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ABSTRACT

Background: The first large-scale genome-wide association study of gallbladder cancer (GBC) recently identified
and validated three susceptibility variants in the ABCB1 and ABCB4 genes for individuals of Indian descent. We
investigated whether these variants were also associated with GBC risk in Chileans, who show the highest in-
cidence of GBC worldwide, and in Europeans with a low GBC incidence.

Methods: This population-based study analysed genotype data from retrospective Chilean case-control (255
cases, 2042 controls) and prospective European cohort (108 cases, 181 controls) samples consistently with the
original publication.

Results: Our results confirmed the reported associations for Chileans with similar risk effects. Particularly strong
associations (per-allele odds ratios close to 2) were observed for Chileans with high Native American
(=Mapuche) ancestry. No associations were noticed for Europeans, but the statistical power was low.
Conclusion: Taking full advantage of genetic and ethnic differences in GBC risk may improve the efficiency of
current prevention programs.

1. Introduction

Each year, gallbladder cancer (GBC; ICD-10 diagnosis code C23)
kills more than 70,000 people worldwide (globocan.iarc.fr). Most GBC
diagnoses occur in low- and middle-income countries, and research into
this aggressive disease has been largely neglected. In some areas of high
GBC incidence, prophylactic cholecystectomy is offered to gallstone
patients to prevent GBC [1]. Accurate predictions of an individual’s
GBC risk would permit personalized indications for elective cholecys-
tectomy.

Mhatre et al. recently identified and validated three GBC suscept-
ibility variants in the ABCB1 and ABCB4 genes in a genome-wide as-
sociation study of the northern Indian population [2]. GBC shows
considerable differences in incidence by geography and ethnicity: it
represents the second most common cause of cancer-related death
among Chilean women, but is relatively rare among Europeans. We set
out to investigate the association between the three newly identified
variants and GBC risk in Chileans and Europeans.

The genome of modern Chileans is a genetic admixture between
Europeans, Africans, and Native Americans from two major indigenous
peoples: ancestral groups from southern Chile (e.g. Mapuche) and
Andean populations from the north (e.g. Aymara and Quechua). We
previously showed that each increase of 1 % in the proportion of
Mapuche ancestry translates into a 3.7 % increase in the GBC mortality
risk for Chileans [3].

2. Material and methods

The present multicentre, population-based, candidate variant asso-
ciation study included 255 GBC cases and 2042 controls from a Chilean
retrospective study, and 108 GBC cases and 181 controls from a con-
sortium of large European prospective cohorts. The genetic structure of
the investigated Chilean controls has been previously investigated by
Lorenzo Bermejo et al. [3] We analysed our data as consistently as
possible with the original publication by Mhatre et al. [2] Logistic

! These authors contributed equally to this work.

regression was applied to assess the association between GBC and the
three candidate variants. The models considered the GBC case-control
status as response variable, the count of high-risk alleles as main ex-
planatory variable, and the covariates age in intervals (<20 years,
20-29 years, 30-39 years, 40-49 years, 50-59 years and >60 years),
sex, and five principal components to adjust for population stratifica-
tion (see Supplementary Material for details on the principal compo-
nent analysis). Probability values were calculated from a trend score
test with one degree of freedom on the high-risk allele counts.

In addition to overall analyses, calculations for Chileans were stra-
tified by the quarters of estimated Mapuche proportions. For each
stratum, the genetic principal components were recalculated and the
associations between the three variants and GBC risk was separately
tested as indicated above. In order to test the interaction between the
three variants and Mapuche ancestry on GBC risk, the null model (HO)
considered the count of high-risk alleles, age in intervals, sex and in-
dividual continuous Mapuche proportions. The alternative model (H1)
additionally included an interaction term between Mapuche propor-
tions and high-risk allele counts for each susceptibility variant. A
likelihood ratio test was used to determine whether the interaction term
in H1 resulted in a statistically significant fit improvement compared
with HO.

The variance in GBC liability explained by the investigated single
nucleotide polymorphisms (SNP) was calculated based on a liability
threshold model [4]. Calculations relied on the estimated risk allele
frequencies and per-allele odds ratios, together with the lifetime risk of
GBC in Chile (0.017, globocan.iarc.fr). We refer to the Supplementary
Material for additional details on the study design, ethics committee
approval, genotyping, data quality control, data preparation and sen-
sitivity analyses (Supplementary Material).

