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Abstract

Genes of the Notch signaling pathway are expressed in different cell types and organs at 

different time points during embryonic development and adulthood. The Notch ligand Delta-

like 1 (DLL1) controls the decision between endocrine and exocrine fates of multipotent 

progenitors in the developing pancreas, and loss of Dll1 leads to premature endocrine 

differentiation. However, the role of Delta-Notch signaling in adult tissue homeostasis is not 

well understood. Here, we describe the spatial expression pattern of Notch pathway 

components in adult murine pancreatic islets and show that DLL1 and -4 are specifically 

expressed in β-cells, whereas JAGGED1 is expressed in α-cells. We show that mice lacking 

both DLL1 and DLL4 in adult -cells display improved glucose tolerance, increased glucose-

stimulated insulin secretion and hyperglucagonemia. In contrast, overexpression of the 

intracellular domain of DLL1 in adult murine pancreatic β-cells results in impaired glucose 

tolerance and reduced insulin secretion, both in vitro and in vivo. These results suggest that 

NOTCH ligands play specific roles in the adult pancreas and highlight a novel function of the 

Delta-Notch pathway in β-cell insulin secretion.
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ABBREVIATIONS
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DICD Delta intracellular domain

DLL1, -3, -4 Delta-like 1, -3, -4
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EPAC2 Exchange protein directly activated by cAMP 2

GSIS Glucose-stimulated insulin secretion

Jag1, -2 Jagged1, -2

Pdx1 Pancreatic and duodenal homeobox 1

Diabetes mellitus is a major metabolic disease with over 400 million people diagnosed and a 

large number of undiagnosed adults (1). Genome-wide association studies (GWAS) have 

implicated a large number of genes in the pathology of this disorder (2). Among these, the 

Delta/Notch (D/N) pathway components Dll4 and Notch2 were found to be associated with 

type-2 diabetes (3), sparking investigation into their roles in glucose metabolism. The highly 

conserved D/N signaling pathway is crucial for embryonic development in a wide range of 

different tissues (4). Although Notch activity is required during pancreatic development (5), 

some D/N components have also been reported to be active during adulthood. D/N signaling 

mediates cell-cycle regulation via transmembrane-bound ligands (DLL1, -3, -4/JAGGED1, -

2) and receptors (NOTCH1-4). Studies have shown that DLL1 and DLL4 regulate tissue 

renewal and maintain intestinal progenitor cells (6). Furthermore, NOTCH/NEUROG3 

signaling is active in adult rodent and human pancreatic islets (7). Two recent studies gave 

new insights into the regulation of β-cell function by NOTCH1 and DLL4 in adult mouse 

islets (8,9). Whereas NOTCH1 is reported to regulate β-cell maturation and proliferation (8), 

DLL4 is associated with regulation of islet function (9). To date, however, no comprehensive 

analysis of D/N pathway components has been performed in the adult pancreas.

Ligand binding to Notch receptors leads to proteolytic cleavages that in turn release the 

Notch-intracellular domain (NICD), which enters the nucleus and acts with cofactors as a 
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transcriptional regulator (10,11). Interestingly, the ligands also undergo proteolytic cleavage 

and release their intracellular domains, which can also enter the nucleus (12,13). However, 

their precise function is poorly understood (14,15). Moreover, the location and possible 

function of other D/N pathway components in the adult pancreas has yet to be determined. 

Considering that dysfunctional pancreatic β-cells are a major characteristic of type-2 diabetes 

(16), detailed studies of the D/N signaling pathway are required.

Here, we provide a broad expression analysis of selected D/N-pathway components in the 

mouse adult pancreas and report the presence of cell-type specific protein expression. 

Furthermore, we show that ligands DLL1 and DLL4 are active and play a role in β-cell 

insulin secretion by utilizing conditional β-cell-specific mouse models. Finally, we report the 

presence of the DLL1 intracellular domain (DICD) in adult β-cells and describe a possible 

function.

Research Design and Methods

Generation of transgenic mice. Mice carrying floxed alleles for both Dll1 (17) and Dll4 

(18) (background Sv/129.C57BL/6 x C57BL/6J) were intercrossed with Pdx1-CreERT (19) 

(C3HeB/FeJ) mice. Cre+ heterozygous F1 offspring were intercrossed to acquire 

homozygous animals for Dll1, Dll4 or both in F2. Homozygous mice with the same genetic 

background (Dll1+/+Dll4+/+, Dll1lox/lox Dll4+/+, Dll1+/+ Dll4lox/lox or Dll1lox/loxDll4lox/lox) were 

used to create -cell-specific homozygous lines lacking either Dll1 (β-DLL1), Dll4 (β-DLL4) 

or both simultaneously (β-D1D4). Cre+ wild-type littermates were used as controls.

To generate a mouse model with overexpression of the DICD, we used gene targeting into the 

endogenous Rosa26 locus by recombinase mediated cassette exchange (RMCE) (20). The 

cDNA sequence of DICD and the coding sequence of the fluorescent reporter IRES-VENUS 

cassette were cloned independently from each other into two TOPO TA Vectors (pENTRY 
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Clones). Subsequently, DICD and the reporter cassette were joined via homologue end-

joining into a target vector (pEx-CAG-ROSA26), thus generating the pRMCE-DICD-IRES-

VENUS donor vector (ESM Fig. 1A). To enable RMCE in vivo, the ΦC31/attP integrase-

mediated recombination approach (21) was used in IDG3.2 ROSA26 acceptor embryonic 

stem cells (ES), which have a mixed C57BL6/J-129S6/SvEvTac genetic background (22). To 

avoid influence of the neomycin resistance cassette on genes near the target locus Rosa26, the 

pgk promoter and the neo-bpA cassette were removed by flippase-mediated removal. 

