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Epigenetics meets proteomics in an epigenome-
wide association study with circulating blood
plasma protein traits
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DNA methylation and blood circulating proteins have been associated with many complex

disorders, but the underlying disease-causing mechanisms often remain unclear. Here, we

report an epigenome-wide association study of 1123 proteins from 944 participants of the

KORA population study and replication in a multi-ethnic cohort of 344 individuals. We

identify 98 CpG-protein associations (pQTMs) at a stringent Bonferroni level of significance.

Overlapping associations with transcriptomics, metabolomics, and clinical endpoints suggest

implication of processes related to chronic low-grade inflammation, including a network

involving methylation of NLRC5, a regulator of the inflammasome, and associated pQTMs

implicating key proteins of the immune system, such as CD48, CD163, CXCL10, CXCL11,

LAG3, FCGR3B, and B2M. Our study links DNA methylation to disease endpoints via inter-

mediate proteomics phenotypes and identifies correlative networks that may eventually be

targeted in a personalized approach of chronic low-grade inflammation.
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Genome-wide association studies (GWAS) with clinically
relevant intermediate traits, such as gene expression1,
proteomics2, and metabolomics3, unraveled numerous

pathophysiological pathways and generated many hypotheses
regarding the functional basis of complex disorders4. More
recently, similar approaches linked variation in epigenetic mod-
ifications, especially differential methylation of chromosomal
CpG-pairs, to changes in gene expression5 and blood circulating
metabolites6.

DNA CpG methylation has been associated with many com-
plex disorders, but the underlying pathophysiological processes
often remain unclear. Changes in DNA methylation may be both,
causal for changes in biological processes by differentially reg-
ulating gene expression, and consequential in response to mod-
ified physiological needs and disease. Blood circulating proteins as
intermediate phenotypes can reveal the underlying disease-
causing pathways. However, except for a study on a limited set
of proteins7, no epigenome-wide association study (EWAS) with
proteomics has been reported so far.

Unlike GWAS, where genetic variants can be assumed to be
causal for the observed associations, the situation is more com-
plex in EWAS. While changes in CpG methylation have been
shown to induce changes in gene expression that can lead to
changes in protein and metabolite levels, differences in transcript,
protein, and metabolite levels, can in turn also induce changes in
CpG methylation. Changes in the methylation of gene regulatory
sites are generally driven by environmental challenges or by the
body’s needs to cope with physiological dysregulations and
disease.

A large fraction of the proteins studied here, many of them
related to the immune system, are primarily produced by white
blood cells. In these cases, a direct causal link between DNA
methylation and circulating protein levels through regulation of
white blood cell gene expression is possible. In cases where a
physiological challenge affects the entire body and requires
similar responses from all cells, DNA methylation measured in
blood cells can constitute a proxy for processes occurring pre-
dominantly in other body tissues. For instance, Wahl et al.8

showed that methylation of obesity-associated CpG sites in blood
cells and adipose tissues correlate. Age9, sex10, lifestyle11, disease
state12, environmental factors13, cell type composition14, and
genetic variations5 are all factors that have been shown to
determine gene regulation and to induce differential CpG
methylation in the process. It is therefore essential to account for
these driving and potentially confounding factors in an EWAS
approach. Complex networks of (co-)associated multi-omics
traits, connecting CpG methylation, gene expression, protein,
and metabolite levels to disease endpoints then emerge from such
EWASs, as we recently showed at the example of a multi-omics
association study with a small set of CpG sites15. Such networks
might eventually guide a more personalized treatment of complex
disorders, using for instance DNA methylation as a precise read-
out of the body’s disease status with respect to the affected
pathways, or to identify drug targets that may allow the mod-
ification of the underlying dysregulated processes.

Here, we report an EWAS of the human blood plasma pro-
teome (pEWAS) with full replication. Motivated by previous
EWAS with metabolomics6, the overarching goal of this study is
to integrate methylation and proteomics data and to investigate
the role of DNA methylation in disease. We quantify 1123 blood
circulating proteins using the SOMAscan affinity proteomics
platform (Somalogic Inc.)2 and determine the methylation levels
of 470,837 CpG di-nucleotide sites using the Illumina Infinium
450K array (Illumina Inc.) in samples from 944 individuals of
the population-based KORA (Cooperative Health Research in the
Region of Augsburg) study16 and from 344 participants of the

multi-ethnic Qatar Metabolomics Study on Diabetes (QMDiab)17

for replication.
To identify and isolate the general association-driving factors,

we iteratively regress out CpG-protein associations that are driven
by sex, blood cell composition, genetic variation, age, smoking,
BMI, and diabetes. Using principal component analysis, we then
confirm that no further global drivers remain. Next, we overlay
our associations with CpG-gene expression associations (eQTMs)
from the BIOS study5 and connect the CpG sites and the asso-
ciated proteins using established experimental literature findings
(Ingenuity Pathway Analysis, Qiagen)18. Finally, we complement
our analysis with overlapping CpG- and protein-associations with
blood, urine, and salivary metabolites (QMDiab), and with
complex disease endpoints (KORA), revealing individual sites
and multi-omics networks that connect associations between
CpG methylation and disease-relevant endpoints through blood
circulating proteins (Fig. 1).

Results
A step-wise EWAS with proteomics identified 12,606 pQTMs.
After stringent quality control, we analyzed 470,837 CpG sites for
epigenome-wide associations with 1123 protein levels (Supple-
mentary Data 1), determined in 944 blood samples from the
KORA study (see Methods). We identified 38,492 associations
between CpG methylation and blood circulating protein levels
(pQTMs), using a conservative Bonferroni level of significance
(P < 0.05/470,837/1123= 9.46 × 10−11). We then iteratively and
separately regressed the methylation and proteomics data on
potential drivers, starting with sex, followed by blood cell com-
position, genetic variation, age, smoking, BMI, and diabetes
(Fig. 2 and Supplementary Data 2). Finally, we computed the first
10 principal components (PCs) of the methylation and protein
levels and asked whether any of these PCs associated with any of
the protein or CpG methylation levels, respectively. None of these
PCs accounted for more than 1.5% of the explained variance in
the methylation or the protein levels, and further regressing them
out did not change the remaining pQTM list. Hence, we did not
include any PCs into the final regression.