3. Results

The Figure shows principal component analyses results from
Chilean and European genotype data (Fig. 1). For Chileans, the first



F. Boekstegers, et al.

Principal component 2

= o
S ., ® GBC cases IS)
A ‘ . Controls stratified by|

. ° Mapuche proportion
S ° 0% to 28% o~
< ® 29% to 35% e
S 36% to 41% o35
' ® 42% to 100% o'
a
€
Q
o
©
3 * g
S c s
& A I
. . . - .. L4 °
o | N
o L . . . <
-0.12 -0.04 0.04 0.12

Principal component 1

. ® GBC cases

® Controls

Cancer Epidemiology 65 (2020) 101643

Fig. 1. The first two principal components
from a principal component analysis of Chilean
(A) and European (B) genome-wide genotype
data.

Small dots represent individuals. Chilean con-
trols are coloured according to the estimated
proportions of Mapuche ancestry. Large dots in
Panel A represent the medians of the first two
eigenvalues for individuals with at least 90 %
Mapuche (M), Aymara (A), and European (E)
ancestry. In Panel B, large dots represent the
medians for each country: DE, Germany; EE,
Estonia; ES, Spain; FI, Finland; GB, Great
Britain; GR, Greece; IT, Italy; NL, Netherlands;
SC, Scandinavian countries (Denmark, Norway,
Sweden).

021
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principal component separated European and Native American an-
cestry, while the second principal component distinguished between
Mapuche and Aymara ancestry. The association between GBC risk and
large proportions of Mapuche ancestry was striking. For Europeans, the
first principal component reflected the north-south geographic axis and
the second principal component reflected the east-west axis.
The majority of the Chilean cases were women (76 %) and in
average 32 years younger than the predominantly male (59 %) Chilean
controls (Table 1). Estimated adjusted per-allele odds ratios (OR) and

Table 1

Demographic characteristics of the Chilean and European study populations.

risk allele frequencies (RAFs) for Chileans were similar to the reported
Indian estimates: OR = 1.38 and RAF = 0.79 for rs1558375, OR = 1.43
and RAF = 0.82 for rs4148808, and OR = 1.47 and RAF = 0.82 for
rs17209837 (Table 2). Chilean women showed higher per-allele ORs
than Chilean men (OR = 1.53 for rs1558375, OR = 1.47 for rs4148808
and OR = 1.53 for rs17209837), but gender-differences did not reach
statistical significance (overlapping 95 % confidence intervals). Strati-
fied analyses by the quarters of Mapuche proportions revealed parti-
cularly strong associations (OR 1.70 or higher) for Chileans with over

Chileans

Cases
(n = 255)

Controls
(n = 2042)

Gender: males (%) / females (%)

61 (24 %) / 194 (76 %)

1202 (59 %) / 840 (41 %)

Age (years): median / 5 % quantile / 95 % quantile 61/38/78 29/21/70
Mapuche proportion (%): median / 5 % quantile / 95 % quantile 41 /22 /66 36/15/52
European proportion (%): median / 5 % quantile / 95 % quantile 49 /20 / 64 49 /24 / 64
Chileans (43%-100% Mapuche proportion) (n =111) (n = 478)

Gender: males (%) / females (%)

27 (24 %) / 84 (76 %)

351 (73 %) / 127 (27 %)

Age (years): median / 5 % quantile / 95 % quantile 60/35/79 30/22/73
Mapuche proportion (%): median / 5 % quantile / 95 % quantile 48 / 42 / 93 46 / 42 / 67
European proportion (%): median / 5 % quantile / 95 % quantile 44 /0/53 46 / 26 / 52
Chileans (36%-42% Mapuche proportion) (n = 63) (n = 554)

Gender: males (%) / females (%)

17 (27 %) / 46 (73 %)

343 (62 %) / 211 (38 %)