Successfully recombined ES cells were selected and used for blastocyst injection. Chimeric 

mice were mated with C57BL/6J wild-type mice to obtain germline transmission. The new 

mouse line was named Rosa26-DICD and outcrossed to C3HFeB/J wild-type mice for 5 

generations.

The expression of the DICD-IRES-VENUS construct was driven by the Cre-mediated 

excision of the floxed puro-polyA stop cassette (ESM Fig. 1B). To specifically induce DICD 

expression in adult β-cells, Rosa26-DICD mice were intercrossed with Pdx1-CreERT mice 

(19) and maintained on a C3HeB/FeJ background.

For all models, Cre-dependent recombination was activated in weaned offspring by feeding 

Tamoxifen®-containing chow (Genobius, 400mg/kg) for 4 weeks. Genotyping was done by 

PCR with specific primers, as listed in ESM Table 1. All experimental procedures were 

performed in accordance with German and European Union guidelines. All mice were housed 

in specific pathogen-free conditions with a 12-hour light/dark cycle and free access to food 

(standard chow diet, Altromin, 1328 – Hybridpellet) and water.

Tissue preparation and immunohistochemistry. Mice were sacrificed by cervical 

dislocation and pancreata were excised, fixed in 4% PFA-PBS for 20 minutes and then 

washed in PBS for 5 minutes followed by serial incubations in 9% and 15% sucrose solutions 
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for 1 hour each and overnight in 30% solution. Thereafter, pancreatic tissue was embedded in 

O.C.T. solution (Thermo Fisher Scientific) and frozen. 9-µm sections were cut using a Leica 

CM1850 Cryostat (Leica Microsystems) and 3 sections were placed each on a SuperFrost® 

Plus slide (Menzel-Gläser), maintaining >100 µm of distance between each slide. All 

antibodies used are described in ESM Tables 2 and 3, respectively. Sections were blocked 

with 5% BSA in PBST and subsequently incubated with appropriate primary antibodies 

overnight at 4°C. After washing, slides were incubated in suitable secondary antibodies at 

room temperature for 90 minutes. Finally, sections were washed and covered with 

Vectashield® mounting medium (Vector Laboratories). Whole-slide images were acquired 

using a Nanozoomer (Hamamatsu) and analyzed using NDP.view 2 software (Hamamatsu). 

Cell counter application on ImageJ software was used for counting and quantification of 

insulin, glucagon, Ki-67 and MAFB positive cells. A minimum of 120 islets or 3000 cells 

were counted per genotype. Final images were acquired using a Leica TCS SP5 confocal 

microscope.

Intraperitoneal glucose tolerance test (ipGTT). Mice were fasted overnight for 16 hours. 

Weight and basal blood levels were measured before an intraperitoneal administration of 

2g/kg glucose (Braun). Blood glucose levels were measured at 5, 15, 30, 60 and 120 minutes 

post glucose administration and plasma was collected at 0, 15 and 30 minutes.

In vitro stimulatory studies and immunocytochemistry. Islets were isolated from mice and 

maintained as described previously (23). Isolated islets were incubated with 1.5 mM glucose 

in Krebs-Ringer buffer for 2 hours. Next, islets (10/mouse/experiment) were stimulated for 2 

hours at 37°C with different glucose concentrations along with 2.5 µM Forskolin (Sigma-

Aldrich), 10 µM Norepinephrine (Sigma-Aldrich), 10 µM ESI-09 (Biozol), 30 mM KCl 

(Sigma-Aldrich) and 100 nM Exendin-4 (Sigma-Aldrich) in combination with 16.7 mM 

glucose. To assess the whole-islet protein content, unstimulated islets (10/mouse) were taken 
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and dissolved in acid ethanol. For immunocytochemistry, islets were dispersed in 0.05% 

Trypsin-EDTA (Sigma-Aldrich) for 5 minutes and allowed to settle on slides coated with 

Cell Tak (Corning) in serum-free medium for one hour. Cells were then fixed in 4% PFA-

PBS for 10 minutes at RT and permeabilized in 0.3% Triton-X-100 for 15 minutes. Next, 

cells were blocked in 10% horse serum and incubated with primary antibodies for 2 hours 

and with secondary antibodies for 45 minutes. Images were acquired using Axio-Imager M.2 

microscope (Zeiss) and were analyzed (~3000 cells per mouse) with QuPath (24) software v 

0.1.2.

RNA Isolation, cDNA synthesis and quantitative real time PCR. Islet RNA isolation was 

performed with the RNeasy® Plus Micro Kit (QIAGEN) according to the manufacturer’s 

instructions. qRT-PCR was used for amplification of cDNA samples, using the LightCycler® 

480 DNA SYBR Green I Master (Roche) with primers listed in ESM Table 1. Crossing point 

(Cp) values were obtained with the automatic Cp analysis of the LightCycler® 480 software 

(Roche) using the second derivative maximum method. All subsequent data analysis was 

performed in Microsoft Excel. The results were determined using the equations outlined in 

the geNorm® 3.5 user manual, which are mathematically identical to the 2-ΔΔCp method 

(25).

