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Preparation of single- and 
double-oligonucleotide antibody 
conjugates and their application for 
protein analytics
Julius Wiener1,2, Daniel Kokotek1, Simon Rosowski1, Heiko Lickert3,4,5,6 & Matthias Meier1*

Oligonucleotide-conjugated antibodies have gained importance for their use in protein diagnostics. 
The possibility to transfer the readout signal from the protein to the DNA level with an oligonucleotide-
conjugated antibody increased the sensitivity of protein assays by orders of magnitude and enabled 
new multiplexing strategies. A bottleneck in the generation of larger oligonucleotide-conjugated 
antibody panels is the low conjugation yield between antibodies and oligonucleotides, as well as 
the lack of product purification methods. In this study, we combined a non-site-directed antibody 
conjugation technique using copper-free click chemistry with ion-exchange chromatography to obtain 
purified single and double oligonucleotide-conjugated antibodies. We optimized the click conjugation 
reaction of antibodies with oligonucleotides by evaluating crosslinker, reaction temperature, duration, 
oligonucleotide length, and secondary structure. As a result, we were able to achieve conjugation 
yields of 30% at a starting quantity as low as tens of nanograms of antibody, which makes the approach 
applicable for a wide variety of protein analytical assays. In contrast to previous non-site-directed 
conjugation methods, we also optimized the conjugation reaction for antibody specificity, confirmed by 
testing with knockout cell lines. The advantages of using single or double oligonucleotide-conjugated 
antibodies in regards to signal noise reduction are shown within immunofluorescence, proximity 
ligation assays, and single cell CITE-seq experiments.

Oligonucleotide-conjugated antibodies are commonly used in therapeutic cell targeting and protein diagnostics. 
One emerging therapeutic application involves exploiting the protein binding specificity of antibodies to deliver 
anti-sense oligonucleotides for the silencing of cell type-specific genes1. In diagnostics, oligonucleotide-conjugated 
antibodies are used to translate the detection signal from the protein to the DNA level2. This allows for the use of 
highly sensitive DNA amplification methods to amplify the readout signal. Prominent examples in this respect 
are immuno-PCR3 or hybridization chain reaction methods4–6 with oligonucleotide-conjugated antibodies, which 
has been proven to increase sensitivity by multiple magnitudes compared to standard ELISA technologies. The 
spectrum of applications for oligonucleotide-conjugated antibodies is expanding beyond protein interactions7 
into enzyme activity8. Further, the transfer of the readout signal from protein to the DNA allows for the imple-
mentation of high multiplexing strategies for protein analytical assays9–11, since the target specificities of the anti-
bodies can be encoded within the oligonucleotide sequences. Combined with next generation sequencing (NGS) 
technologies or sequential fluorescence hybridization methods, tens of proteins could be quantitated in parallel 
with e.g. CITEseq12. or SABER13.

One bottleneck in the development of antibody-oligonucleotide assay technologies consists of the conjugation 
reaction between the two biomolecules. Several protocols are available offering solutions for the conjugation of 
antibodies with oligonucleotides13–17. The most specific option for the preparation of antibody-oligonucleotide 
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conjugates involves site-directed conjugation methods, where the oligonucleotide is conjugated to either n-linked 
glycans or internally-expressed protein tags18,19. As n-linked glycans show a strong heterogeneity among hosts, the 
feasibility of site-directed strategies based on enzymatic glycan labeling varies18. Site-specific labeling strategies 
based on protein tags or unnatural amino acids can only be applied to antibodies produced via recombination due 
to the necessary cloning step20. Therefore, non-site directed conjugation approaches are mostly used to build up 
larger libraries of oligonucleotide-conjugated antibodies. Several bioorthogonal conjugation methods have been 
established, where the most common are based on maleimide, tetrazine, or click chemistry reagents14,21,22. All 
these methods have in common the fact that the antibody and oligonucleotide have to be functionalized first with 
the respective reactive chemical group. Despite the vast variety of commercially-available crosslinking reagents 
and protocols for each of the non-site directed conjugation strategies, the oligonucleotide labeling of antibodies 
is not robust. The reason for this is multilayered, including problems related to a loss in the specificity of the anti-
body due to the masking of the antigen binding site23, a change in polarity upon the addition of the reactive con-
jugation group and oligonucleotide, and a lack of purification methods for the removal of excess oligonucleotides, 
which increases the rate of false positive errors. Another problem is that antibody-oligonucleotide conjugation is 
a consecutive reaction with a heterogeneous outcome of single-, multiple-, and non-labeled antibodies depending 
on the reaction conditions. The temperature, time, and molar stoichiometries of the antibody and oligonucleotide 
make the conjugation reaction a multiparameter optimization problem. The wide parameter space with low start-
ing quantities of the antibodies makes it difficult to achieve acceptable conjugation efficiencies, and thus yields, 
in a research environment.