Age (years): median / 5 % quantile / 95 % quantile 61/38/74 30/22/72
Mapuche proportion (%): median / 5 % quantile / 95 % quantile 40 / 36 / 42 39 /36 /42
European (%): median / 5 % quantile / 95 % quantile 51/41/57 51/39/58
Chileans (29%-35% Mapuche proportion) (n = 54) (n = 451)

Gender: males (%) / females (%)

9 (17 %) / 45 (83 %)

256 (57 %) / 195 (43 %)

Age (years): median / 5 % quantile / 95 % quantile 60 /38/76 28/21/70
Mapuche proportion (%): median / 5 % quantile / 95 % quantile 34/30/36 33/30/36
European proportion (%): median / 5 % quantile / 95 % quantile 56 /37 /63 53/38/63
Chileans (0%-28% Mapuche proportion) (n =27) (n = 559)

Gender: males (%) / females (%)

8 (30 %) / 19 (70 %)

252 (45 %) / 307 (55 %)

Age (years): median / 5 % quantile / 95 % quantile 65 /42 /78 26 /20 / 56
Mapuche proportion (%): median / 5 % quantile / 95 % quantile 24/0/28 22/05/29
European proportion (%): median / 5 % quantile / 95 % quantile 63/0/87 46 /14 /78
Europeans (n =108) (n =181)

Gender: males (%) / females (%)
Age (years): median / 5 % quantile / 95 % quantile

22 (20 %) / 86 (80 %)
69 /54 /82

64 (35 %) / 117 (65 %)
70 /55 /82




F. Boekstegers, et al.

Table 2
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Association results for the three recently identified common GBC risk variants in Chileans’ and Europeans.

Population Mapuche proportion Locus SNP ID Cases Controls RAF OR* 95 % CI Trend p-value
Chileans 0%-100% ABCB4 rs1558375 255 2042 0.79 1.38 1.05 1.83 0.02
ABCB4 rs4148808 0.82 1.43 1.07 1.92 0.02
ABCB1 rs17209837 0.82 1.47 1.09 1.97 0.01
Chileans 42%-100% ABCB4 rs1558375 111 478 0.76 1.70 1.08 2.66 0.02
ABCB4 rs4148808 0.78 1.95 1.21 3.13 0.006
ABCBI1 rs17209837 0.78 1.95 1.21 3.13 0.006
Chileans 36%-41% ABCB4 rs1558375 63 554 0.80 1.59 0.92 2.74 0.10
ABCB4 rs4148808 0.83 1.47 0.83 2.59 0.18
ABCBI1 rs17209837 0.84 1.41 0.78 2.53 0.26
Chileans 29%-35% ABCB4 rs1558375 54 451 0.80 1.00 0.52 1.92 0.99
ABCB4 rs4148808 0.84 0.99 0.51 1.92 0.99
ABCBI1 rs17209837 0.84 1.00 0.52 1.94 0.99
Chileans 0%-28% ABCB4 rs1558375 27 559 0.78 0.85 0.33 2.19 0.73
ABCB4 rs4148808 0.84 0.82 0.29 2.31 0.71
ABCBI1 rs17209837 0.84 1.04 0.37 2.89 0.95
Europeans - ABCB4 rs1558375 108 181 0.84 1.06 0.65 1.74 0.80
ABCB4 rs4148808 0.87 1.32 0.78 2.24 0.31
ABCBI1 rs17209837 0.86 1.27 0.74 2.16 0.39

SNP = Single nucleotide polymorphism, ID = identification, RAF = risk allele frequency (risk allele = Adenin), OR = per-allele odds ratio adjusted for age, sex and

first five principal components, CI = confidence interval.

™ Chilean analyses are also stratified by the estimated proportion of Mapuche ancestry, with each group containing one quarter of the Chilean individuals.
* Per-allele odds ratios adjusted for age, sex and the first five genetic principal components. Bold type denotes associated 95 % confidence intervals that do not

include 1.

42 % Mapuche ancestry. By contrast, no association was noticed for
Chileans with less than 35 % Mapuche ancestry. The effect on GBC risk
of interactions between continuous Mapuche proportions and the var-
iants rs1558375 and rs4148808 attained statistical significance (p-va-
lues from likelihood ratio tests equal to 0.02 and 0.04, respectively). We
did not find genetic associations for Europeans, but the statistical power
was only 34 % (RAF = 0.80, reported per-allele OR in India, a = 0.05,
trend test) [5]. The UK Biobank includes 22 additional GBC cases
among 337,000 unrelated individuals of British ancestry (ukbio-
bank.ac.uk), but combination of the available summary statistics had
practically no effect on the results (Supporting Table S1).