Hormone assays. Insulin and glucagon obtained from in vitro stimulatory studies and plasma 

samples were analyzed using Mercodia Mouse Insulin ELISA kit and Mouse Glucagon 

ELISA kit according to the manufacturer’s instructions.

Statistics. Statistical analysis was achieved using GraphPad Prism software and applied using 

heteroscedastic two-tailed student t test, one-way or two-way ANOVA with Bonferroni post 

hoc test for multiple comparisons. A value of p<0.05 was considered significant. Unless 

stated otherwise, all results are described as mean±SD.
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Data and Resource Availability. All data generated or analyzed during the current study are 

included in the published article and online supplementary data.

Results

Expression of Delta/Notch pathway components in the adult murine pancreas. To 

analyze the expression of Notch receptors and ligands in adult pancreatic islets, we employed 

qRT-PCR analysis in wild-type C3HeB/FeJ mice. We found that the Notch1, Notch2 genes, 

Notch ligands genes Jag2 and Dll4 as well as Notch target genes Hes1 and Hes6 were 

strongly expressed and at comparable levels, followed by the Notch ligand genes Jag1 and 

Dll1, (Fig. 1A). Minimal expression was detected for Notch3 and Notch4, as well as for the 

target genes Hey1 and Hey2 (Fig. 1A), indicating differential expression of D/N components 

in adult islets. To visualize and quantify the islet cell-type specific expression pattern, we 

used ligand- and receptor-specific antibodies along with markers for α-, β- and δ-cells, and 

performed co-immunostainings on pancreatic sections and on dispersed islet cell types. 

Whereas, NOTCH1 expression was found in most α-, β- and δ-cells, NOTCH2 and NOTCH4 

showed limited expression, with a small population (8%) of δ-cells expressing the former 

while that of (15%) β-cells expressing the latter (Fig. 1B, ESM Fig. 2). Interestingly, 

NOTCH3 expression was not detected in any islet cell type. (Fig. 1B, ESM Fig. 2). Similarly, 

JAGGED2 that although has high mRNA expression, was not detectable in the islets, while 

that of JAGGED1 was abundantly found in islets, with ~70% of α-cells expressing the ligand 

(Fig. 2, ESM Fig. 2). Conversely, DLL1 and DLL4 were found in most β-cells (~90%), while 

limited expression in α- and δ-cells (Fig. 2, ESM Fig. 2). These results demonstrate that D/N 

pathway components have a broad and heterogeneous expression pattern in adult mouse 
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islets, such as DLL1 and 4 expression in β-cells, strongly indicating functional relevance in a 

cell-type specific manner.

Dll1 and Dll4 are essential for normal glucose homeostasis. Since in the adult mouse 

pancreas DLL1 and DLL4 are predominantly expressed in β-cells, we hypothesized that 

active Notch signaling either maintains β-cell homeostasis or is important for β-cell function. 

To test this idea, we generated different β-cell-specific homozygous knockout models for 

Dll1, Dll4 and both genes simultaneously (see ESM Fig. 3A,B for breeding schemes). Since 

female mice are often protected from a diabetic phenotype (26) and for better comparison 

with other studies (8,9), only male mice were used in this study. After tamoxifen treatment, 

Cre expression was found specifically in islets (ESM Fig.3C) along with substantial decrease 

in Dll1 and Dll4 mRNA (ESM Fig. 3D), as well as a comparable decrease in protein 

expression (ESM Fig. 3E). The three mutant mouse lines (β-DLL1, β-DLL4 and β-D1D4, 

respectively) and control mice were investigated for body weight and blood glucose levels in 

an ad libitum fed state. β-DLL1 mice showed significantly increased blood glucose levels as 

compared to control mice (Fig. 3B). Body weight and blood glucose levels were not altered 

in β-DLL4 mice (Fig. 3A,B). However, knocking out both ligands in β-D1D4 mice resulted 

in significantly reduced blood glucose levels but unchanged body weight as compared to 

controls (Fig. 3B).

Due to differences in blood glucose levels between the groups, we wondered whether β-cell 

function was affected, especially in β-D1D4 mice. Therefore, we performed ipGTTs to 

investigate glucose disposal. Compared to controls, β-DLL1 mice showed a significant but 

only mild decrease in glucose tolerance accompanied with a significant reduction in insulin 

secretion (ESM Fig. 4A), whereas β-DLL4 mice displayed a significant albeit modest 

increase in glucose tolerance with no major changes in insulin secretion (ESM Fig. 4A). In β-

D1D4 mice, we noticed a clear improvement in glucose tolerance (Fig. 3C) resulting in a 

Page 9 of 41 Diabetes



twofold increase in acute insulin response within the first 15 minutes (Fig. 3D,E). Ad libitum 

fed plasma insulin levels were unchanged in β-D1D4 mice compared to controls (Fig. 3F), as 

were the mRNA levels in isolated islets of both insulin gene isoforms (Fig. 3G), which was 

similar to the observations made for -DLL1 and -DLL4 islets (ESM Fig. 4B).