In this study, we established a protocol and analytical method by which to obtain single, double, and multiple 
oligonucleotide-conjugated antibodies. For the conjugation reaction between an antibody and an oligonucleo-
tide, a state-of-the-art copper-free click chemistry reaction was performed between dibenzocyclooctyne (DBCO) 
and an azide. The antibodies were functionalized by crosslinking DBCO molecules to the amine side chains of 
the antibody via N-hydroxysuccinimide (NHS) functionalization. Since DBCO increases the hydrophobicity of 
the antibody, DBCO with four different crosslinkers was investigated to determine its conjugation efficiency 
and influence on antibody specificity. Oligonucleotides were functionalized with a counteracting azide group 
(3-azidopropionic acid sulfo NHS ester). Although the ring-strain promoted alkyne–azide [3 + 2] cyclo-addition 
between DBCO and azide is known to occur at physiological pH and room temperature (RT), we investigated 
the reaction kinetics under different temperatures and stoichiometric conditions in order to increase the product 
yield. We complemented our data by measuring the antibody conjugation efficiency in dependence of the oligo-
nucleotide length and secondary structure. To purify and separate single- and double-oligonucleotide-conjugated 
antibodies, we developed an ion-exchange chromatography (IEX) protocol applicable with low entry sample 
volume. The advantages of using purified single, and double oligonucleotide-conjugated antibodies within 
immunofluorescence (IF) and proximity ligation assays (PLA) is demonstrated by their performance and spec-
ificity to unpurified and heterogeneously conjugated antibodies. Further, we demonstrate the need of single 
oligonucleotide-conjugated antibodies for methods using absolute read count statistics from next generation 
sequencing for protein quantification on the single cell level.

Experimental Procedures
Chemicals were obtained from Sigma-Aldrich (Taufkirchen, Germany) unless stated otherwise.  
For the functionalization of the antibody we used dibenzocyclooctyne-N-hydroxysuccinimidyl 
ester (DBCO-NHS), dibenzocyclooctyne-sulfo-N-hydroxysuccinimidyl ester (DBCO-sulfo-NHS), 
dibenzocyclooctyne-S-S-N-hydroxysuccinimidyl ester (DBCO-S-S-NHS), dibenzocyclooctyne-PE
G4-N-hydroxysuccinimidyl ester (DBCO-PEG4-NHS), and dibenzocyclooctyne-Cy5 (DBCO-Cy5). 
3-Azidopropionic acid sulfo-NHS ester was purchased from Click Chemistry Tools (Scottsdale, AZ). Dialysis caps 
(Slide-A-Lyzer Mini) with a volume of 100 µl and 7 kDa MWCO molecular weight cut-off (MWCO), and desalting 
spin columns (Zeba), with a volume of 0.5 mL and 7 kDa MWCO, were obtained from Thermo Fisher Scientific 
(Munich, Germany). Ultracentrifugation spin columns (Amicon) with a volume of 0.5 mL and 3 and 10 kDa 
MWCO were obtained from Merck Millipore (Darmstadt, Germany).

Antibody-crosslinker conjugation.  The primary anti-Igfr-L1 (UniProt UPF0577) antibody was produced 
in rat (clone #16F6) and purified in the Monoclonal Antibody Core Facility of the Helmholtz Zentrum Munich. 
Anti-Igfr-L1 was an Immunoglobulin G (IgG). For conjugation, antibodies were adjusted to a concentration of 
1 mg/ml with PBS. DBCO-NHS esters were dissolved in anhydrous DMSO, adjusted to 10 mM, and added to the 
antibody solution in varying molar excesses (from 1:1 to 1:25). The reaction was kept at RT for 45–60 minutes 
under rotary shaking. Unreacted and excessive DBCO-NHS was removed either by dialysis for 4 h at RT against 
PBS with a 10 kDa MWCO, gel-filtrated using desalting chromatography spin columns, or ultrafiltration using 
spin columns. The concentration of the antibody-DBCO conjugate was determined by bicinchoninic acid assay 
and QuBit Protein Assay both from Thermo Fisher Scientific (Munich, Germany). We measured and quantified 
the average number of conjugated DBCO molecules per antibody −n( )D IgG  by absorption spectroscopy, using the 
following equation: =−nD IgG c
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Oligonucleotide-crosslinker conjugation.  3-azidopropionic acid sulfo-NHS ester (3AA-NHS) was dis-
solved in anhydrous dimethyl sulfoxide (DMSO) at a concentration of 10 mM. Amine-modified oligonucleotides 
were dissolved in PBS at a concentration of 100 µM. 3AA-NHS in DMSO was added to the aqueous oligonucleo-
tide solution to reach a 10 × molar excess of 3AA-NHS to oligonucleotide. The NHS reaction was kept at RT for 
2 h under shaking conditions. Excess 3AA-NHS was removed either by dialysis for 4 h against PBS with a 7 kDa 
MWCO, by gel-filtration using a spin column with a 7 kDa MWCO, or by ultrafiltration by using spin filters with 
a 3 kDa MWCO. The concentration of the resulting azide-modified oligonucleotide was determined by absorb-
ance spectroscopy at 260 nm using a microvolume UV/Vis spectrophotometer. For analytical purposes, we used 
an FPLC desalting column purchased from Thermo Fisher Scientific (89934). The column was run with PBS at a 
flow rate of 0.2 ml/min.

