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Abstract 

Background: Biomarkers may contribute to our understanding of the pathophysiology of various diseases. Type 2 
diabetes (T2D) and coronary heart disease (CHD) share many clinical and lifestyle risk factors and several biomarkers 
are associated with both diseases. The current analysis aims to assess the relevance of biomarkers combined to path‑
way groups for the development of T2D and CHD in the same cohort.

Methods: Forty‑seven serum biomarkers were measured in the MONICA/KORA case‑cohort study using clinical 
chemistry assays and ultrasensitive molecular counting technology. The T2D (CHD) analyses included 689 (568) 
incident cases and 1850 (2004) non‑cases from three population‑based surveys. At baseline, the study participants 
were 35–74 years old. The median follow‑up was 14 years. We computed Cox regression models for each biomarker, 
adjusted for age, sex, and survey. Additionally, we assigned the biomarkers to 19 etiological pathways based on infor‑
mation from literature. One age‑, sex‑, and survey‑controlled average variable was built for each pathway. We used 
the  R2

PM coefficient of determination to assess the explained disease risk.

Results: The associations of many biomarkers, such as several cytokines or the iron marker soluble transferrin recep‑
tor (sTfR), were similar in strength for T2D and CHD, but we also observed important differences. Lipoprotein (a) (Lp(a)) 
and N‑terminal pro B‑type natriuretic peptide (NT‑proBNP) even demonstrated opposite effect directions. All pathway 
variables together explained 49% of the T2D risk and 21% of the CHD risk. The insulin‑like growth factor binding pro‑
tein 2 (IGFBP‑2, IGF/IGFBP system pathway) best explained the T2D risk (about 9% explained risk, independent of all 
other pathway variables). For CHD, the myocardial‑injury‑ and lipid‑related‑pathways were most important and both 
explained about 4% of the CHD risk.

Conclusions: The biomarker‑derived pathway variables explained a higher proportion of the T2D risk compared 
to CHD. The ranking of the pathways differed between the two diseases, with the IGF/IGFBP‑system‑pathway being 
most strongly associated with T2D and the myocardial‑injury‑ and lipid‑related‑pathways with CHD. Our results help 
to better understand the pathophysiology of the two diseases, with the ultimate goal of pointing out targets for life‑
style intervention and drug development to ideally prevent both T2D and CHD development.
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Background
Type 2 diabetes (T2D) and coronary heart disease (CHD) 
are among the most common chronic diseases in West-
ern industrialized countries and cardiovascular diseases 
(CVD) are the main cause of death [1]. Although T2D is 
usually not a direct cause of death, patients with diabetes 
have a significantly increased risk of CVD and microvas-
cular complications such as kidney disease [2, 3]. Among 
the most important risk factors for both diseases are an 
unhealthy lifestyle (e.g. too little exercise, smoking, and 
unhealthy diet) and disorders such as obesity, high blood 
pressure, dyslipidemia, subclinical inflammatory pro-
cesses, and insulin resistance [4–7]. Michael P. Stern sug-
gested in 1995 that T2D and CVD have common genetic 
and environmental antecedents, coining the term of the 
‘common soil’ from which both conditions arise [8]. The 
extent and components of the common roots are still a 
field of active research, especially since it was discovered 
that there are also factors that protect against T2D, but 
increase the risk of myocardial infarction (MI) [9].

Our study examines the common soil hypothesis by 
investigation of biomarkers, which reflect diverse etio-
logic pathways. Serum and plasma biomarkers are 
increasingly used to elucidate pathophysiological changes 
leading to T2D and CHD. Biomarkers are objectively 
measurable and are not subject to recall bias. Numerous 
examples show the benefit of biomarkers for etiologic 
research [10, 11]. However, most published studies have 
investigated either T2D [12] or CHD [13], so that the 
results of the two diseases cannot be directly compared.