To confirm whether loss of DLL1 and DLL4 leads to abnormal insulin secretion, we 

analyzed β-D1D4 mice in a glucose-stimulated insulin secretion assay using isolated islets. 

Compared to controls, basal insulin secretion at low glucose concentration (2.8 mM) was not 

altered. However, at high glucose concentration (16.7 mM), we observed a 4-fold increase in 

insulin secretion (Fig. 3H). This was further potentiated upon stimulation with forskolin. By 

adding norepinephrine, which hyperpolarizes the cell and inhibits adenylyl cyclase (27), the 

increase in insulin secretion under high glucose conditions was normalized. Also the addition 

of ESI-0, which inhibits EPAC2, a downstream target of adenylyl cyclase (28), normalized 

insulin secretion under high glucose conditions (Fig. 3H). Therefore, the concomitant loss of 

DLL1 and DLL4 in adult pancreatic β-cells leads to enhanced glucose clearance due to an 

increase in insulin secretion.

Loss of Dll1 and Dll4 leads to overproduction of α-cells and hyperglucagonemia. To 

understand whether lack of Delta ligands leads to changes in the islet transcriptome, we 

carried out qRT-PCR to analyze gene expression of D/N pathway intermediates. Compared to 

control islets, the expression of Notch and Jagged components in β-DLL1 and β-DLL4 islets 

was largely unaffected with the exception of Jag2 in islets of β-DLL1 mice (ESM Fig. 5A,B). 

Interestingly, β-D1D4 islets showed an upregulation of the α-cell-specific ligand Jag1, as 

well as a significant increase in the expression of Notch1, 2 and 4, and the downstream target 

Hes1 (ESM Fig. 5C). Next, immunohistochemical analysis of insulin and glucagon double-

stained pancreas did not reveal major differences in glucagon- and insulin-positive cells in β-
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DLL1 and β-DLL4 mutants compared to control mice (Fig. 4A-C, ESM Fig. 5D). However, 

significantly increased glucagon-positive staining was observed within β-D1D4 islets (Fig. 

4D, ESM Fig. 5E). Consistent with this observation, no change was found in the insulin 

content of freshly isolated islets between the groups (Fig. 4E), whereas there was a significant 

increase in glucagon protein content in islets (Fig. 4F) and plasma (ESM Fig. 5F) from β-

D1D4 mutants as compared to controls. To determine whether an increase in glucagon-

positive α-cells accounted for hyperglucagonemia in β-D1D4 mice, we stained pancreatic 

sections with MAFB and glucagon as markers of mature α-cells. We observed a significant 

increase in both MAFB-positive cells and Mafb gene expression in β-D1D4 mice (Fig. 4G-I). 

Moreover, we found an increase in Ki-67 expression in glucagon-positive cells as well as 

increased glucagon gene expression in islets of β-D1D4 mice, indicating higher proliferation 

of α-cells in these mice compared to their wild-type littermates (Fig 4. J-L). 

Next, we examined whether the increase in glucagon-positive α-cells in β-D1D4 mice was of 

β-cell origin, since the knockout of Delta ligand genes is specific to these cells due to CRE 

expression driven by the Pdx1 promoter. Therefore, we stained pancreatic sections of mice 

for CRE and glucagon. As seen in Fig. 4M, we found CRE expression in the cytoplasm of β-

cells in both groups before tamoxifen treatment (upper panel) and nuclear expression 2 weeks 

after treatment (lower panel) in glucagon-negative cells. Additionally, we did not find PDX1-

positive cells expressing glucagon in β-D1D4 mice after tamoxifen treatment (ESM Fig. 5G). 

Taken together, the -cell-specific deletion of both Dll1 and Dll4 in adult mice suggests 

autocrine effects causing increased glucose disposal due to increased insulin secretion and 

paracrine effects on neighboring non--cells.

The Delta-like 1 intracellular domain is required for normal glucose homeostasis
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Previously, it was shown in Drosophila that Delta ligands lacking the intracellular domain 

were able to bind NOTCH but not to activate the pathway, strongly indicating an important 

functional role (29). Furthermore, in vitro studies showed that the DICD regulates nuclear 

signaling by binding to NICD (30), whereas in the cytoplasm it interacts with components of 

the TGFβ/activin cascade (31). To analyze the role of the DICD in the adult pancreas, we 

established a mouse model that conditionally overexpresses the DICD (referred to here as -

DICD) (ESM Fig. 1A and B). To search for possible influences of DICD overexpression on 

embryonic development, Rosa26-DICD mice were mated to EIIa-cre transgenic mice (32). In 

agreement with previous findings (14), analysis of homozygous F2 animals during embryonic 

development did not reveal any obvious phenotype (data not shown). Successful 

recombination and DICD overexpression after tamoxifen induction was confirmed on the 

DNA, mRNA and protein level (ESM Fig. 1C-E).

We analyzed male -DICD mice in vivo and in vitro at 8 weeks of age. The ad libitum fed 

bodyweight of β-DICD mice was significantly reduced and blood glucose levels were slightly 

but significantly increased (Fig. 5A and B) compared to Cre+ controls. During an ipGTT, β-

DICD mice showed a significant delay in glucose disposal compared to controls (Fig. 5C). 

Accordingly, a significantly lower amount of secreted insulin was observed (Fig. 5D). 

