0.02% sodium azide, 10%, FBS in PBS) was added to the pellet

and cells were incubated with primary antibodies for 30 min at 4�C. After washing with PBS, cells were resuspended in PBS and

sorted using the FACS Aria III (BD). Gates were set by the use of isotype controls (Fischer et al., 2011).

To collect neural stem cells (NSC), transient amplifying progenitors (TAP), neuroblasts (NB), ependymal cells (EC) and niche astro-

cytes (NA) we stained the cells as follows: tube 1, cells from hGFAP-eGFP mice with CD133-PE (1:250); tube 2, cells from hGFAP-

eGFPmicewith CD133-PE (1:250), EGF–Alexa Fluor 647 (1:300) and Anti-PSA-NCAM-PE (1:250) and tube 3, cells from hGFAP-eGFP

mice with Anti-PSA-NCAM-PE (1:250). Controls to set the gates were prepared as follows: tube 4, cells from WT mice lacking any

antibody; tube 5, cells from WT with rat IgG1 K isotype control PE (1:250); tube 6, cells from WT mice with mouse IgM-PE isotype

control (1:250).

qPCR
FACS sorted cells were directly collected into RLT lysis buffer (QIAGEN) during the sorting procedure. Total RNAwas isolatedwith the

RNeasy MICRO kit (QIAGEN) according to the manufacturer’s instructions. Quality and concentration of total RNA was examined

with the Agilent Bioanalyzer. Subsequently, cDNA was synthesized with SuperScript III (Invitrogen) as per manufacturer’s instruc-

tions. qPCR was performed on an Opticon (BIO-RAD) with iQ SYBR Green Supermix (BIO-RAD) and expression levels were normal-

ized to GAPDH.
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Clonal Analysis in Primary SEZ Cultures
The primary SEZ cultures were prepared for cluster analysis according to the protocol above (Ortega et al., 2011). The SEZ from two

mice were pooled in order to provide an n = 1 and the cells were plated in two wells (24-well plate) onto poly-D-Lysin coated cov-

erslips. An n = 4 was prepared and analyzed for these experiments. Low titer of CAG-IRES-GFP retrovirus was added at 2 h after

plating. Tgm2 inhibitor Z-DON (Zedira) or Boc-DON (Zedira) was added 4 h after plating at a concentration of 10 mM and 100 mM,

respectively. Control samples had the equivalent volume of DMSO as the Boc-DON samples added to them (2 ml/well). Cells

were incubated at 37�C with 5% CO2 for 7 days until fixation with 4% PFA for 15 min at RT. Immunocytochemistry was performed

as described above. Cluster counting and analysis was performed after photomicrograph acquisition of the whole coverslips (Axio

Imager M2m, Zeiss). SiRNA experiments were performed in the same manner as the in vitro inhibitor experiments, except that the

siRNA (QIAGEN) was added to the cultures immediately after plating together with an equal part Hitransfect (QIAGEN) (mixed

30 min prior to use). Each well was transfected with a total concentration of 10 nM siRNA containing four Tgm2 siRNAs (Flexitube,

QIAGEN) or the same concentration of scrambled siRNA control (Allstar negative control, QIAGEN).

Hydroxy-Acrylamid Gel Preparation for Cell Culture
In order to prepare gels with different stiffness we used the method developed by Bollmann et al., 2015. Glass bottom Petri dishes

were washed first with 70%Ethanol and then 0.1% sodium hydroxide (NaOH). The NaOH treated surface was treated with (3-Amino-

propyl) trimethoxysilane (APTMS) for 3 min, washed and subsequently 0.5% glutaraldehyde was applied for 30 min. The gel solution

was prepared by adding 500 ml 40% acrylamide, 65 ml 100% hydroxyl-acrylamide and 250 ml 2% bis-acrylamide. 89.4% and 88.8%

PBS were added to the premix to obtain the desired shear moduli of 100 Pa and 200 Pa, respectively. The desired gel-stiffness was

confirmed with Atomic force microscopy (AFM). Finally, gels were coated with Poly-L-ornithin (Sigma, P4957) for 2 h followed by

Laminin coating (Roche, #11243217001) for another 2 h.