At each step, we attempted replication of the identified pQTMs
in the QMDiab study, where we applied an identical step-wise
regression approach (Supplementary Data 3). We considered a
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Fig. 1 Study design and data integration. We conducted an EWAS with
proteomics in KORA and replicated the associations in QMDiab (see
Fig. 2). We used Ingenuity Pathway Analysis (IPA) to connect CpG-linked
genes to their associated proteins through literature-reported observations
and complemented the network with associations to gene expression
(BIOS), metabolomics (QMDiab), and clinical endpoints (KORA), finally
adding all previously reported disease associations. The resulting networks,
using the same color code as here, are presented in Figs. 3 and 4.
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pQTM as replicated if it reached a Bonferroni level of significance
(P < 0.05/N, N being the number of pQTMs identified at the
respective discovery step). In all, 12,606 of the 38,492 uncorrected
pQTMs replicated in QMDiab, implicating 10,047 CpG sites and
116 proteins. The most important drivers of these associations
were white blood cell composition and sex, followed by age and
smoking. After regressing out all identifiable driving factors, 318
pQTMs remained, out of which 98 replicated in QMDiab
(Tables 1–3, Fig. 2, Supplementary Fig. 1; Supplementary Data 4).
The Manhattan plots of the replicated pQTMs and histograms of
the genomic inflation rates for each step are provided in
Supplementary Figs. 2 and 3.

Genomic enrichment. After carrying out genomic enrichment at
all EWAS steps, we found that enrichment/depletion is for the
most part consistent across all regression steps (Supplementary
Data 5). Among the 10,047 CpG sites included in the 12,606
replicated pQTMs, we noticed a substantial 2.12-fold enrichment
in genomic enhancers regions (p= 2.72 × 10−259) and a strong
0.30-fold depletion (p= 3.00 × 10−276) in promoter associated
CpG sites. Cell type specific promoter associated CpG sites, in
contrast, were enriched 1.90-fold (p= 1.01 × 10−18) (Supple-
mentary Fig. 4). We also checked the 10,047 CpG sites involved in

the pQTMs for overlap with intra- and inter-chromosomal con-
tact using high-resolution Hi-C data, a method that probes the
three-dimensional architecture of whole genomes by coupling
proximity-based ligation with massively parallel sequencing19. For
these CpG sites, we found a 1.73-fold enrichment for Hi–C inter-
chromosomal contact (p= 2.44 × 10−81) and a 1.79-fold enrich-
ment for Hi–C intra-chromosomal contact (p= 8.27 × 10−112). As
for the 98 final replicated pQTMs, we also found enrichment in
mapping to active regions. For instance, enhancers were enriched
by a 2.90-fold (p= 6.54 × 10−7), and promoter associated CpG
sites were depleted by a 0.59-fold (p= 9.00 × 10−3). All other
tested CpG characterizations were not significant in the 98 final
pQTMs due to limited statistical power, although the directions of
enrichment/depletion were still coherent with what was observed
in the previous steps.

98 pQTMs have no common biological driver. The 98 replicated
pQTMs comprised 89 unique CpGs and 15 unique proteins. Ten
of the 98 pQTMs were cis-pQTMs, that is, the gene coding for the
associated protein was encoded within 1Mb of the CpG site. The
98 pQTMs could be grouped into nine independent association
signals, which we labeled PAPPA, NLRC5, CLEC11A, ICAM5,
C4, SIGLEC5, PRTN3, AHRR, and GP1BA, in reference to the
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Fig. 2 Summary of the step-wise EWAS. A series of pEWASs was carried out in the discovery cohort KORA, followed by replication in the QMDiab study
(Supplementary Data 2 and 3). In the initial step, methylation levels of 470,837 CpGs (M-values, winsorized) were tested for association with 1123 blood
circulating protein concentrations (log-scaled, winsorized), leading to 38,492 associations that reached stringent Bonferroni significance, 12,606 of which
were replicated. Potential driving factors (sex, white blood cell composition, genetic variants, age, smoking, BMI, and diabetes) were successively regressed
out from the CpG and the protein levels, using the residues in the next EWAS step (see Methods). At each step, a number of associations (pQTMs) fell
below the significance threshold (indicated by the black arrows). These associations were likely driven by the factor used in the previous regression step.
Eventually, 318 pQTMs remained that were not driven by any of the factors listed here, 98 of which were replicated (Table 1).

Table 1 Replicated PAPPA pQTMs.

CpG pQTM (this study) PpQTM BetapQTM eQTM (BIOS) PeQTM BetaeQTM
cg07708453 (PRDM2)
chr1:14,032,034

PAPPA (4148-49_2)
chr9:118,916,083-119,164,601

3.10 × 10−16 0.262 ENSG00000116731 PRDM2 2.52 × 10−6 0.130

cg19393755 (CPSF4L)
chr17:71,258,101

PAPPA 2.03 × 10−14 −0.246 ENSG00000179604 CDC42EP4a 3.58 × 10−11 0.132

cg10831642 (SH3PXD2A)
chr10:105,378,344

PAPPA 8.19 × 10−12 −0.246 ENSG00000107957 SH3PXD2A 9.03 × 10−32 0.287

cg26272069 (GABBR1)
chr6:29,591,706

PAPPA 9.25 × 10−12 −0.224 ENSG00000204681 GABBR1 3.80 × 10−8 −0.073

cg20290167 (METRNL)
chr17:81,040,724

PAPPA 5.58 × 10−11 −0.212 ENSG00000176845 METRNL 2.77 × 10−5 0.091

– (Total: 72 PAPPA pQTMs) – – n.a. n.a. n.a.

The p-value (PpQTM, linear regression) and regression coefficient (BetapQTM) from the discovery study are reported. The chromosomal position of the CpG sites and the related protein coding genes are
given, together with the associated protein and SOMAmer identifiers (SeqId). The BIOS QTL server5 was used to identify overlapping CpG methylation to gene expression associations (eQTMs). The
respective p-values (peQTM, linear regression) and regression coefficients (betaeQTM) of the association of the respective CpG and the transcript are reported. All associations are located in trans, that is,
the CpG and the blood circulating protein coding region were >1Mbp. The five selected pQTMs here are only those associated with an overlapping eQTM. The full list is provided in Supplementary
Data 4
aThese genes belong to the same cytogenic band as those reported by Illumina as being regulated by the respective CpG sites and are within physical proximity (<21,000 and 5000 bp downstream,
respectively)
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Table 2 Replicated NLRC5 pQTMs.