However, -DICD mice showed no significant change in ad libitum fed plasma insulin levels 

(Fig. 5E) or insulin gene expression in isolated islets (Fig. 5F). GSIS analysis in isolated 

islets under low-glucose conditions revealed no difference between -DICD and control 

mice, and only a slight but non-significant reduction in insulin secretion under high-glucose 

conditions. However, additional stimulation with exendin-4 and forskolin revealed that 

significantly less insulin was secreted by -DICD, again hinting at a possible connection of 

DLL1 with adenylyl cyclase (Fig. 5G).
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Reduced insulin secretion in β-DICD mice is independent of islet architecture

Next, we wondered whether overexpression of DICD has any effect on islet morphology, β-

cell proliferation and maturity. Comparison of islets from 8-week-old male β-DICD mice 

with Cre+ controls revealed no obvious differences in their architecture and expression of 

insulin and glucagon (Fig. 6A). Accordingly, insulin and glucagon content per islet was 

comparable between the groups (Fig. 6B and C). Furthermore, no change in plasma glucagon 

was found in β-DICD islets (Fig. 6D). In agreement with this finding and the reported 

transcriptional activity of DICD (30), relative gene expression levels of Notch1-4, Dll4 and 

Jag1-2 were unaltered in -DICD compared to control islets (Fig. 6E).

Previously, Ctgf (connective tissue growth factor), an intermediate of the TGF-β pathway, 

was found to be associated with DICD (33). Interestingly, although we found a strong 

downregulation of Ctgf in β-DICD islets, other genes with associated TGF-β signaling 

(Smad2, Smad7 and Mtor) were not altered compared to control islets (Fig. 6F). In summary, 

the -cell specific overexpression of DICD does not affect islet morphology, islet hormonal 

content and gene expression of D/N pathway intermediates, but results in a specific insulin 

secretion defect.

Discussion

In this study, we confirmed the presence of several mediators of the D/N pathway and several 

features of its components in adult pancreatic islets. Whereas NOTCH2 and 4 are expressed 

in some islet cells that in turn indicates heterogeneity in the expression of these proteins, 

NOTCH3 seems to be expressed in the vasculature, indicating a role in maintenance of blood 

vessel integrity (34). Consistent with a recent study (8), NOTCH1 was found within the 

whole adult pancreas, including the presence of activated NOTCH1 within islet nuclei. 

Moreover, JAGGED1 is specifically expressed in α-cells, indicating the presence of an active 
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NOTCH-JAGGED signaling pathway. Finally, DLL1 and DLL4 are highly expressed in β-

cells, indicating divergence in the expression pattern of Notch ligands in the adult pancreas 

and therefore strongly suggesting a novel functional role. In light of these results, we 

employed β-cell specific knockouts of DLL1 and DLL4 to examine the potential roles of 

Delta ligands in the homeostasis of adult islets and provide further evidence of bi-directional 

D/N signaling by demonstrating importance of DICD in β-cell function.

A recent study demonstrated that loss of Notch1 in adult β-cells protects mice from 

developing glucose intolerance as a consequence of diet-induced obesity (8). Therefore, loss 

of NOTCH1 signaling in adult mouse β-cells leads to a better metabolic profile (8), a feature 

similar to concomitant loss of Dll1 and Dll4 shown in the current study. However, -DLL1 

mice displayed mild hyperglycemia and impaired glucose tolerance without any observable 

changes in β- and α-cell mass, and although -DLL4 mice displayed normoglycemia, in vivo 

glucose tolerance in -DLL4 mice was mildly but significantly improved. This was 

accentuated by simultaneous loss of both Delta ligands, where a dramatic improvement in 

glucose tolerance was observed that mimicked loss of NOTCH1 in β-cells (8). The 

phenotypic discrepancy between -DLL1 and -DLL4 mice is rather puzzling but we 

speculate that the differences arise due to divergence in downstream targets upon Notch 

receptor activation by either DLL1 or DLL4, which are well documented across species and 

different organ systems (35-37). Moreover, NOTCH1 has been shown to have intrinsic 

selectivity for DLL4 over DLL1 in vitro (38). However, NOTCH1 activation by either of the 

Delta ligands is also organ and cell type specific (6,39), and in the case of murine β-cells, loss 

of NOTCH1 signaling phenotypically mimics loss of DLL4 somewhat, thereby presenting 

DLL4 as the major D/N player in the context of adult β-cell homeostasis. 
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Interestingly, a recent study utilized anti-DLL4 antibody administration in mice and reported 

an increase in insulin production by blocking the DLL4 protein, possibly as a consequence of 

increased β-cell proliferation (9). Moreover, upregulation of NOTCH1 in β-cells leads to 

increased proliferation of these cells (8). Therefore, it seems that the two scenarios, loss of 

Delta ligands and loss of Notch receptors, do not display entirely similar phenotypes. This 

indicates that despite loss of Delta ligands, Notch receptor signaling may still be activated. 

Billiard and colleagues (9) did not further investigate the state of Notch, but we observed an 

increase in transcripts of Notch receptors in -D1D4 mice, including that of the downstream 

target Hes1. Hence, it is likely that Notch signaling is activated by other ligands from 

neighboring cells when expressions of Delta ligands are downregulated. Here, we showed 

that JAG1 is specifically expressed in α-cells. We speculate that JAG1 activates Notch 

signaling in islets of -D1D4 mice. Indeed, we observed an increase in α-cell proliferation 

and glucagon levels, along with increased expression of the α-cell maturity marker Mafb and 

of Jag1. This, however, will require molecular investigation for further confirmation.