Antibody-oligonucleotide conjugation.  The azide-modified oligonucleotides were added to an 
antibody-DBCO solution (PBS, pH 7.2) under varying molar excesses, reaction temperatures, and incubation 
times in a microcentrifuge tube on a thermoshaker. The antibody-DBCO concentration in all reactions always 
ranged between 0.6–1 mg/ml.

Purification of the antibody-oligonucleotide conjugate.  Antibody-oligonucleotide conjugates were 
purified using ion exchange chromatography (Dynamic Biosensors, Martinsried, Germany). The analytical IEX 
column was purchased from Agilent (5190–2463; Waldkirch, Germany). The salt gradient for elution was started 
with 100% buffer A (50 mM Na2HPO4/NaH2PO4, 150 mM NaCl) and was gradually changed to 15.0% buffer A 
and 85.0% buffer B (50 mM Na2HPO4/NaH2PO4, 1 M NaCl) over the course of 16 min. While the analytical col-
umn was used at a flow rate of 0.5 ml/min, the preparative column was set to a flow rate of 1 ml/min. The collected 
fractions with antibody-oligonucleotide conjugates were concentrated using ultrafiltration columns with a 10 kDa 
MWCO. The yield of the antibody-oligonucleotide conjugates was determined by both a bicinchoninic acid assay 
and QuBit Protein assay.

Cell culture.  Min6 cells were cultured in DMEM with 10% FBS in T-25 flasks before transferring to 
fibronectin-coated glass-bottom plates (Corning 4581). Glass bottom plates were coated with 10 µg/ml fibronec-
tin solution for 20 min, then washed with PBS. Cells were cultured on well plates for at least 24 h before the exper-
iment or until a confluency of ~80% was reached.

Immunofluorescence (IF).  Cells were fixed with 4% PFA in PBS (v/v) at RT for 15 min, then washed three 
times with PBS. Cell permeabilization was achieved with 0.5% Triton X-100 in 1% BSA/PBS for 30 min at 37 °C. 
The cells were then washed three times with PBS. Next, oligonucleotide-conjugated anti-Igfr-L1 was incubated for 
1 h at RT. The samples were then washed 3 times with TBS-T before adding the secondary anti-rat IgG (A-21247; 
Thermo Fisher Scientific, Munich, Germany) in a 1:1000 dilution. After 1 h of incubation, the plate was washed 
three times with TBS-T, and subsequently stained with 1 ng/µl DAPI and 20 nM Phalloidin-Atto488 for 20 min.

Proximity ligation assay.  Cells were fixed and permeabilized as described previously. At all times, a liquid 
film of about 2–5 μL was allowed to cover the cells to prevent the sample from drying. The PLA assay was per-
formed by adding the antibody-oligonucleotide conjugates for 1 h at RT at a concentration of 2–25 ng/μl. The cells 
were then washed 4 times with TBS-T for a total of 1 h. Ligation of the oligonucleotide strands was performed 
for 45 min at 30 °C in a 1 × T4 buffer solution containing 1 U/μl T4 DNA ligase, 1 × T4 buffer, 125 nM connec-
tor strands (see Table 1), 125 ng/ml BSA, and ddH2O. After washing three times with TBS-T, the rolling circle 
amplification was started by adding a 1 × phi29 buffer solution containing 0.25 U/μl phi29 polymerase, 200 μM 
dNTPs, and 200 μg/ml BSA in a microcentrifuge tube for 100 min at 32 °C with orbital shaking. Finally, the cells 
were washed twice with TBS-T and counterstained with a SSC solution containing 1 μg/mL DAPI, 6 nM detection 
probe for the PLA product, and 20 nM Phalloidin-Atto 488 for 30 min, before washing again three times with 
TBS.