The current investigation was embedded within the 
Monitoring of Trends and Determinants in Cardiovas-
cular Disease (MONICA) Augsburg study, which was 
initiated in the early 1980s by the World Health Organi-
zation to study risk factors of premature CVD in region-
ally defined communities by a standardized protocol. In 
previous analyses, several biomarkers have already been 
investigated with respect to their association with either 
T2D (e.g. [14–16]) or CHD (e.g. [17–20]) or both [6]. 
Unlike the investigation of single candidate biomarkers, 
the simultaneous analysis of multiple biomarkers reflect-
ing different pathomechanisms allows to compare the 
association of different metabolic pathways with disease 
development. This information may be valuable in order 
to target the most relevant pathways with drug treat-
ments or lifestyle interventions. In contrast to previous 
analyses within the same cohort, this study uses a multi-
marker approach including integration of biomarkers 

into pathway variables, to directly compare associations 
with both outcomes for a uniformly restricted 14-year 
follow-up period. Thus, we aim to assess and compare the 
relevance of 47 single biomarkers and 19 etiologic path-
ways derived from these biomarkers for the development 
of T2D and CHD simultaneously in the same cohort.

Methods
Study population
The design and all procedures of this prospective case-
cohort study within the population-based MONICA/
KORA Augsburg cohort have been described in detail 
before [21]. Briefly, three independent cross-sectional 
population-based surveys were performed within the 
MONICA Augsburg project in 1984/85 (survey S1), 
1989/90 (S2) and 1994/95 (S3) in Augsburg and two adja-
cent counties (Germany). The total number of partici-
pants was 13,427 (6725 men, 6702 women) aged 25–64 
(S1) or 25–74 years (S2, S3). Information on sociodemo-
graphic and lifestyle variables at baseline was collected 
through standardized interviews. In addition, standard-
ized medical examinations were performed. All partici-
pants were prospectively followed within the framework 
of the Cooperative Health Research in the Region of 
Augsburg (KORA). Due to the low incidence of T2D and 
CHD under the age of 35, we restricted the source popu-
lation to the 10,718 persons (5382 men and 5336 women) 
between 35 and 74 years of age at baseline. Details on the 
selection of study participants are shown in Additional 
file  1: Figure S1. The follow-up period was restricted to 
a maximum of 14 years because the maximum follow-up 
for the S3 participants was 14–15 years.

The incidence of T2D was assessed using a written 
follow-up questionnaire sent to all participants of the 
three baseline surveys in 1997/98, 2002/03, and 2008/09. 
Furthermore, all S1 participants were invited to a fol-
low-up examination in 1987/88. Self-reported incident 
T2D status and the date of diagnosis were validated by a 
questionnaire mailed to the treating physician or medi-
cal chart review. Only participants for whom the treat-
ing physician clearly reported a diagnosis of T2D or for 
whom a diagnosis of T2D was mentioned in the medical 
records or who were taking antidiabetic medication were 
classified as cases. The mean follow-up time ± stand-
ard deviation (SD) was 12.0 ± 3.5 years, the median was 
14.0 years. The T2D case-cohort study included only par-
ticipants without prevalent diabetes at baseline. It com-
prised a randomly drawn subcohort of 1991 individuals 
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NT‑proBNP, Troponin I
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(of whom n = 141 developed incident T2D) plus all 548 
additional incident T2D cases.

CHD was defined as non-fatal MI as well as coronary 
death and sudden death (International Classification of 
Disease  9th Revision (ICD 9): 410–414 and 798). Until 
December 2000, the diagnosis of a major, non-fatal MI 
and coronary death was based on the MONICA algo-
rithm [22], where a diagnosis of a major CHD event was 
based on symptoms, cardiac enzymes (creatine kinase, 
aspartate aminotransferase, and lactate dehydrogenase), 
and serial changes from 12-lead ECGs evaluated by Min-
nesota coding [23], necropsy results, and history of CHD 
in fatal cases. Since January 1, 2001 all patients with MI 
diagnosed according to ESC (European Society of Car-
diology) and ACC (American College of Cardiology) 
criteria were included [24]. Incident events were identi-
fied through the follow-up questionnaires or through the 
MONICA/KORA myocardial infarction registry [25]. The 
registry covers all acute MI cases occurring in the study 
area in patients up to 74  years. Questionnaire-assessed 
self-reported CHD events which were not covered by the 
MONICA/KORA myocardial infarction registry were 
validated by information from hospital discharge letters 
or from the treating physician. Coronary deaths were 
validated by autopsy reports, death certificates, chart 
reviews, and information from the last treating physi-
cian. The mean follow-up time ± SD was 12.6 ± 3.0 years, 
the median was 14.0 years. The CHD case-cohort study 
included only participants without a history of MI at 
baseline. It comprised a randomly drawn subcohort of 
2163 individuals (of whom n = 159 developed incident 
CHD) plus all 409 additional incident CHD cases.