Interestingly, -DLL1 mice, in which also the DICD is deleted, display mildly increased ad 

libitum fed blood glucose levels. However, overexpression of DICD in mice also led to 

higher blood glucose levels. This discrepancy is likely explained by an effect of the DICD on 

insulin secretion independently of the D/N pathway, whereas knocking down Dll1 likely 

dampens paracrine signaling with regards to DLL1-NOTCH in the β-cells. Therefore, effects 

associated with overexpression of the DICD must arise from within the cell. In this regard, a 

study on DICD revealed an association with the TGFβ pathway and connective tissue growth 

factor (Ctgf) (33), which has been shown to be required for β-cell maturity and proliferation 

in islets (40,41). In fact, we observed a significant down regulation of Ctgf in β-DICD mice. 

However, the study by Riley et al. (41) was performed after partial β-cell destruction and 
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under non-stimulatory conditions, and no changes in maturity and proliferation of β-cells 

were observed. 

Previously, studies have confirmed binding of DLL1 and DLL4 intracellular domains to PDZ 

domain-containing MAGUK proteins such as MAGI1 and 2 (12,42,43). Interestingly, both 

MAGI1 and 2 bind to RAPGEF2, a guanine nucleotide exchange factor for the small GTPase 

RAP1A (44,45). Furthermore, components of the GEF family are critical for KATP- and Ca2+ 

channel-dependent insulin secretion (46), and RAP1A interaction with EPAC2 (RAPGEF4) 

(47) is essential for first phase insulin secretion (48). Considering that EPAC2 is one of two 

pathways downstream of adenylyl cyclase (49,50), it is tempting to speculate that 

manipulation of DICD expression might have consequences for the availability of MAGI 

proteins to interact with RAPGEF2 and in turn affect its interaction with EPAC2/RAP1A-

associated insulin secretion. Several lines of evidence are presented in support of this 

possibility. Firstly, although some downstream defects might be present since only a modest 

increase in insulin secretion was observed upon KCl stimulation, it is upon forskolin 

stimulation that revealed a lack of considerable potentiation in β-DICD. Secondly, a 

significant increase in insulin secretion was observed with forskolin in β-D1D4 islets. 

Finally, this significant increase in insulin secretion in β-D1D4 islets can be normalized by 

inhibiting adenylyl cyclase with norepinephrine and inhibiting EPAC2 by ESI-09. A 

graphical summary and schematic diagram of the proposed mechanism for DLL1/4-mediated 

influence on insulin secretion is given in Fig. 7E.
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Fig. 1: Expression of Notch receptors in the adult pancreas. (A) qRT-PCR analysis of D/N 

components in isolated islets from 8-week-old male C3HeB/FeJ mice normalized to the 

housekeeping genes Sdha and Ubc ; n=5 (Notch2 n=4). Data are shown as mean±SD. (B) Co-

immunostaining of Notch receptors NOTCH1, NOTCH2, NOTCH3 and NOTCH4 with β- 

(insulin), α- (glucagon) and δ-cell (somatostatin) markers on pancreatic sections from 13-

week-old male C3HeB/FeJ mice; n=3. Nuclei were counterstained with DAPI (blue). The 

scale bar represents 20 µm.

Fig. 2: Expression of Notch ligands in the adult pancreas. Co-immunostaining of DLL1, 

DLL4, JAGGED1 and JAGGED2 with β- (insulin), α- (glucagon) and δ-cell (somatostatin) 

markers on pancreatic sections from 13-week-old male C3HeB/FeJ; n=3. Nuclei were 

counterstained with DAPI (blue). The scale bar represents 20 µm.

Fig. 3: Glucose homeostasis in β-DLL1, β-DLL4 and β-D1D4 mice. (A) Average ad libitum 

fed body weight and (B) blood glucose levels; control n=8, β-DLL1 n=9, β-DLL4 n=7 and β-

D1D4 n=10. (C) Intraperitoneal glucose-tolerance test (ipGTT); control n=16 and β-D1D4 

n=18. (D) Plasma-insulin levels during ipGTT and (E) acute insulin response during ipGTT 

between t=0 min and t=15 min; control n=8 and β-D1D4 n=9. (F) Plasma insulin levels in ad 

libitum fed state; control n=10 and β-D1D4 n=9. (G) Relative gene expression levels of 

insulin gene isoforms in isolated islets; control n=10 and β-D1D4 n=6. Gene expressions 

were normalized to the housekeeping genes Sdha and Ubc. (H) Insulin secretion assay in 

isolated islets under several stimulants and 10 µM norepinephrine or 10 µM ESI-09; n=4. 8-

10-week-old male mice were used in the study. Data for (C) and (D) are shown as mean 

±SEM; all other data are shown as mean±SD. Differences were considered statistically 
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significant at p<0.05 using a two-way ANOVA with Bonferroni post hoc test and a two-tailed 

student t test (* p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001).

Fig. 4: Islet integrity and hormone levels in -DLL1, -DLL4 and -D1D4 mice. 