Osmotic Pump Preparation and Surgery
Osmotic pumps (model 2001, ALZET�) were prepared the day before surgery according to the vendors instructions. Pumps were

filled with 100 mM Z-DON in artificial cerebrospinal fluid (aCSF) or DMSO in an equivalent concentration (0.4%) as in the treatment

group. Pumps were kept in sterile PBS at 37�C until surgery. The experimental procedure was approved by the government of upper

Bavaria. Mice were anaesthetized by intraperitoneal injection of fentanyl (0.05 mg/kg), midazolam (5 mg/kg), and medetomidine

(0.5 mg/kg) and after the surgery the anesthesia was antagonized by injection of buprenorphine (0.1 mg/kg), atipamezole

(2.5 mg/kg), and flumazenil (0.5 mg/kg). Intra ventricular osmotic pump implantation (Brain kit 2, ALZET�) was performed at the co-

ordinates 1.2 mm laterally to and 0.5 mm posterior to the bregma (right side) (Lepko et al., 2019). The experimental endpoints were 4

(n = 3) and 7 days (n = 4) after surgery. 5 mg/mL EdU in saline was administered i.p. at a volume of 10 ul per gram of the mouse’s

weight 1 h h prior perfusion. The mice were perfused with 4% PFA and the brains were post-fixated overnight.

Stiffness Measurements
Sample Preparation. Male C57BL6/J mice (N = 5 animals), aged 8 weeks, were anaesthetized using 5% isofluorane (IsoFlo, Abbott

Laboratories) and euthanized by intraperitoneal injection of a lethal dose of pentobarbital (Pentoject, Animalcare UK), followed by

cardiac perfusion with cold slicing aCSF. Brains were immediately dissected out into cold slicing aCSF, keeping the olfactory bulbs

intact, and sections prepared for stiffness measurements using the ex vivo acute CNS slice protocol described previously in Koser

et al. (2015) andMoeendarbary et al. (2017). Hence, each brain was embedded in 4% lowmelting point agarose (Sigma; in 13 PBS),

the agarose block containing the tissue was glued onto a vibratome platform (Leica), and 300 mm thick coronal sections were cut in

cold slicing aCSF. Sections containing the anatomical regions of interest were transferred to a collection chamber containing

measuring aCSF at room temperature (approx. 20�C) and allowed to equilibrate for �5-10 min. Sections were then attached to

35 mm Petri dishes (TPP) using small dabs of superglue at the outer corners of the surrounding agarose, immediately covered

with freshmeasuring aCSF, and transferred to the AFM set-up formeasurement. The time elapsed between euthanasia of the animals

and the beginning of slicing was �30 min.

The compositions of the buffers used in this protocol were as follows: for slicing aCSF, 191 mM sucrose, 0.75 mM K-gluconate,

1.25mM KH2PO4, 26 mMNaHCO3, 4mMMgSO4, 1mMCaCl2, 20 mM glucose, 2 mM kynurenic acid, 1 mM (+)-sodium L-ascorbate,

5 mM ethyl pyruvate, 3 mM myo-inositol, and 2 mM NaOH; and for measuring aCSF, 121 mM NaCl, 3mM KCl, 1.25 mM NaH2PO4,

25 mM NaHCO3, 1.1 mMMgCl2, 2.2 mM CaCl2, 15mM glucose, 1mM (+)-sodium L-ascorbate, 5mM ethyl pyruvate, and 3mMmyo-

inositol. Both solutions were freshly prepared before each experiment and bubbled with 95% O2 and 5% CO2, beginning at least

30 min before first use and continuing throughout the procedure (Koser et al., 2015; Moeendarbary et al., 2017).

Atomic Force Microscopy (AFM) Setup. A JPK CellHesion 200 atomic force microscope (JPK Instruments) was mounted on an

inverted optical microscope (AxioObserver.A1, Zeiss) with a motorised x-y stage (JPK Instruments). For stiffness measurements,

the spring constant k of tipless silicon cantilevers (Arrow-TL1, NanoWorld) were determined using the thermal noise method (Hutter

andBechhoefer, 1993) and cantilevers with k of 0.01-0.04N/m (for olfactory bulb (OB)measurements) or 0.05-0.07 N/m (for SEZ/MEZ

measurements) were selected. Spherical monodisperse polystyrene beads (diameter = 37.28 ± 0.34 mm (for olfactory bulb) or 19.3 ±

0.34 mm (for SEZ/MEZ)) (microParticles GmbH) were used as probes and attached to the ends of the cantilevers using heat-curing

glue (M-Bond 610, MicroMeasurements). The use of spherical probes ensured a consistent contact area with the sample surface and
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prevented damage to the slices. A PetriDishHeater (JPK Instruments) was set up on the motorised stage and used to maintain sam-

ples at a set temperature of 34�C for the duration of AFM measurements.