CpG pQTM (this study) PpQTM BetapQTM eQTM (BIOS) PeQTM BetaeQTM
cg07839457 (NLRC5)
chr16:57,023,022

CD48 (3292-75_1) chr1:160,648,
536-160,681,641

1.10 × 10−21 −0.306 n.a. n.a. n.a.

cg08159663 (NLRC5)
chr16: 57,022,486

CD48 3.38 × 10−12 −0.246 ENSG00000140853 NLRC5 8.26 × 10−10 0.213

cg07839457 (NLRC5)
chr16:57,023,022

B2M (3485-28_2) chr15:45,003,
675-45,011,075

7.60 × 10−20 −0.292 n.a. n.a. n.a.

cg16411857 (NLRC5)
chr16:57,023,191

B2M 1.94 × 10−15 −0.256 n.a. n.a. n.a.

cg00218406 (HCP5)
chr6:31,431,407

B2M 3.97 × 10−13 −0.234 ENSG00000206337 HCP5 7.78 × 10−102 0.454

cg08099136 (PSMB8)
chr6:32,811,251

B2M 4.80 × 10−11 −0.214 ENSG00000204264 PSMB8 1.96 × 10−23 0.258

cg07839457 (NLRC5)
chr16:57,023,022

CXCL10 (4141-79_1)
chr4:76,942,273-76,944,650

8.06 × 10−19 −0.283 n.a. n.a. n.a.

cg07839457 (NLRC5)
chr16:57,023,022

FCGR3B (3311-27_1)
chr1:161,592,986-161,601,753

1.02 × 10−18 −0.307 n.a. n.a. n.a.

cg08159663 (NLRC5)
chr16:57,022,486

FCGR3B 1.44 × 10−14 −0.290 ENSG00000140853 NLRC5 8.26 × 10−10 0.213

cg16411857 (NLRC5)
chr16:57,023,191

FCGR3B 3.79 × 10−13 −0.260 n.a. n.a. n.a.

cg07839457 (NLRC5)
chr16:57,023,022

LAG3 (5099-14_3) chr12:6,881,
678-6,887,621

1.29 × 10−17 −0.274 n.a. n.a. n.a.

cg08159663 (NLRC5)
chr16:57,022,486

LAG3 9.22 × 10−13 −0.246 ENSG00000140853 NLRC5 8.26 × 10−10 0.213

cg07839457 (NLRC5)
chr16:57,023,022

CD163 (5028-59_1) chr12:7,623,
409-7,656,489

1.83 × 10−15 −0.256 n.a. n.a. n.a.

cg07839457 (NLRC5)
chr16:57,023,022

CXCL11 (3038-9_2)
chr4:76,954,835-76,962,568

1.13 × 10−13 −0.246 n.a. n.a. n.a.

The p-value (PpQTM, linear regression) and regression coefficient (BetapQTM) from the discovery study are reported. The chromosomal position of the CpG sites and the related protein coding genes are
given, together with the associated protein and SOMAmer identifiers (SeqId). The BIOS QTL server5 was used to identify overlapping CpG methylation to gene expression associations (eQTMs). The
respective p-values (peQTM, linear regression) and regression coefficients (betaeQTM) of the association of the respective CpG and the transcript are reported. All associations are located in trans, that is,
the CpG and the blood circulating protein coding region were < 1Mbp

Table 3 Other replicated pQTMs.

CpG pQTM (this study) PpQTM BetapQTM eQTM (BIOS) PeQTM BetaeQTM
cg10604476 (ICAM5)
chr19:10,403,908

ICAM5 (5124-69_3)
chr19:10,400,657-10,407,454

6.09 × 10−25 0.356 ENSG00000105376 ICAM5 2.22 × 10−9 0.186

cg03650189 (ICAM5)
chr19:10,405,083

ICAM5 1.22 × 10−24 0.344 ENSG00000105376 ICAM5 1.68 × 10−5 0.129

cg22910295 (ICAM5)
chr19:10,403,862

ICAM5 3.72 × 10−24 0.339 ENSG00000105376 ICAM5 2.37 × 10−6 −0.134

cg15011409 (ICAM5)
chr19:10,405,226

ICAM5 5.96 × 10−23 0.331 ENSG00000105376 ICAM5 2.66 × 10−12 0.198

cg21994045 (ICAM5)
chr19:10,403,936

ICAM5 4.18 × 10−17 0.291 ENSG00000105376 ICAM5 1.21 × 10−5 −0.148

cg10773601 (CLEC11A)
chr19:51,226,046

CLEC11A (4500-50_2)
chr19:51,226,586-51,228,974

8.06 × 10−27 −0.341 ENSG00000105472 CLEC11A 1.06 × 10−71 0.424

cg16651537 (CLEC11A)
chr19:51,226,536

CLEC11A 1.67 × 10−24 −0.326 ENSG00000105472 CLEC11A 3.54 × 10−63 0.434

cg05575921 (AHRR)
chr5:373,378

PIGR (3216-2_2) chr1:207,101,
863-207,119,811

8.08 × 10−16 −0.264 ENSG00000180104 EXOC3a 1.19 × 10−6 0.063

cg18419358 (n.a.)
chr6:158,384,009

GP1BA (4990-87_1)
chr17:4,835,592-4,838,325

2.52 × 10−12 0.228 n.a. n.a. n.a.

cg27535410 (PRTN3)
chr19:846,354

PRTN3 (3514-49_2)
chr19:840,963-848,175

1.21 × 10−11 −0.219 n.a. n.a. n.a.

cg13028630 (C4B/C4A)
chr6:31,964,754

C4A/C4B (4481-34_2)
chr6:31,937,353-32,079,643

1.38 × 10−11 −0.246 n.a. n.a. n.a.

cg09488502 (SIGLEC5)
chr19:52,134,289

SIGLEC14 (5125-6_3)
chr19:52,145,806-52,150,054

4.89 × 10−11 0.220 n.a. n.a. n.a.

The p-value (PpQTM, linear regression) and regression coefficient (BetapQTM) from the discovery study are reported. The chromosomal position of the CpG sites and the related protein coding genes are
given, together with the associated protein and SOMAmer identifiers (SeqId). The BIOS QTL server5 was used to identify overlapping CpG methylation to gene expression associations (eQTMs). The
respective p-values (peQTM, linear regression) and regression coefficients (betaeQTM) of the association of the respective CpG and the transcript are reported. Some of the associations are located in cis,
that is, the CpG and the blood circulating protein coding region were within 1 Mbp (e.g. CLEC11A and ICAM5), while others were located in trans (e.g. AHRR)
aThese genes belong to the same cytogenic band as those reported by Illumina as being regulated by the respective CpG sites and are within physical proximity (<21,000 and 5000 bp downstream,
respectively)
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respective characterizing CpG gene locus or associated protein
(Tables 1–3 and Fig. 3). The largest group comprised 72 pQTMs
which all involved associations with PAPPA at 70 independent
genetic loci (trans-pQTMs) (Table 1). The second largest group of
pQTMs, labeled NLRC5, involved three CpG sites (NLRC5,
HCP5, and PSMB8) that associated with one or several of seven
proteins of the immune system (CD48, CD163, CXCL10,
CXCL11, LAG3, FCGR3B, and B2M) (Table 2). The remaining
seven pQTM groups consisted of a single CpG locus, in two cases
involving multiple correlated CpGs, which associated with a
single protein. Two of these were trans-pQTMs (AHRR, GP1BA),
the other five were cis-pQTMs (ICAM5, CLEC11A, PRTN3, C4,
and SIGLEC5) (Table 3).