4. Discussion

In their genome-wide association study, Mhatre et al. investigated
GBC cases and controls recruited in the north and northeast of India,
where the incidence of GBC is 2-8 times higher than in other parts of
the country. The validation of the three strong GBC risk associations in
Chile, the country with the highest incidence of GBC worldwide, a
different genetic background and much higher rates of gallstone disease
(86 % for the Chilean compared with 33 % for the Indian GBC patients)
is non-trivial. By way of illustration, assuming that heritability of GBC
accounts for 23 % of the risk, the variance in GBC liability explained by
the variant rs4148808 in Chileans was 0.4-1.6 %. The present study
also suggests that individual proportions of Mapuche ancestry modulate
the risk effects conferred by the three GBC susceptibility variants. No
genetic association was found in the European cohort, probably due to
the low statistical power, but the estimated ORs for Europeans and also
the decrease in association effect sizes with increasing proportions of
European ancestry suggest weaker effects, if any, of the identified GBC
risk variants in individuals of European descent. It is important to
consider that GBC is a rare disease in most European countries. To put
numbers into context, the present results for Europeans rely on 108

GBC cases in comparison with the 22 cases of white British ancestry
among the 500,000 participants in the UK Biobank. Although the sta-
tistical power for Europeans was small, we consider that the present
findings may motivate collaborative research to raise the available
sample sizes.

The function of the ABCB4 gene is to translocate phosphatidylcho-
line (PC) from the inner to the outer leaflet of the canalicular membrane
of the hepatocyte [6]. The resulting phospholipids become available for
excretion into bile, where they form - together with bile salts and
ABCG5/G8 driven cholesterols — mixed micelles. Individuals with an
ABCB4 deficiency suffer severe liver diseases like progressive familial
intrahepatic cholestasis type 3 and knockout of the ABCB4 gene in mice
results in hepatic inflammation [7,8]. The ABCB4 gene has also been
linked to gallstone disease [9]. When too little PC is translocated the
solubility of cholesterol in mixed micelles is reduced. Cholesterol-en-
riched micelles may cause precipitation of cholesterol crystals that
subsequently build gallstones [10]. Accordingly, two ABCB4 mutations
were found to be significantly associated with gallstones in Icelandic
patients, indicating a potential mechanistic link between gallstone
disease and GBC risk. The ABCBI gene is an efficient ATP-dependent
efflux pump regulating the metabolism of anticancer drugs and other
xenobiotics [11]. Some studies detected associations between ABCB1
polymorphisms and blood lipids, but a meta-analysis evaluating po-
tential determinants for gallstone formation found no significant asso-
ciation between blood lipids and incident gallstones [12-14].

In order to reduce the incidence of GBC, the Chilean government
financially supports prophylactic cholecystectomy for gallstone patients
aged between 35 and 49 years [15]. Persons with “at least one Mapuche
surname” are considered at high risk of GBC. In the present investiga-
tion, individual proportions of Mapuche ancestry were estimated re-
lying on genome-wide genotype data, which provide more accurate
quantifications of ethnicity than family names. For example, the Ma-
puche proportions of investigated Chileans without Mapuche surnames
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varied from 0 % to 100 %. The ability to predict individual GBC risk
accurately would eventually translate into a reduction in the number of
unnecessary cholecystectomies while simultaneously forecasting GBC
development with high sensitivity.

Unravelling the links between genetic ancestry and GBC develop-
ment, together with taking full advantage of the identified risk differ-
ences by type and magnitude of Native American ancestry, may im-
prove the efficiency of current GBC prevention policies. In contrast to
other hepatobiliary cancers, cholecystectomy can be offered to persons
at high risk of GBC. Low- and middle-income countries with high GBC
incidences and limited financial and health resources would particu-
larly benefit from accurate GBC risk prediction based on established
risk factors (gallstones, overweight, ethnicity) and newly identified risk
biomarkers.
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