Biomarker measurements, imputation, and definition 
of pathway variables
During the baseline examinations, a non-fasting venous 
blood sample was collected while sitting. Samples were 
centrifuged within 120 min, refrigerated at 4 to 8 °C and 
shipped on refrigerant packaging within 2–4 h to the lab-
oratory of the Augsburg Central Hospital (now university 
hospital of Augsburg) for measurement of serum high 
density lipoprotein (HDL) cholesterol, total cholesterol, 
and uric acid. All other 44 biomarkers were measured 
from serum samples stored at − 80 °C.

On average, 16% of the biomarker data were missing, 
with a large variability between the biomarkers (mini-
mum: creatinine, 0%; maximum: 25-hydroxycholecal-
ciferol (25(OH)D), 30%). In order to enable unbiased 
analyses and to use the available data most efficiently, 
we replaced missing biomarker values in each of the two 
case-cohort datasets, using 20-fold multiple imputa-
tion by chained equations (MICE) (R version 3.2.3 and R 
package MICE version 2.25) [26–29].

Biomarker measurements with a right-skewed dis-
tribution were ln-transformed and all biomarkers were 
(0,1)-standardized. The measurement methods, coef-
ficients of variation, proportions of missing values pre-
imputation and decisions on ln-transformations are 
summarized in Additional file 1: Table S1 for all analyzed 
47 biomarkers.

The biomarkers were selected with regard to their 
potential importance for either T2D or CHD patho-
physiology based on prior knowledge from experimen-
tal and epidemiological studies. The current study used 
all available biomarker data from the two case-cohort 
studies for simultaneous analysis of both diseases in the 
form of a secondary data analysis. For this purpose, the 
biomarkers were grouped according to pathophysiologi-
cal aspects; these biomarker groups are called ‘pathway 
variables’ in the following. Each biomarker was assigned 
to one pathway based on information from literature 
(Fig. 1). This approach leads to pathway groups differing 
in the number of included biomarkers. Therefore, one 
age, sex, and survey controlled ‘average’ variable was built 
for each of the 19 considered pathways in each of the 20 
imputed datasets as follows: First, 47 linear regression 
models, each containing one standardized biomarker 
variable as dependent variable and age, sex, and survey 
as explanatory variables, were computed separately in 
the subcohort of the T2D and CHD case-cohort stud-
ies. Based on these results, biomarker residuals free of 
variability caused by age, sex, and survey were calculated 
in the complete case-cohort studies using the beta-esti-
mates from the subcohort regression analyses. Third, the 
residuals of inversely associated biomarkers were multi-
plied by (− 1), allowing different decisions for T2D and 
CHD; the association directions were determined based 
on hazard ratios (HR) adjusted for age, sex, and survey. 
Fourth, the biomarker residual variables per pathway 
were summed and (0,1)-standardized again in order to 
yield the final pathway variables.

Statistical analysis
Descriptive analyses of baseline characteristics were 
computed for cases and non-cases using the SAS pro-
cedure SURVEYMEANS (SAS Version 9.3 Institute Inc., 
Cary, NC, USA). To account for the case-cohort design, 
weighting was performed using the survey- and sex-spe-
cific sampling weights. Medians and interquartile ranges 
were calculated as median of percentiles over multiple 
results of 20 imputations; proportions were calculated as 
arithmetic means over the 20 imputation results.

Correlations between the age, sex, and survey adjusted 
biomarker residuals and between the pathway variables 
were investigated separately in the subcohorts of the T2D 
and CHD case-cohort studies by Pearson’s coefficients. 
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Fisher’s Z-transformation and re-transformation was 
used to compute average correlation coefficients over the 
20 imputed datasets [30, 31].

To assess the relation of the (0,1)-standardized bio-
marker variables with incident T2D and incident CHD, 
Cox proportional hazards regression models adjusted for 
age, sex, and survey were built. Regression coefficients 
were calculated using Barlow’s weighting method to 
account for the case-cohort design [32]. Robust variance 
estimation was performed to obtain standard error esti-
mates for the parameter estimates [33]; incorporation of 
the additional variation due to imputation was achieved 
by using Rubin’s rules for multiple imputation [34].