To identify the biological processes that may be related to
these 98 pQTMs, we characterized the implicated CpG sites and
proteins using additional data sets: Using the BIOS QTL server5

we identified 18 expression QTMs (eQTMs) that overlapped

with the 89 unique CpG sites. Using the EWAS Atlas20, we
identified 215 previously reported disease associations among
numerous studies (Supplementary Data 6). We further tested the
89 unique CpG sites and the 15 unique proteins of the 98
pQTMs for association with various clinical phenotypes that
were available in KORA, that is, hypertension, myocardial
infarction, metabolic syndrome, type 2 diabetes, and other
disease relevant clinical phenotypes, including body mass index,
alcohol consumption, total cholesterol, HDL, LDL, and trigly-
cerides. At a stringent Bonferroni level of significance (correction
for number of proteins and clinical phenotypes), we identified
associations for 14 of the proteins and eight of the CpG sites
(Supplementary Data 7 and 8). Finally, we tested the 89 CpG
sites for association with 2,251 urinary, salivary, and blood
metabolites that we previously reported15. We found 20
associations at Bonferroni significance (p < 2.5 × 10−7= 0.05/
89/2251) (Supplementary Data 9). Thirteen of the metabolic
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Fig. 3 The methylation-proteome network. Circular plot of all 98 replicated cis- and trans- pEWAS associations.
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associations were with the AHRR smoking locus (cg05575921).
Furthermore, the strongest metabolic association for all 5 CpG
sites pertaining to the NLRC5 locus was with urinary 1,3,7-
trimethylurate (p= 1.70 × 10−19–1.97 × 10−9, Supplementary
Fig. 5), a metabolite that is a readout of caffeine metabolism
and that is known to negatively regulate genes of the
inflammasome, such as NLRC421.

Discussion
We have carried out a large epigenome-wide association study
with proteomics data. A previous association study with protein
levels investigated 121 protein biomarkers7 from the Olink plat-
form, of which we replicated the essential associations on the
overlapping marker set (Supplementary Note 1; Supplementary
Data 10). Unlike GWAS, in which genetic variants remain con-
stant over the course of an individual’s lifetime and can be
assumed to be causal for the observed associations, EWAS are
known to be confounded by many factors. As we show in this
study, the vast majority of the associations between DNA
methylation and protein levels are driven by factors that have
been associated with DNA methylation before, such as sex22,
blood cell composition14, genetic variation5, age9, smoking11,
body mass index23,24 and diabetes25. Accordingly, many proteins
that occur in pQTMs here, have also been previously found in
association with these driving factors, including leading sex-
associated proteins26, proteins associated with smoking15, and
proteins that have been reported in a GWAS2, confirming the
validity of the approach (see Supplementary Note 2 for details).

Interestingly, we observe a 0.30-fold depletion in promoter
associated CpG sites, contrasted by a 1.90-fold enrichment in cell
type specific promoter associated CpG sites, and an enrichment
in CpG sites in enhancers and inter- and intra-chromosomal
contact regions. These observations support the idea that these
pQTMs represent readouts of important cellular regulatory pro-
cesses, rather than reflecting random DNA methylation events. In
particular, in cases where these CpG sites overlap with disease
associations, our pEWAS associations add an additional level of
understanding to the underlying pathophysiology, as they
implicate the respective proteins by solid and replicated experi-
mental evidence.

After elimination of all known general driving factors, 98
associations emerge that are likely to be driven by more specific
biological processes. Of particular interest are the two larger
groups, PAPPA and NLRC5, which we discuss in the following. 72
pQTMs are associations of PAPPA with CpG sites distributed
across the genome. Methylation of the majority of these CpG sites
(78%) correlated negatively with PAPPA levels (Supplementary
Fig. 6). When combined into a single linear regression model, all
72 CpG sites account for a considerable 42.2% of the observed
variance in PAPPA. On the individual protein level, the associa-
tions with PAPPA remain relatively inflated (lambda= 1.37),
indicating that further CpG sites also associate with PAPPA to a
certain extent, but not strongly enough to reach Bonferroni sig-
nificance (Supplementary Fig. 3h). This suggests that PAPPA had
still to be confounded by some global factor, possibly a cell type
that the Houseman method did not account for. We therefore
tested the experimental blood cell composition (measured only in
QMDiab) for association with PAPPA and found a strong signal
with eosinophil count. In fact, 70 out of the 72 pQTMs involving
PAPPA were no longer significant in QMDiab after regressing out
the eosinophil count. This suggests that the process driving the
PAPPA associations likely occurs predominantly in eosinophils, a
blood cell type that is often found elevated in allergic reactions27.

We used Ingenuity Pathway Analysis (IPA, Qiagen Inc.)18 to
construct a network connecting selected genes, (ie. those having a

transcript association in BIOS), to PAPPA (Fig. 4 and Supple-
mentary Note 3). Pappalysin-1, or pregnancy-associated plasma
protein-A, is a metalloproteinase that cleaves insulin-like growth
factor binding proteins (IGFBPs) resulting in the activation of the
insulin growth factor (IGF) pathway28. Although PAPPA has
been discovered for its vital role in pregnancy, this protein acts as
an oncogene, promoting tumor cell proliferation, invasion, and
metastasis29. It is considered a marker of response to injury or
diseases such as atherosclerosis or lesion progression30. One of
the main proteolytic roles of PAPPA is the activation of the
Nuclear Factor Kappa B (NFκB), phosphatidylinositol-3 (PI3K),
Akt kinase (AKT), and extracellular-signal-regulated kinase
(ERK) signaling pathways29. PAPPA also plays a role in bone
formation, inflammation, wound healing, and female fertility31.
High levels of PAPPA have been shown to be associated with
increased risk of heart failure32. PAPPA also is a strong predictor
for adverse cardiovascular events in patients with type 2 dia-
betes33 and preeclampsia34. Although the regulation of PAPPA
has not been exhaustively studied, accumulating evidence shows
that pro-inflammatory cytokines, such as TNF-α and IL-1β, are
the main regulators of PAPPA expression in dermal fibroblasts,
arterial endothelial cells and smooth muscle cells. In addition, IL-
6 and transforming growth factor-beta (TGF-β) have also been
shown to promote PAPPA expression35. Because there are three
potential NFκB binding sites upstream of PAPPA, cytokine-
induced PAPPA expression may be mediated by NFκB activa-
tion36. This makes PAPPA, which is widely expressed in multiple
tissues, or any of its regulators, desirable therapeutic targets that
may indirectly inhibit IGF signaling in tissues where this signal-
ing is driven by increased PAPPA activity.