Immunostaining for insulin and glucagon in pancreatic sections of control (A), β-DLL1 (B), 

β-DLL4 (C) and β-D1D4 (D) mice; n=4. (E) Concentration of insulin and (F) glucagon in 

isolated islets from mutant and control mice; control n=18, β-DLL1 n=7, β-DLL4 and β-

D1D4 n=8. (G) Immunostaining for glucagon and MAFB in pancreatic sections of β-D1D4 

and control mice and (H) quantification of MAFB+ cells; 25-30 islets per genotype; n=4. (I) 

Relative gene expression of Mafb; control n=4 and β-D1D4 n=6. (J) Immunostaining for 

glucagon and Ki-67 positive islet cells and (K) quantification; n=4. (L) Relative gene 

expression levels of glucagon in isolated islets; control n=10 and β-D1D4 n=5. Gene 

expressions were normalized to the housekeeping genes Sdha and Ubc. (M) Immunostaining 

for glucagon and CRE before (week 0) and after (week 2) tamoxifen treatment; n=4-5. 8-

week-old male mice were used in the study. Data are shown as mean±SD. Differences were 

considered statistically significant at p<0.05 using a one-way ANOVA with Bonferroni post 

hoc test and a two-tailed student t test (* p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001).

Fig. 5: Glucose homeostasis in β-DICD mice. (A) Average ad libitum fed body weight; 

control n=10 and β-DICD n=9. (B) Blood glucose levels of mice; control n=8 and β-DICD 

n=10. (C) Measurement of blood glucose levels and (D) insulin during an intraperitoneal 

glucose tolerance test; control n=8 and β-DICD n=9. (E) Plasma insulin levels in ad libitum 

fed state; control n=12 and β-DICD n =11. (F) Relative gene expression levels of insulin in 

isolated islets; control n=11 and β-DICD n=9. Gene expressions were normalized to the 

housekeeping genes Sdha and Ubc. (G) Insulin secretion assay in isolated islets; control n=9 
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and β-DICD n=6. 8-week-old male mice were used in the study. Data for (C) and (D) are 

shown as mean±SEM; all other data are shown as mean±SD. Differences were considered 

statistically significant at p<0.05 using a two-way ANOVA with Bonferroni post hoc test and 

a two-tailed student t test (* p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001).

Fig. 6: Islet integrity and hormone levels in -DICD mice. (A) Immunostaining for insulin 

and glucagon in pancreatic sections; n=4-5. Scale bar represents 50 µm. (B) Concentration of 

insulin; n=7 and (C) glucagon in isolated islets; n=6. (D) Concentration of glucagon in 

plasma; n=10. Relative mRNA expression of (E) D/N components and (F) Ctgf as well as 

TGFβ pathway components in isolated islets; control n=5 and -DICD n=4 (for Dll4 n=3). 

Gene expressions were normalized to the housekeeping genes Sdha and Ubc. 8-week-old 

male mice were used in the study. Data are shown as mean±SD. Differences were considered 

statistically significant at p<0.05 using a two-tailed student t test (** p<0.01).

Fig 7: Graphical summary displaying (A) healthy pancreatic islet cell constituents, (B) cell-

specific protein expression of D/N components within the wild-type islet, depicting α-cells 

(red), β-cells (green), δ-cells (yellow), non-endocrine cells (purple) and unlabeled cells 

(white) (C) a comparative illustration of a control vs. β-D1D4 islets and (D) a summary of 

the major phenotypic findings of the β-D1D4 and β-DICD mouse models. (E) Schematic 

diagram of the proposed DLL1/4-mediated influence on insulin secretion: RAP1A signaling 

is amplified by RAPGEF2, a factor that binds to MAGI proteins, which in turn can interact 

with the intracellular domains of DLL1 and DLL4. Differing expressions levels of these 

intracellular domains might have consequences for EPAC2/RAP1A-associated insulin 

secretion.
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Electronic Supplementary Tables 