For calculation of the explained time-to-event outcome 
variability (for simplicity called risk in the following), the 
coefficient of determination R2

PM
 according to Kent and 

O’Quigley was used, which takes the time-to-event data 
structure of Cox models into account [35, 36]. In general, 
the coefficient of determination  R2 determines the ratio 
of the outcome variability explained by the model to the 
total variability. The variability explained by the model 
was estimated separately in each imputed dataset  and 
combined by calculating the arithmetic mean. In order 

to determine the T2D and CHD outcome variabilities 
explained by all pathway variables, R2

PM
 was calculated 

for the full Cox models containing all 19 pathway vari-
ables. To assess the explained variability of each individ-
ual pathway, two approaches were chosen. Firstly, R2

PM
 of 

all Cox models containing exactly one of the 19 pathway 
variables was computed (called univariate assessment 
in the following). Secondly, the absolute R2

PM
 difference 

between full models and models in which one pathway 
variable was excluded was computed in order to assess 
the contribution of single pathway variables on top of the 
other 18 pathway variables (called independent assess-
ment in the following). More details on the rationale of 
our analytical approach are given in Additional file  1: 
Text S1. All statistical analyses were performed with R 
version 3.6.1 unless specified otherwise. Test results with 
two-sided p value < 0.05 were considered statistically 
significant.

Results
Baseline characteristics
Table 1 shows the characteristics of the study participants 
at the time of the baseline surveys. For both outcomes, 

Fig. 1 Overview of investigated biomarkers that were grouped in pathway variables according to pathophysiological processes
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the cases comprised more men than women, they were 
more likely to be physically inactive, to suffer from actual 
hypertension and to be current or former smokers. 
Moreover, the cases were on average older, especially the 
incident CHD cases, and they had a higher BMI, which 
was more pronounced for the T2D cases.

The unadjusted baseline values of all 47 biomarkers are 
shown in Additional file  1: Table  S2 separately for inci-
dent T2D cases and non-cases as well as incident CHD 
cases and non-cases.

Associations of single biomarkers with incident T2D 
and incident CHD
The age, sex, and survey adjusted associations of the sin-
gle biomarkers with incident T2D and incident CHD, 
sorted according to the assigned pathways, are shown in 
Fig. 2 and Additional file 1: Table S3. Overall, more bio-
markers were significantly associated with T2D (n = 37) 
than with CHD (n = 28) and the T2D associations were 
on average stronger. Except for resistin, all biomarkers 
associated with CHD were also associated with T2D. The 
direction of the association was consistent for 25 of the 
27 biomarkers that were associated with both diseases, 
but differed for lipoprotein (a) (Lp(a)) and N-terminal 
pro B-type natriuretic peptide (NT-proBNP). These 
two biomarkers were inversely associated with T2D and 
positively with CHD. For T2D, the adipose-derived hor-
mone leptin (HR per SD = 2.75 [95% CI 2.31; 3.26]), the 
hemostasis marker tissue plasminogen activator (t-PA; 
2.48 [2.16; 2.86]), and the insulin-like growth factor (IGF) 
binding protein 2 (IGFBP-2) (0.42 [0.37; 0.49]) demon-
strated the strongest associations. For CHD, the strong-
est associations were observed for the myocardial injury 

marker troponin I (1.59 [1.39; 1.81]), t-PA (1.55 [1.35; 
1.79]) and the lipid related marker total cholesterol (1.51 
[1.34; 1.70]).

Pearson’s correlations were lower than 0.8 between the 
single age, sex, and survey controlled biomarker variables 
(Additional file  2: Figure S4) and were lower than 0.6 
between the grouped pathway variables (Additional file 1: 
Figures S2 and S3).