The second largest group (NLRC5) comprises 14 pQTMs
located at three genetic loci with five associated CpGs
(cg07839457, cg16411857, and cg08159663 near the transcription
start site of the NLRC5 locus on chromosome 16; cg00218406 at
the HCP5 locus and cg08099136 at the PSMB8 locus on chro-
mosome 6, the latter two CpGs are 1.4MB apart). These five CpGs
associated with one or more of the following seven proteins: Beta-
2-microglobulin (B2M), CD48 antigen (CD48), Low affinity
immunoglobulin gamma Fc region receptor III-B (FCGR3B),
Lymphocyte activation gene 3 protein (LAG3), Scavenger recep-
tor cysteine-rich type 1 protein M130 (CD163), and C-X-C motif
chemokines 10 and 11 (CXCL10 and CXCL11). The five CpG
sites were all positively correlated with one another, as were the
seven proteins; methylation of the CpG sites was anti-correlated
with the protein levels (Supplementary Fig. 7).

Using IPA, we constructed a network connecting the genes that
were putatively regulated by the associated CpG sites (NLRC5,
PSMB8, and HCP) with the seven associated proteins (Fig. 5).
The IPA search revealed the following relationships: NLRC5
belongs to the NLR family and is a transcriptional regulator of
MHC class genes through interaction with RFX transcription
factor components. B2M is a component of the major histo-
compatibility complex (MHC) class I. MHC class I molecules
play an important role in antigen presentation and immunoglo-
bulin transport. NLRC5 and B2M are directly linked: in humans,
NLRC5 increases the MHC class I expression of the B2M
protein37,38. Indirect links were found between the CpG sites and
the associated proteins through various Interleukins (IL-6 and IL-
10), major histocompatibility complexes (HLA-A, HLA-abc,
MHC Class I, and Interferon regulatory factor 3 (IRF3) (Sup-
plementary Note 4). These intermediate molecules are all func-
tionally linked to B2M and are also all related to NFκB), which is
also linked to PSMB8, B2M, CXCL10, and CXCL11. NLRC5 is
also a crucial negative regulator that blocks two major compo-
nents of the NFκB and type I interferon pathways, serving as a
central component in the homeostatic control of the innate
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immune system39. There is also a direct link between NFκB and
B2M. NFκB and IRF3 are both known to strongly trans-activate
B2M in human hematopoietic cells40. For a detailed description
of all experimental findings supporting each connection in this
network see Supplementary Note 4.

It is believed that NLRC5 limits the activation of inflammatory
pathways41. Although NLRC5 is known to contribute to processes
related to inflammatory type I interferon and adaptive immune
responses beyond the regulation of MHC class I genes, these
functions are currently not well understood and blurred by
discrepancies in the reported data42. NLRC5 is known to be
involved in the regulation of signal transduction pathways and
pro-inflammatory cytokine production. Interleukin-18 and
interleukin-1β are two of the key inflammatory cytokines. NLRC5
methylation associated with circulating IL-18 levels and with
cardiovascular disease43. In a previous EWAS with proteins
measured using the Olink platform7, NLRC5 methylation
(cg07839457) was associated with CXCL9, CXCL11, IL-12, and
IL-18 levels. The SOMAscan platform does not have a probe for
IL-18, but interestingly, we observe an association between
NLRC5 methylation and interleukin-18-binding protein (IL18BP,
p= 4.27 × 10−5). NLRC5 methylation has also been reported in
association with Soluble Tumor Necrosis Factor Receptor 2

(sTNFR2), a marker of cardiovascular disease risk in individuals
with diabetes44. Two of the proteins in the NLRC5 network
(CD163 and FCGR3B) were also linked to cardiovascular dis-
eases. CD163 and FCGR3B were both linked to cardiovascular
disorder of the myocardium and coronary heart disease. Upre-
gulation of human CD163 protein in detergent-resistant mem-
branes from human peripheral blood monocytes was associated
with coronary artery disease and myocardial infarction45. NLRC5
is also known to be associated with Tumor Necrosis Factor-alpha
(TNFα) which is a marker of systemic inflammation46. We
observed several TNF associations with cg07839457 at a relaxed
significance level (Supplementary Data 11). TNFα is one of the-
key players in the regulation of inflammatory responses and is a
drug target in several cardiovascular diseases, including con-
gestive heart failure and coronary artery disease46. A recent
EWAS of circulating TNFα identified NLRC5 methylation
(cg16411857, cg07839457) as one of its three top hits and showed
that NLRC5 methylation was linked to gene expression and
inversely associated with the risk of incident coronary heart
disease47.

We also observed multiple associations of NLRC5 methylation
with urinary markers of inflammation. The strongest CpG-
metabolite association was with 1,3,7-trimethylurate, a metabolite

GABBR1 cg26272069
(GABBR1)
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(CPSF4L)
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(SH3PXD2A)
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(PRDM2)
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Fig. 4 Pappalysin-1 network. This network comprises 72 CpG sites (green circles, same color and shape code as in Fig. 1) that associated with blood
circulating levels of pappalysin-1 (PAPPA) (blue octagon), five of which were also associated with RNA expression in BIOS (gray squares) (Table 1).
Ingenuity Pathway Analysis (IPA) was used to connect these CpG sites to PAPPA through protein-protein links (yellow diamonds) that were supported by
experimental findings, reflecting the well documented role of PAPPA as an activator of the IGF and NFκB pathways. PAPPA levels also associated with
relevant clinical phenotypes in KORA, reaching multiple testing corrected significance levels of p < 5.6 × 10−4 for CpG sites and p < 3.6 × 10−3 for proteins
(purple rectangles). PAPPA has also been linked to various diseases in numerous previous studies (pink hexagons). Full literature support of these links is
provided in Supplementary Note 3.
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found to be altered in multiple sclerosis48, cerebral malaria49, and
welding fume exposure50, all of which involve systemic inflam-
mation processes. NLRC5 methylation was further associated
with urinary neopterin (p= 1.79 × 10−7) (Supplementary Fig. 5),
an established metabolic marker of inflammation51 that has been
observed elevated in urine from subjects with acute kidney allo-
graft rejection. Neopterin is also a measure of macrophage acti-
vation52. NLRC5 methylation at cg07839457 has been previously
linked to numerous diseases. For instance, NLRC5 methylation
was associated with BMI and obesity in Africans53 and with HIV
infection54. Hypo-methylation of NLRC5 was also found to be
strongly correlated with age in centenarians55. Furthermore,
NLRC5 methylation has been associated with lupus44 and rheu-
matoid arthritis56. Recently, NLRC5 has also taken a central role
in tumor immunology57. Taken together, the robustly reported
associations of NLRC5 methylation with many chronic low-grade
inflammation related diseases suggest that the connections we
report here between the genes, proteins and metabolites of the
NLRC5 network represent a coherent and comprehensive model
of the pathways and processes that are jointly involved in all of
these diseases.