AFM Measurements. Prepared sections were placed in the sample holder and allowed to equilibrate for �5 min while brightfield

images of the slices were collected with an Andor Zyla 4.2 CMOS camera (connected to a modified upright AxioZoom V.16 system

(Zeiss)). Force-distance curves (set force: 10 nN, approach speed: 5 mm/s, sampling rate: 1,000 Hz) were either taken manually (for

SEZ/MEZmeasurements), or automatically every 30-40 mmapart in a raster scan (for OB), using a custom-written script (Koser et al.,

2015, 2016) generating a ‘stiffness map’ of the area. For stiffness maps, images of the upper right and lower left corners of the

measured area were also collected to identify the region of the slice mapped by the AFM.

Microarray Analysis
After dissecting the OB, SEZ and Cx the RNA was extracted using the RNeasy Mini Kit from QIAGEN following the manufacturer’s

instructions. Sample preparation and microarray analysis was carried out by Arraystar applying the Agilent Array platform. The

sample preparation and microarray hybridization were performed based on the manufacturer’s standard protocols with minor mod-

ifications (Agilent Low Input Quick Amp Labeling Kit). Briefly, the sample was amplified and transcribed into fluorescent cRNA along

the entire length of the transcripts without 30 bias utilizing a random priming method. The labeled cRNAs were hybridized onto the

Mouse LncRNA Array v2.0 (8 3 60K, Arraystar). After having washed the slides, the arrays were scanned by the Agilent Scanner

G2505B.

QUANTIFICATION AND STATISTICAL ANALYSIS

Mass Spectrometric Data Analysis
We processed the mass spectra using MaxQuant (http://coxdocs.org/doku.php) (Cox and Mann, 2008). Using the Andromeda

search engine, the spectra were searched against the mouse Uniprot sequence database (https://www.uniprot.org). Cysteine car-

bamidomethylation was set as fixed modification while variable modifications included hydroxylation of proline and methionine

oxidation. For both protein and peptide level we set FDR to 0.01 and only peptides with an amino-acid length of seven or more

were considered. The peptide identifications among the library samples from the four brain regions (Cx, OB, SEZ, MEZ) in the

LMSS dataset were used to additionally identify peptides in the single shot samples based on similar mass and retention time.

The matching between runs feature (a feature of the Max quant software) thus allows identification of proteins in the single shot sam-

ples (that were identified in library samples) when precursor peptideswere found inMS1, but not selected for fragmentation and iden-

tification in MS2. Single shots and library samples were also matched within themselves, which was also the case for samples in the

QDSP dataset. The label-free protein quantification was restricted to proteins identified with at least two unique peptides. Label-free

quantification (LFQ) algorithm was used for protein quantifications (Cox et al., 2014). LFQ intensities are normalized median mass

spectra intensity values that allow this quantification to be performed with any peptide and protein fractionation while maintaining

high accuracy (Cox et al., 2014). For a protein to be considered valid, two peptide ratios are needed. Among theQDSP samples, there

was one sample with two of the brain regions that had protein fraction with very low protein content and several fractions with lower

protein identification. Thus, we omitted the whole sample from further bioinformatics analysis. This resulted in 4 samples per region

(each with their respective four solubility fractions).

Bioinformatic Analysis and Statistics
Bioinformatic analysis was performed primarily with the Perseus software (coxdocs.org/doku.php) (Tyanova et al., 2016). For all da-

tasets, we have used log2 LFQ intensities for analysis and comparisons. Plots of selected categories or individual proteins were done

in Graphpad Prism (version 5).

Bioinformatic Analysis of LMSS Dataset
The presented library proteomes depth signifies number of identified proteins (n = 1/region). The presented library-matched single

shot sample measurements are filtered for at least 3 values per region (n = 4/region). This filtering was also used for data imputation.

Imputation of missing values was done by random selection according to a normal distribution with negative shift of 1.8 standard

deviations from the mean and with a width of 0.3 standard deviations. These log2 LFQ intensities values for all proteins were then

used for PCA, statistical analysis, gene ontology analysis and heatmap presentations. Proteome comparisons of regions were

done with one-way ANOVA and p values were used for filtering significant regional abundance differences after FDR correction.

Heatmaps display proteins with an FDR of 0.05 (Figure 1K). 1D and 2D enrichment analysis of annotated terms was done in Perseus

(Figures 1L, 1M, 4E, 4F, 1SE, and 1SF) with an FDR of 0.05 and full annotation enrichment lists can be found in Table S2, and 4. Gene

ontology analysis for library exclusive proteins was done in Panther (pantherdb.org) (Thomas et al., 2003) (Figures S1B and S1C).