T2D and CHD risk explained by pathway variables
All pathway variables together explained 49% of the T2D 
risk and 21% of the CHD risk. The magnitude explained 
by single pathway variables and their ranking regarding 
the importance for each disease varied greatly between 
T2D and CHD in the univariate assessment (Fig. 3a and 
3b). Most of the T2D risk was explained by the IGF/
IGFBP system pathway (represented by IGFBP-2, 30%), 
followed by the adipose-derived hormone pathway (rep-
resented by adiponectin, leptin, and resistin, 22%) and 
the hormone regulation pathway (represented by sex hor-
mone binding globulin (SHBG), 16%). For CHD, most of 
the risk was explained by the lipid related pathway (rep-
resented by HDL-cholesterol, Lp(a), secretory phospho-
lipase A2 group IIA (sPLA2-IIA), and total cholesterol, 
9%), the stress and antioxidant pathway (represented by 
heat shock protein 70 (Hsp70), myeloperoxidase (MPO), 
and oxidized LDL (ox-LDL), 7%) as well as the myocar-
dial injury pathway (represented by Troponin I, 7%). The 
endothelial dysfunction pathway (represented by soluble 
intercellular adhesion molecule-1 (sICAM-1) and soluble 
E-selectin (sE-selectin)) and lipid-related pathway were 
among the top five pathways for both diseases.

Table 1 Baseline characteristics of cases and non-cases in the T2D and CHD case-cohort studies

Categorical variables are presented as proportions and continuous variables as medians (25th percentile; 75th percentile)
a  Hypertension (ISH-WHO 1999) or medically treated with known hypertension

Characteristics at baseline Incident T2D Incident CHD

Cases
n = 689

Non-cases
n = 1850

Cases
n = 568

Non-cases
n = 2004

Male (%) 57.0 48.2 73.1 46.9

Age (years) 57.0 (50.0; 64.0) 51.0 (43.0; 60.0) 62.0 (55.0; 68.0) 52.0 (43.0; 60.0)

Survey 1 (%) 23.8 30.2 24.6 28.8

Survey 2 (%) 40.3 36.0 42.8 36.3

Survey 3 (%) 35.8 33.8 32.6 35.0

BMI (kg/m2) 29.5 (27.2; 32.7) 26.3 (24.0; 29.1) 27.9 (25.8; 30.6) 26.5 (24.2; 29.5)

Physically inactive (%) 70.2 60.0 70.6 61.7

Actual  hypertensiona (%) 66.5 39.9 68.0 40.7

Current smoking (%) 26.3 24.1 32.4 24.2

Former smoking (%) 31.7 27.8 35.6 27.3

Never smoking (%) 42.1 48.0 32.0 48.5
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When evaluating the independent contributions of 
the pathways by excluding single pathway variables from 
the full model, the exclusion of the IGF/IGFBP pathway 
reduced the explained T2D risk by an absolute differ-
ence of 9%; all other pathway variables independently 
explained less than 2% (Fig. 4a). For CHD in contrast, two 
pathway variables, the myocardial injury and the lipid 
related pathways both independently explained 4% of the 
risk; all other pathway variables independently explained 
less than 2% (Fig. 4b).

Discussion
In this large prospective study, we investigated biomark-
ers reflecting various pathophysiological processes for 
associations with both incident T2D as well as incident 
CHD. Our study is one of the first to examine to what 
extent biomarkers reflecting different etiology explain 
the development of T2D or CHD. Our study compared 
the results of the different pathways as well as of both 

diseases. We showed that the pathway variables collec-
tively explained a substantially larger proportion of the 
T2D risk (49%) compared to CHD (21%). We also showed 
that the pathway variables that independently explained 
most of the disease risk differed between incident T2D 
and incident CHD. Moreover, the age, sex, and survey 
adjusted associations of some single biomarkers differed 
strongly for T2D and CHD, with Lp(a) and NT-proBNP 
even demonstrating opposite effect directions. However, 
the associations of many single biomarkers, such as sev-
eral cytokines or the iron biomarker soluble transferrin 
receptor (sTfR), were quite similar for T2D and CHD.

Importance of single pathways for T2D and CHD 
development in univariate assessment
The IGF/IGFBP system pathway was most strongly asso-
ciated with T2D development in the univariate analyses, 
followed by the adipose-derived hormones and the hor-
mone regulation pathways. For CHD, the lipid related, the 
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stress and antioxidants, and the myocardial injury path-
ways individually were most important. Nonetheless, the 
associations of some single biomarkers were similar for 
T2D and CHD and the lipid related pathway (explained 

variability of T2D: 13%; CHD: 9%) and endothelial dys-
function pathway (T2D: 14%; CHD: 4%) both strongly 
explained the T2D as well as the CHD development 
when the pathways were individually investigated.