The remaining pQTMs include ten cis-pQTMs (CLEC11A,
ICAM5, PRTN3, C4, and SIGLEC5) which likely reflect the reg-
ulatory chain from DNA methylation through gene expression to
protein levels. The driving factors behind these associations remain
to be identified. The two trans-pQTMs (AHRR, GP1BA) also
provide interesting insights. Despite regressing out smoking, AHRR
(cg05575921) methylation remains associated with polymeric
immunoglobulin receptor (PIGR). Notably, both PIGR and AHRR
methylation were also associated with triglycerides in KORA (p=
2.01 × 10−7 and p= 6.17 × 10−4 respectively). Similarly, GP1BA

associated with body mass index, metabolic syndrome, and
hypertension in KORA (p= 6.66 × 10−6–3.72 × 10−4). This sug-
gests that there may be some residual confounding, or additional
unidentified environmental factors driving these associations.

We are aware of several limitations to our study. First,
aptamer-based proteomics methods and array-based methylation
assays are susceptible to potential probe cross-reactivity and non-
specific binding58. However, we verified that none of the CpG
sites or proteins that were involved in the final 98 pQTMs have
been flagged for such issues (see Methods). Two of the fifteen
proteins have been directly validated by mass spectrometry in
plasma, and six were detected as enriched in various cells or
serums in a previous study59. Second, DNA has been obtained
from white blood cells and proteins were measured in plasma.
Our study is hence bound to identify processes that occur pri-
marily in blood, or that are general to the organism. EWAS
conducted in other tissues and cell types are likely to reveal
further associations with proteins that are not primarily con-
trolled by white blood cells. Regarding our approach of succes-
sively regressing out confounders, although it is often very similar
to an evaluation in which all influential variables are inserted in a
single regression, it is not necessarily identical. Differences
between the two approaches could for instance arise in the case of
interactions between two predictors. We therefore verified that
this was not the case for the pQTMs we report here (Supple-
mentary Data 12).

In conclusion, we like to stress that it is essential to appreciate
that the associations we reported here were obtained by analyzing
samples from almost 1,300 individuals, reflecting experimental
data obtained from naturally occurring variance of the general
population where each individual may be viewed as an experiment
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Fig. 5 NLRC5 network. Our pEWAS (green lines) identified multiple proteins (blue octagons) and CpG sites (green circles) that are related to major anti-
inflammatory pathways, and that could be directly connected via intermediate genes and proteins using IPA (yellow diamonds). NLRC5 and beta-2-
microglobulin both regulate the major histocompatibility complex MHC class I genes through interaction with various interleukins and NFκB. NLRC5
methylation also associated with various metabolic inflammatory markers (orange triangles). Finally, the associated proteins were are also associated with
various clinical phenotypes in KORA at multiple-testing corrected significance levels (purple rectangles). NLRC5 methylation is a hallmark of chronic
inflammation and has been reported in association with several inflammation-related diseases (pink hexagons). Full annotations of these links are provided
in Supplementary Note 4.
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conducted by Nature8,60. The underlying processes were hence
equally present in Caucasians and robustly replicated in a multi-
ethnic population, and therefore likely reflect important regulatory
pathways that were present to a different extent in most indivi-
duals. The two large CpG-protein networks we reported here
provide correlative evidence for interactions between the involved
genes, proteins, and metabolites, and thereby contribute to a better
understanding of the regulatory processes that are associated with
chronic low-grade inflammation61,62.

Methods
Study population (KORA). The KORA F4 study is a population-based cohort of
3,080 subjects living in the southern Germany. Study participants were recruited
between 2006 and 2008 comprising individuals with age ranging from 32 to 81. All
KORA participants have given written informed consent and the study was
approved by the Ethics Committee of the Bavarian Medical Association. For this
study, joint data was available for methylation, proteomics, and genotyping mea-
surements of 944 individuals. The DNA methylation data set was determined using
the Infinium HumanMethylation450 BeadChip platform which was described in
detail previously6. Aptamer-based proteomics was done using the SOMAscan
platform and has been described in detail elsewhere2. Genotyping was performed
using the Affymetrix Axiom array, also described in detail elsewhere2.

DNA methylation (KORA). The KORA methylation dataset originally consisted of
1814 samples, of which 944 samples had both proteomics and genotyping mea-
surements. The methylation dataset was preprocessed according to the following
steps. Measurements from the 65 probes targeting SNPs (as identified in the
Illumina manifest) were first excluded. Then background correction was performed
using the R package minfi. Then the detection rate was examined and any samples
having a detection rate below 95% were excluded. Normalization was then carried
out on the intensity methylation values using the minfi R package, using a pro-
cedure equivalent to the Lumi:QN+ BMIQ pipeline. Estimation of the white blood
cell proportions was performed according to the Houseman method using 473 of
the 500 most cell specific CpG sites that were present on the 450K array.
Methylation measurements for 485,512 CpG sites were available. 35 CpG sites were
omitted due to having fewer than 100 measurements and CpG sites present on the
X and Y chromosomes (11,231 and 416 sites respectively) were also omitted from
the analysis due to the remarkable bias they create in the pEWAS. Finally, 2993
non-cg CpG sites were also excluded from the dataset leaving 470,837 CpG sites for
subsequent analysis.

Proteomics (KORA). The SOMAscan platform was used to quantify protein levels
in undepleted plasma of 997 KORA individuals26,61–68. Briefly, samples were split
into three dilution bins (0.05, 1, and 40%) and incubated with bead-coupled
SOMAmers. Experiments were conducted in batches of 96 samples. After several
washing steps, bead-bound proteins were biotinylated. Biotinylated target proteins
complexed with fluorescence-labeled SOMAmers were photo cleaved. After
recapture on streptavidin beads and additional washing steps, SOMAmers were
eluted and quantified using customized arrays containing SOMAmer-
complementary oligonucleotides. Based on standard samples that were included on
each plate, the resulting raw intensities were processed in a data analysis work flow
that accounted for hybridization normalization, median signal normalization and
signal calibration. This protocol was implemented by SomaLogic Inc. (Boulder
Colorado, USA) who received one-thousand blood samples from the KORA
F4 study for analysis. From the resulting data, three samples were discarded, where
one sample failed SOMAscan QC and two of the shipped samples were found to
have been incorrectly pulled from the bio-bank, leaving a total of 997 samples. Of
these 997 samples, 944 samples had both methylation and genotyping measure-
ments and were used in this study. Data for 1129 SOMAmer probes (SOMAscan
assay V3.2) was obtained for these samples. Five of the probes failed SOMAscan
QC and one was not measured in QMDiab, leaving a total of 1123 probes for
analysis.