ESM Table 1: Primer pairs used in this study 

Primer for Genotyping  
Gene name forward primer 5´-3´ reverse primer 5´-3´ 
DICD lox GCACTTGCTCTCCCAAAGTC GATACCGTCGATCCCCACT 
Dll1lox CACACCTCCTACTTACCTGA GAGAGTACTGGATGGAGCAAG 
Dll4lox GTGCTGGGACTGTAGCCACT TGTTAGGGATGTCGCTCTCC 
Pdx1 CreERT AACCTGGATAGTGAAACAGGGGC TTCCATGGAGCGAACGACGAGACC 
Primer for qPCR  
Gene name forward primer 5´-3´ reverse primer 5´-3´ 
Cdkn1a GCAGACCAGCCTGACAGATT CACACAGAGTGAGGGCTAAGG 
Cdkn1c CCAATGCGAACGACTTCTT GCCGTTAGCCTCTAAACTAACTCA 
Ctgf AGTGTGCACTGCCAAAGATG TTCCAGTCGGTAGGCAGCTA 
DICD CACTTAGGGGTGGGGAGATT CGCTTCCATCTTACACCTCAG 
Dll1 TGGCCAGGTACCTTCTCTCT TCTTTCTGGGTTTTCTGTTGC 
Dll4 CACAGTGAGAAGCCAGAGTGTC TCCTGCCTTATACCTCTGTGG 
Glucagon AGGCTCACAAGGCAGAAAAA CAATGTTGTTCCGGTTCCTC 
Hes1 GAGCACAGAAAGTCATCAAAG ATGCCGGGAGCTATCTTTCT 
Hes6 CCAATCTTGAGACTGAGCATTAGG TCATAGCCAAAGTAGCAAATCTGAAC 
Hey1 GAAAAGACGGAGAGGCATCA AGCAGATCCCTGCTTCTCAA 
Hey2 ATTACCCTGGGCACGCTAC TTTTCTATGATCCCTCTCCTTTTC 
Hprt CCTAAGATGAGCGCAAGTTGAA CCACAGGACTAGAACACCTGCTAA 
Ins1 GCAAGCAGGTCATTGTTTCA CACTTGTGGGTCCTCCACTT 
Ins2 CAGCAAGCAGGAAGCCTATC GCTCCAGTTGTGCCACTTGT 
Jagged1 GCCAGACTGCAGGATAAACA CCCTGAAACTTCATGGCACT 
Jagged2 GCCAGGAAGTGGTCATATTCA ATCCGCACCATACCTTGCTA 
Mafb TAGCGATGGCCGCGGAG CTTCACGTCGAACTTGAGAAGG 
Msln CATCCCCAAGGATGTCAAAG GCAGGCTTTCTGTTCTGCAT 
Mtor CAAGCAGGCAACATCTCACG CAGAAGGGACACCAGCCAAT 
Neurog3 GTCGGGAGAACTAGGATGGC GGAGCAGTCCCTAGGTATG 
Notch1 TCAGGGTGTCTTCCAGATCC CGACTTGCCTAGGTCATCCA 
Notch2 GCAGTGGATGACCATGGAA GGTGTCTCTTCCTTATTGTCCTG 
Notch3 TGCACTGGGAATGAAGAACA CCGGCTCCTCTACCTTCAGT 
Notch4 GGATAAAAGGGGAAAAACTGC CGTCTGTTCCCTACTGTCCTG 
Pdx1 Cre TGCAACGAGTGATGAGGTTC GCAAACGGACAGAAGCATTT 
Sdha GCAATTTCTACTCAATACCCAGTG CTCCCTGTGCTGCAACAGTA 
Smad2 GGGAGCAGAATATCGGAGGC TGCAGAGGGCCATTCAGATG 
Smad7 CTGCAACCCCCATCACCTTA CAGCCTGCAGTTGGTTTGAG 
Ubc AGCCCAGTGTTACCACCAAG ACCCAAGAACAAGCACAAGG 
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ESM Table 2: Primary antibodies used in this study 

Primary antibody Host Clonality Cataloge 
number Company Dilution 

CRE rabbit polyclonal 69050-3 Millipore 1:200 
Dll1 (155-173) extracellular rabbit polyclonal ab10554 Abcam 1:200 

Dll1 intracellular rat monoclonal  
Gift from Dr. 
E. Kremmer 1:5 

Dll4 rabbit polyclonal ab7280 Abcam 1:200 

Glucagon mouse monoclonal G2654 Sigma Aldrich 1:1000-
1:5000 

Insulin guinea 
pig polyclonal A0564 Dako 1:200 

Jagged1 rabbit polyclonal ab7771 Abcam 1:200 

Jagged2 rabbit polyclonal sc-5604 Santa Cruz 
Biotechnology 1:50 

Ki67 rabbit monoclonal RM-9106-S Thermo Fisher 1:200 
Mafb rabbit polyclonal IHC-00351 biomol 1:200 
Notch1 (immunohistochemistry) rabbit polyclonal ab27526  Abcam 1:200 
Notch1 (immunocytochemistry) rabbit polyclonal ab8925  Abcam 1:100 

Notch2 goat polyclonal sc-7423 Santa Cruz 
Biotechnology 1:200 

Notch3 rabbit polyclonal ab23426 Abcam 1:200 

Notch4 rabbit polyclonal N5163-
100UG Sigma Aldrich 1:200 

PDX1 rabbit monoclonal 5679 Cell Signaling 1:300 
Somatostatin rabbit polyclonal A0566 Dako 1:200 

Somatostatin goat polyclonal sc-7819 Santa Cruz 
Biotechnology 1:200 

Somatostatin mouse monoclonal 14-9751-82 Affymetrix 
eBioscience 1:200 
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ESM Table 3: Secondary antibodies used in this study 

Secondary antibody Cataloge number Company Dilution 
Alexa 488 - donkey-anti-goat A11055 Invitrogen  1:500 
Alexa 488 - donkey-anti-mouse A21202 Invitrogen  1:500 
Alexa 488 - donkey-anti-rabbit A21206 Invitrogen  1:500 
Alexa 488 - donkey-anti-rat A21208 Invitrogen  1:500 
Alexa 488 - goat-anti-guinea pig A11073 Invitrogen  1:500 
Alexa 594 - donkey-anti-goat A11058 Invitrogen  1:500 
Alexa 594 - donkey-anti-rabbit A21207 Invitrogen  1:500 
Alexa 594 - donkey-anti-mouse A21203 Invitrogen  1:500 
Alexa 594 - goat-anti-rat ab96965 Abcam  1:500 
DAPI D9542 Sigma Aldrich  1:1000 
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