Fig. 3 Explained variability ( R2
PM

 ) of a incident T2D and b incident CHD by single pathway variables when entered into empty models (univariate 
assessment)
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Fig. 4 Absolute difference in explained variability ( R2
PM

 ) of a incident T2D and b incident CHD when single pathway variables were excluded from 
full models (assessment of independent contribution)
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While the two biomarkers sE-selectin and sICAM-1 
that represent the endothelial dysfunction pathway were 
positively associated with both T2D and CHD, more cau-
tion is required when interpreting the results from the 
lipid related pathway. Total cholesterol and sPLA2-IIA 
were both positively and HDL-cholesterol was inversely 
associated with incident T2D and CHD. Lp(a), however, 
was inversely associated with T2D and positively with 
CHD development. Accordingly, we inverted the age, 
sex, and survey adjusted Lp(a) residuals when we built 
the lipid related pathway variable for the T2D analysis, 
but not when we built this variable for the CHD analy-
sis. This needs to be considered when interpreting the 
results. While it has been known for a long time that ele-
vated Lp(a) increases the CHD risk, several prospective 
studies have shown more recently that the association 
with T2D is inverse [37–39]. The Lp(a) concentration 
is strongly genetically determined by the copy num-
ber variant kringle IV type 2 (KIV-2) and several single 
nucleotide polymorphisms in the LPA gene region [39]. 
Mendelian Randomization studies reported that genetic 
variants which lead to elevated Lp(a) levels were associ-
ated with higher CHD risk [39, 40] and lower T2D risk 
[39–42]. The results of these Mendelian Randomization 
studies strongly point at causality. However, the poten-
tially causal mechanisms for both diseases, especially in 
relation to the observed opposite effect directions, are 
currently still obscure [37, 39]. Similar to the Lp(a) obser-
vation, the lipid marker low density lipoprotein (LDL) 
cholesterol also shows an inverse association with inci-
dent T2D and a positive association with incident CHD 
in observational [43, 44], clinical [9], and Mendelian 
Randomization studies [45]. The effects and side-effects 
of therapies aimed at lowering Lp(a) and LDL levels to 
reduce the risk of CHD are consequently a field of active 
research [39, 40, 46, 47]. According to the current state of 
knowledge, in individuals with elevated LDL levels being 
at increased risk of CVD, the CVD-preventive benefits of 
widespread LDL-lowering therapies clearly outweigh the 
increased T2D risk [39]. Unfortunately, LDL and triglyc-
eride levels were not available in our study.

In our investigation, not only Lp(a), but also NT-
proBNP, a marker of vascular function and neurohumoral 
activity, showed an inverse association with incident T2D 
and a positive association with incident CHD, which is 
consistent to the literature [48–50].

Pathways independently associated with T2D or CHD
The analysis of single pathways revealed the strong-
est individual associations. However, these associations 
might partly be due to correlations to other pathway 
variables. We have therefore also investigated the inde-
pendent contribution of each pathway by excluding one 

pathway variable at a time from a full model including 
all 19 pathway variables. None of the pathway variables 
independently and strongly explained both the develop-
ment of T2D and CHD.

For T2D, only the IGF/IGFBP pathway independently 
explained the development of the disease strongly. This 
pathway, which was represented by IGFBP-2, had already 
shown the most pronounced association in the univariate 
assessment; increased IGFBP-2 serum levels conferred a 
decreased T2D risk. In recent years, evidence has accu-
mulated that insulin-like growth factor 1 (IGF-1) and at 
least part of its binding proteins (IGFBPs) play an impor-
tant role in glucose homeostasis [51]. The IGFBPs thereby 
act dependently and independently from IGF-1 [52]. 
Compared to IGF-1, IGFBP-1, and IGFBP-3, IGFBP-2 
was most strongly associated with the development of 
T2D in women of the US Nurses’ Health Study [51]. The 
strong inverse association between IGFBP-2 and inci-
dent T2D that we also observed has been confirmed in 
three further studies [53–55]. In the Baltimore Longitu-
dinal Study of Aging (BLSA) IGFBP-2 levels were posi-
tively correlated with insulin sensitivity at any time point 
during the study in men and women of middle to older 
age [56]. From a mechanistic point of view, IGFBP-2 may 
increase the insulin-stimulated glucose uptake by induc-
ing glucose transporter 4 (GLUT-4) translocation from 
the cytoplasm to the plasma membrane [57]. Increased 
IGFBP-2 levels were also found to be associated with an 
increased risk of mortality in elderly persons [58, 59]—
interestingly, though, in the BLSA study only after adjust-
ment for insulin sensitivity [56].