Matrisome distribution plots (Wisker plots) comprise of z-scored mean LFQ intensities for proteins of the respective category (num-

ber of proteins for each category is presented in the respective graphs). This data was analyzed using Kruskal-Wallis test with Dunn’s

multiple comparison test and p% 0.05 was considered significant. For t test comparisons between brain regions an FDR% 0.1 was

considered significant.
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Bioinformatic Analysis of QDSP Dataset
The presented total number of proteins from all regions signifies number of identified proteins (n = 4/region). The total number of iden-

tifications from each region is instead filtered for at least 3 values in a region. We filtered the data for at least 8 values in a region prior

intensity imputation. Imputation of missing values for the protein fractions of each region was done by random selection according to

a normal distribution with negative shift of 1.7 standard deviations from the mean and with a width of 0.4 standard deviations. These

log2 LFQ intensities values for all fractions were then used for PCA, annotation enrichment analysis, category solubility profiles, and

heatmap presentations. 1D enrichment analysis of annotated terms (Figures 4E and 4F) used an FDR of 0.05. Category solubility pro-

file plots (Whisker plots) comprise of z-scored mean LFQ intensities for protein fractions of the respective category (number of pro-

teins for each category is presented in the respective graphs). We present the mean value of the three regions in all ‘‘brain’’ solubility

profiles for different categories (z-scoring was always done within regions). This data was analyzed using Kruskal-Wallis test with

Dunn’s multiple comparison test and p % 0.05 was considered significant. Categories in the PCA were considered significant

with a FDR % 0.05. Differences between brain region solubility profiles were determined using the z-scored LFQ intensities and

two-way ANOVA with FDR correction (p value% 0.05 was considered significant). The matrisome proteins with differential solubility

(Figure 4H) (p value % 0.05) were filtered from the analysis of all proteins (in heatmap, Figure 4D). In Figure S5C, we compared the

brain matrisome data to previously published datasets (using the QDSPmethod) in aorta and lung tissue (Schiller et al., 2015; Wierer

et al., 2018). The averaged solubility profiles here are comprised of an average from all experimental groups of each study.

Analysis and Presentation of AFM Data
Analysis of RawAFMData. First, the force-distance curves collected fromAFMmeasurements were analyzed using a custom-written

MATLAB script (described previously in Koser et al. [2015] and Koser et al. [2016]) to obtain the reduced apparent elastic modulus K,

a measure of tissue stiffness. Raw AFM data were fitted to the Hertz model,

F =
4

3
Kd

3
2

ffiffiffiffi

R
p

with the applied force F, the reduced apparent elastic modulus K = E/(1-n2), with E being the Young’s modulus and n the Poisson’s

ratio, R the radius of the probe, and d the indentation depth (Hertz, 1881). Force-distance curves were analyzed at the maximum

applied force of 10 nN. Points where the AFM data was not analyzable were excluded from further analysis. Criteria for excluding

individual force-distance curves were the inability to apply linear fits through the baseline of the curve, e.g., due to noise, and the

inability to apply good-quality Hertz-fits to the indentation region.K valueswere color-coded and converted to 8-bit scale colormaps,

using the MATLAB ‘hot’ colormap pre-set. The resulting two-dimentional ‘stiffness maps’ were overlaid onto images of the samples

using custom-written MATLAB scripts (Koser et al., 2015, 2016). Local brain region stiffness was statistically analyzed using Mann-

Whitney test (two-tailed).

Bioinformatic Analysis Microarray Data
Agilent Feature Extraction software (version 10.7.3.1) was used to analyze acquired array images. Quantile normalization and sub-

sequent data processing were carried out by Arraystar using the GeneSpring GX v11.5.1 software package (Agilent Technologies).

After quantile normalization of the raw data, mRNAs that at least 6 out of 12 samples have flags in Present or Marginal (‘‘All Targets

Value’’) were chosen for further data analysis. Differentially expressed mRNAs were identified through Volcano Plot filtering.

DATA AND CODE AVAILABILITY

Themass spectrometry proteomics data have been deposited to the ProteomeXchangeConsortium via the PRIDE (Perez-Riverol et al.,

2019) partner repository and the accession number for the proteomes reported in this paper is ProteomeXchange: PXD016632 (http://

proteomecentral.proteomexchange.org). We also provide excel tables with the analyzed proteomics data for easy access. Further-

more, the two proteomes are available with pre-made graphs for each protein on the webpage https://neuronicheproteome.org. The

microarray dataset is accessible at GEO: GPL15692. Custom-written scripts used for motorised stage control, processing of AFM

raw data, and the generation and alignment of colormaps can be found at https://github.com/FranzeLab.
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