Genotyping (KORA). The Affymetrix Axiom Array was used to genotype
3,788 samples of the KORA S4 of which 944 were used in this study. After thor-
ough quality control (total genotyping rate in the remaining SNPs was 99.8%) and
filtering for minor allele frequency (MAF) >1%, a total of 509,946 autosomal SNPs
was used to impute more SNPs. Shapeit v2 was used to infer haplotypes from the
available SNPs using the 1000G phase 3 haplotype build 37 genetic maps. Impute2
v2.3.2 was used for imputation. Variants with certainty <0.95, information metric
<0.7, missing genotype (geno 0.2), Hardy–Weinberg equilibrium (hbe) exact test p-
value < 1 × 10−6, or with MAF < 0.01 were all excluded. A total of 8,263,604 var-
iants with a total genotyping rate of 0.97 were kept for the analysis.

Phenotype/metabolic data (KORA). We used measurements from a maximum
of 1727 and 999 individuals overlapping the methylation and proteomics data

respectively for the following phenotypes: hypertension (defined as self-reported
hypertension diagnosis (>140/90 mmHg), or medically controlled known hyper-
tension (as per ISH-WHO 1999)), myocardial infarction (self-reported), metabolic
syndrome (MetS was defined according to the harmonized definition69 by the
presence of three or more of the following criteria: (1) waist circumference ≥94 cm
in men and ≥80 cm in women; (2) fasting serum triglycerides ≥150 mg/dl or drug
treatment for elevated triglycerides (fibrates or niacin); (3) serum high density
lipoprotein cholesterol (HDL) <40 mg/dl in men and <50 mg/dl in women or drug
treatment for reduced HDL (fibrates or niacin); (4) systolic blood pressure ≥130
mmHg or diastolic blood pressure ≥85 mmHg or treatment with antihypertensive
medication; (5) fasting serum glucose level ≥100 mg/dl or drug treatment of ele-
vated glucose.), type 2 diabetes (defined as self-reported T2D diagnosis and vali-
dated using healthcare records and participants reported as non-diabetic were
validated using OGT test), body mass index (defined as the ratio of weight in
kilograms to the height in square meters), alcohol consumption in grams/day, total
cholesterol, HDL, LDL, and triglycerides, to search for associations with our
pQTMs. Using fasting samples, total cholesterol was measured using the
cholesterol-esterase method (CHOL Flex, Dade-Behring, Germany), HDL and
triglycerides were measured using the TGL Flex and AHDL Flex methods (Dade-
Behring), respectively, and LDL was measured by the direct method (ALDL, Dade-
Behring).

Study population (QMDiab). The Qatar Metabolomics Study on Diabetes
(QMDiab) is a cross-sectional case-control study that was carried out in 2012 at the
Dermatology Department in Hamad Medical Corporation (HMC Doha, Qatar).
This study and comprises 388 study participants from Arab and Asian ethnicities17.
The QMDiab study was approved by the Institutional Review Boards of HMC and
WCM-Q under research protocol number 11131/11). All study participants pro-
vided written informed consent. A subset of 344 samples having joint methylation,
proteomics, and genotyping data were used in this study.

DNA methylation (QMDiab). The Illumina Infinium HumanMethylation450
(450K) BeadChip array was used70 for genome-wide DNA methylation profiling of
over 485,000 methylation sites. of 359 samples. All samples passed quality
assessment of assay performance requirements implemented in the Genome Studio
software integrated controls dashboard15. Normalization was performed using the
Lumi:BMIQ pipeline, which includes color bias adjustment, quantile normalization
(QN), and beta mixture quantile dilation normalization (BMIQ). 344 of the 359
methylation samples overlapped with both the proteomics and genotyping data
and were used in this study.

Proteomics (QMDiab). The SOMAscan platform of the WCM-Q proteomics core
was used to quantify a total of 1129 protein measurements in originally 356 plasma
samples from QMDiab2. Protocols and instrumentation were provided and certi-
fied following SomaLogic Inc. standards and requirements. Qualified SomaLogic
personnel supervised the experiments on-site. No samples or probe data were
excluded. 344 of the 356 samples overlapped with both the methylation and
genotyping data and were used in this study.

Genotyping (QMDiab). Genotyping was carried out using the Infinium Human
Omni 2.5-8 V1.2 Beadchip array for originally 353 samples2. After stringent quality
control, 1,221,345 variants were used impute a total of 18,829,416 variants that are
used in this study. In total, 344 of the 353 samples that overlapped with both the
methylation and proteomics data were used in this study.

Metabolomics (QMDiab). A total of 2251 metabolomics measurements from
QMDiab samples were obtained15. The semi-quantitative non-targeted UPLC-MS/
MS and GC-MS platform from Metabolon Inc. was used, yielding measurements of
metabolic traits (758 from plasma, 891 from urine, and 602 from saliva). Briefly,
non-targeted metabolic profiling at Metabolon was achieved in 330 saliva, 358 in
blood plasma, and 360 urine QMDiab samples using ultrahigh-performance liquid-
phase chromatography and gas chromatography separation, coupled with tandem
MS using established procedures71.

Statistical analysis. The CpG methylation b-values were transformed toM-values,
which are considered more statistically valid for association analysis72. M-values
are defined as the log2 ratio of the intensities of methylated versus un-methylated
probe. The protein measurements were log scaled. The transformed methylation
and protein data were then winsorized, that is, outliers that fall in the <5th and the
above 95th quantiles were replaced by the respective quantile values. The CpG and
protein values were then standardized (z-scored) to a mean equal to zero and a
standard deviation of one. A series of step-wise protein-epigenome-wide associa-
tion studies (pEWASs) were carried out, where a set of covariates were iteratively
regressed out from the proteomic and methylation measures separately using linear
models. Residuals of the proteomic and methylation measurements were computed
after regressing out covariates in the following order: sex, white blood cell coeffi-
cients, cis-SNPs, age, smoking, body mass index, and diabetes. A pEWAS having
the residual DNA methylation (M-values) as the dependent variable and the
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residual log-scaled protein as the independent variable was then carried out at each
step. The multiple-testing Bonferroni corrected level of significance for methylation
sites (N= 470,837) and proteins (N= 1123) was pCpG~Protein <9 × 10−11 (0.05/
1123/470,837).