The independent contribution of all other pathways 
was substantially weaker in the T2D analysis. Interest-
ingly, the liver marker pathway, which was represented 
by fetuin-A (also known as alpha-2 Heremans Schmid 
glycoprotein), ranked on the second last place in the uni-
variate assessment but ranked second best in the analysis 
of the independent contribution. The reason was that the 
estimated proportion of explained risk was only slightly 
attenuated when the other pathway variables were 
included in the model (from 2.4 to 1.8% explained risk), 
because the liver marker pathway was only weakly corre-
lated with other important pathways. In our study, higher 
levels of fetuin-A were associated with an increased risk 
of T2D development, which a recent meta-analysis has 
also convincingly illustrated [15]. In this meta-analysis, 
the overall evidence and the five largest studies (including 
our own study) individually showed a positive association 
with T2D risk. The underlying mechanism likely involves 
insulin resistance caused by the impact of fetuin-A on 
diverse physiological processes, e.g. GLUT-4 transloca-
tion and protein kinase B (Akt) activation [60].
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Concerning CHD, the effect of the stress and anti-
oxidants pathway seen in the univariate assessment was 
strongly attenuated by the inclusion of the other pathway 
variables in the model (from 7.0 to 0.6%). In contrast, the 
myocardial injury and lipid related pathways were both 
independently strongly related to CHD development. 
The myocardial injury pathway was represented by ultra-
sensitive troponin I, a marker of myocardial injury. Tro-
ponin I is used to diagnose acute MI in clinical practice 
and has also been shown to be predictive for incident 
CHD in individuals of the general population without 
prior CHD [17, 61].

Impact
So far, only few studies have compared to what extent 
biomarkers that reflect different pathophysiological 
processes can explain the development of T2D or CHD 
relative to each other and even less, if any, have directly 
compared the relevance for both diseases. In their study, 
Montonen et al. used an effect decomposition method to 
compare how well the four most strongly associated bio-
markers from four selected pathways explain the devel-
opment of T2D [62]. Our approach extends this idea by 
mapping of substantially more pathophysiological pro-
cesses and building of one average pathway variable to 
represent each process. We have applied the approach to 
our literature-based selected biomarker candidates, but 
future studies could utilize it similarly for the analysis of 
untargeted biomarker studies.

Our study has shown that some of the investigated bio-
markers are associated with both T2D and CHD while 
some are only associated with one of the two diseases. In 
two instances, the effect direction even differed between 
the two studies. Moreover, the pathway variables that 
explained most of the disease risk differed between inci-
dent T2D and incident CHD. While there are a number 
of genetic studies that have examined comprehensively 
the common grounds of T2D and CHD [63, 64], we 
are not aware of other studies, which have investigated 
several biomarkers from diverse pathways simultane-
ously for both diseases. Consistent with our findings, 
the genetic studies overall show that only some variants 
contribute to both T2D and CVD development and that 
these genetic variants do not always share the same risk 
allele for T2D and CHD [63]. A recent large prospective 
study focused on a panel of nine inflammatory markers 
and compared their association with incident T2D and 
incident CVD. This study observed many similarities, but 
also important differences. For instance, the complement 
factor C3 was associated substantially more strongly with 
incident T2D than with incident CVD [65]. Our investi-
gation included C3b, the larger of two elements formed 

when C3 is cleaved, and similarly observed a substantially 
stronger association with T2D compared to CHD. Alto-
gether, the current evidence thus supports the existence 
of a common soil for both diseases, but also clearly shows 
that the common soil hypothesis has its limits. These 
limits deserve thorough investigation because particu-
lar caution is required if the treatment of one risk factor 
or disease might be harmful for another disease. Recent 
studies on LDL-lowering treatment have shown that this 
is not a far-fetched scenario, even for two strongly linked 
chronic diseases such as T2D and CHD [9]. In case 
opposing associations of pathophysiological mechanisms 
are detected, a careful evaluation of the harm and benefit 
of possible treatments is warranted. On the other hand, 
pathophysiological mechanisms, which are associated 
with several diseases in the same direction, are particular 
valuable candidates for further investigation, since treat-
ments addressing these pathophysiological processes 
could have positive impacts on several outcomes.

We would like to point out that no conclusions on cau-
sality may be drawn from observational studies like our 
own. Thoroughly conducted Mendelian Randomization 
studies and eventually randomized clinical trials are nec-
essary to prove the causality of the observed relation-
ships. However, observational biomarker studies may 
contribute importantly to the development of pathophy 
siological hypotheses [63].

Strengths and limitations
The main strength of our study is the prospective design, 
where all biomarkers were measured at baseline in non-
diseased study participants. All cases developed during 
the long follow-up of 14 years. In order to minimize the 
risk of including T2D cases who were undiagnosed at 
baseline in the incident T2D analyses, all type 2 diabetic 
cases who were diagnosed during the first year after the 
baseline survey were excluded. A second strength is that 
we investigated many biomarkers from different meta-
bolic pathways simultaneously. Noteworthy is also that 
we investigated T2D and CHD according to the same 
analysis approach in the same study population, which 
allows a direct comparison between the pathophysiologi-
cal processes which play a role for these two frequent 
and highly related diseases. Another strength is the large 
sample size of our study, which includes more than 500 
incident cases for each of the two investigated diseases. 
Last but not least, we developed a novel approach to 
investigate biomarker data from various pathways to get 
etiologic clues.

There are also some limitations that should be con-
sidered. This study has re-examined available biomarker 
data in their totality. This means that the biomarkers 
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were not necessarily selected for the reason that they are 
representative for a specific pathway. It also means that 
the pathway variables were defined based on different 
numbers of biomarkers, which we have statistically taken 
into account by calculation of an average biomarker vari-
able per pathway. Nevertheless, metabolic pathways with 
more biomarkers tend to be more representatively cov-
ered than pathways with only one or two biomarkers. 
For example, inclusion of additional biomarkers from 
the IGF/IGFBP system pathway such as IGF-1, IGF-2, 
IGFBP-1, and IGFBP-3 would have been helpful to better 
estimate the contribution of this system to the T2D and 
CVD risk. Moreover, the assignment to the pathophysi-
ologic pathways was ambiguous for some biomarkers, 
and several biomarkers might also have fitted to other 
pathway groups. We are also aware that the investigation 
of pathway variables is a simplifying approach. Therefore, 
we analyzed the data not only on the level of the path-
way but also on the level of the single biomarkers. Finally, 
the opposite inclusion direction of some biomarkers 
in the formation of the pathway variables for T2D and 
CHD limits the comparability between the two diseases 
for these pathways. In order to avoid erroneous conclu-
sions, these differences are described and discussed in 
the manuscript.

Conclusion
In our study, the biomarker-derived pathway variables 
collectively explained a substantially larger proportion of 
the risk of T2D compared to that of CHD. The ranking of 
the pathway variables differed between the two diseases: 
The IGF/IGFBP system pathway was by far most strongly 
associated with T2D (about 9% explained risk, inde-
pendent of age, sex, and all other pathway variables). For 
CHD, the myocardial injury and lipid related pathways 
were most strongly associated and both independently 
explained about 4% of the CHD risk. Our analysis of the 
single biomarkers showed that the age, sex, and survey 
adjusted associations of many biomarkers were similar in 
strength for T2D and CHD, but there were also impor-
tant differences. Lipoprotein (a) and NT-proBNP even 
demonstrated opposite effect directions. Our study thus 
adds to the evidence that there exists a common soil for 
both diseases, but also clearly shows that the common 
soil hypothesis has its limits. Our results help to bet-
ter understand the pathophysiology of the two diseases, 
with the ultimate goal of pointing out targets for lifestyle 
intervention and drug development to ideally prevent 
both T2D and CHD development.
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