The same preprocessing of data and statistical analysis procedure of the pEWAS
was carried out for the replication in QMDiab as done in KORA with one minor
variation: In QMDiab, the first three principal components (PCs) of the genotyping
data (genoPC1, genoPC2, and genoPC3) along with the first three principal
components of the proteomics data (somaPC1, somaPC2, and somaPC3) were
added as covariates in addition to the sex in that step of the analysis. These PCs are
considered as standard co-variates of the QMDiab study2. The genetic PCs account
for the ethnic variability of the QMDiab cohort and the proteomics PCs account
for a moderate level of observed cell lysis. In KORA, possible effects from
population stratification have already been excluded in previous studies3.
Therefore, no adjustment for population structure was performed in KORA.
Furthermore, we computed the number of discovery pQTMs that had 95%
replication power (determined by sampling) and the percentage of them having
consistent directionality. We report the fraction of Bonferroni replicated pQTMs at
95% replication power and the fraction of nominally significant pQTMs with
consistent directionality within all nominally significant pQTMs for all steps
(Supplementary Data 3).

Upon visual inspection of the CpG versus protein scatterplots we excluded three
associations at a single locus, as they appeared to be driven by an underlying SNP
which had not been genotyped or imputed (confirmed by the fact that the assumed
SNP allele distribution respected Hardy–Weinberg equilibrium). Already at the
discovery stage we attempted to regress out any remaining contributions of large-
scale variance that might have been captured by the principal components of the
final CpG and protein levels, but did not find any.

The CpG/protein associations with KORA phenotypes/metabolites
(hypertension, myocardial infarction, metabolic syndrome, type 2 diabetes, body
mass index, alcohol consumption, total cholesterol, HDL, LDL, and triglycerides)
were carried out using the log transformed, winsorized, standardized protein
measurements and the winsorized, standardized M-values for the CpG
measurements while adjusting for age and sex as covariates. The multiple-testing
Bonferroni corrected level of significance was set at pCpG~Phenotype < 5.6 × 10−4

(0.05/89) and pProtein~Phenotype < 3.3 × 10−3 (0.05/15).
The metabolomics associations with CpG sites in QMDiab were computed

using linear models and using the following covariates: age, sex, white blood cell
coefficients, and genetic PCs. The multiple-testing Bonferroni corrected level of
significance was set at pCpG~Metabolite < 2.2 × 10−5 (0.05/2251/89).

Cross reactivity of CpG markers and aptamers. To ensure that none of the
remaining CpG-protein associations were mis-interpreted due to binding issues, we
checked all involved CpG sites and proteins for cross reactivity. In methylation,
cross-reactive probes are probes that bind at non-target sequence due to similarity
in sequence. Additionally, several probes target polymorphic CpGs that overlap
with SNPs. A list of cross-reactive or polymorphic CpGs in the Illumina Human
Methylation 450K array are provided by Chen et al.73 and Price et al.74. A list of
cross-reactive proteins was obtained from the study of Sun et al.58, who tested a
subset of the Somalogic aptamers (SOMAmers) for cross-reactivity with homo-
logous proteins that have at least 40% sequence similarity. In addition, we assessed
the specificity of the SOMAlogic assay for the proteins in our final list of 98
associations using data provided by Emilsson et al.59, where direct assessment of
aptamer specificity using data dependent analysis and multiple reaction monitoring
mass spectrometry after SOMAmer enrichment in biological matrices. Two of our
final proteins (B2M and FCGR3B) were directly validated via mass spectrometry in
blood plasma, two proteins (CD163 and SIGLEC14) in blood serum, and four
proteins (C4A, CLEC11A, LAG3, and PRTN3) in other biological matrices.
Additionally, validation is inferred for the remaining seven proteins, thus providing
further assurance regarding the issue of cross-reactivity.

Enrichment of pQTMs for various CpG characteristics. Enrichment analysis for
the various characteristics of CpG sites was based on the Illumina 450K manifest.
Enrichment/depletion was computed for various UCSC gene regions describing the
CpG position (TSS200, TSS1500, 5′UTR, Body, and 3′UTR), the location of the
CpG relative to the CpG island (shore, shelf, upstream of the CpG island, and
downstream of the CpG island), regulatory features as determined by the ENCODE
consortium (promotor, gene, non-gene, unclassified, and those features also being
cell type specific), and other features including differentially methylated regions
(DMR), cancer-specific differentially methylated regions (CDMR), Enhancer, and
DNase I Hypersensitivity sites (DHS). A Fisher exact test for count data (fisher.test
in R) was used to compute the odds ratio, the 95% confidence interval for the odds
ratio, and p-value. An odds ratio greater than one represented enrichment, and the
contrary, depletion.

Finally, we crossed our pQTMs against published Hi-C data for both inter-
chromosomal and intra-chromosomal contact19 at 1 kb base pair delimited
resolution and quality threshold of E30 in the GM12878 LCL. Both the CpG and
protein were put in the relevant 1 kb block, and for those blocks, the chromosomal
contact value was retrieved from the Rao et al. data19. If a Hi-C contact was
indicated between a CpG and protein, we flagged the pQTM as positive for Hi-C

contacts. As background, we used randomized pQTM combinations matching in
size to those in the actual analysis.

Association between CpG methylation and gene expression. We used the BIOS
QTL browser (http://genenetwork.nl/biosqtlbrowser, accessed 28 September 2018)5

to identify cis-methylation eQTMs (correlations between gene expression and CpG
methylation that are located in cis). eQTMs were in a window of 250 kb around the
TSS of the transcript. This eQTM data was generated using RNA-seq data for 2101
of 3841 Dutch individuals. 12,809 unique CpG sites correlated with 2842 unique
genes in cis CpG-level at a false discovery rate FDR <0.05.

Pathway analysis. The networks were generated through the use of IPA
(QIAGEN Inc., http://www.qiagenbioinformatics.com/products/ingenuity-
pathway-analysis)18. We searched for connections between genes located
near the identified CpG sites and the target genes of the associated proteins
(accessed September 2018, database version 44691306). We used the path
explorer tool to identify direct or indirect relationships using the ingenuity
knowledge base by selecting the most stringent available confidence level
(experimentally observed) only.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Complete summary statistics and association data across all measured CpG probes and
proteins in the discovery cohort are available for download at: https://wcmq.box.com/s/
f85fxv9ldvsshd1b1d0qbfwde75no1x4. The informed consent given by the study
participants does not cover posting of participant level phenotype and genotype data in
public databases. However, data are available upon request from KORA-gen (http://epi.
helmholtz-muenchen.de/kora-gen). Requests are submitted online and are subject to
approval by the KORA board.
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