Name Sequence

O1 [AmC6dT]ACAACAACAAGAATGGAACCTCGCTAGAACGT

O2 [AmC6dT]ACAACAACAAGAATGGAACCTCGCTAGAACGT
ACAACAACAAGAATGGAACCTCGCTAGAACGT

O3 [AmC6dT]ACAACAACAAGAATGGAACCTAGGTTCCATTC

O4 [AmC6dT] CAACAACAAAATAGTTCGGTCGAAGTTAGTCC

Connector 1 [Phos]AGGTTCCATTCAAAGGACTAACTTC

Connector 2 [Phos]GACCGAACTATCTAGTGCTGGATGATCGTCCC
CCCTGCACCTCAAAACACCCTAACGTTCTAGCG

Probe [Cy5]CTAGTGCTGGATGATCGTCC[Cy5]

O5 [AmC6dT] GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCTG
ACAGGAAGCTTTAAGGCCGGTCCTAGCAA

Table 1.  Oligonucleotides sequences.
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Sequences of used oligonucleotides.  All of the oligonucleotides used in the conjugations carried a 5′ amino 
modifier C6 dT, were double HPLC-purified, and were purchased from Ella Biotech. Desalted oligonucleotides  
used in PLA experiments were ordered from Sigma Aldrich (Taufkirchen, Germany).

Image acquisition.  Images for PLA dot counting were acquired with a Zeiss Observer Z1 epifluorescence 
microscope using a Plan Apochromat 20× (NA 0.8) objective and an Orca 12-bit camera (Hamamatsu) in μMan-
ager acquisition software24. In order to record the PLA dots throughout the entire Z-height of the cell, Z-stacks 
of 10 images with a step-size of 0.8 μm were acquired. The Z-stack was then transformed using a maximum pro-
jection. PLA dot detection was then performed by finding the local maxima within a grey level tolerance thresh-
old. The threshold was set manually for images from one experimental series in dependence of the fluorescence 
background. The dot count was evaluated per nucleus. To achieve this, the DAPI-stained nuclei were segmented 
by applying a median filter and using a previously described iterative thresholding algorithm. A Voronoi diagram 
was then computed to segment the regions. The PLA dots per region were then counted. All image processing 
steps were carried out in ImageJ25. Images for publication were acquired using an 20× Plan Apochromat (NA 0.8) 
objective on a LSM800 microscope (Zeiss, Jena, Germany).

CITE-seq.  For the CITE-seq experiment anti-CD49e from R&D Systems (AF1864) was conjugated with oli-
gonucleotide O5 using the DBCO-S-S-NHS ester linker. The oligonucleotide contains a reverse complement of 
Capture Sequence 1 of the 10x Genomics beads, an 8nt Feature Barcode and TruSeq Read 2. Within the CITE-seq 
run anti-CD49e was quantitative on human umbilical vein endothelial cells (HUVEC). HUVECs were main-
tained in endothelial growth medium (EGM) (AngioProteome cAP-02) on 1% gelatin-coated T25 flask to about 
80% confluency before splitting. For the experiment HUVECS were detached from the culture plate using EDTA, 
washed in cold PBS twice, filtered through 40 µm cell strainers and their concentration adjusted to 1*106 cells/ml. 
Cells were separated into two tubes, incubated with either the single- or the double oligonucleotide-conjugated 
anti-CD49e on ice for 30 min and again washed twice with PBS. The antibody concentration was 2 µg/106 cells 
for each sample. Cells were then immediately processed for single cell droplet sequencing in the 10x Genomics 
Chromium device according to the manufacturer’s protocol (Single Cell Gene Expression with Cell Surface 
Protein, v3.1). 3ʹGene Expression Library Construction was omitted to only include Feature Barcodes. The cell 
surface protein library preparation was performed using the Single Index Kit T Set (10x Genomics, PN-1000213). 
The cell surface protein library was sequenced using a NextSeq 550 with a 10% spike-in of phiX to diversify the 
expected low heterogeneity of the library. Sequencing data was demultiplexed using cellranger. 10x Genomics 
barcodes with a Hamming distance of 1 were corrected. The barcode counts with unique UMIs were adjusted by 
the number of retrieved sequences per sample.

Results and Discussion
The conjugation reaction of oligonucleotides to an antibody consists of three individual crosslinking steps: (i) 
functionalization of the antibody with a dibenzocyclooctyne (DBCO) click group; (ii) functionalization of the 
oligonucleotide with the corresponding azide click group; (iii) conjugation of the functionalized antibody and 
oligonucleotide via a copper-free click chemistry reaction. The functionalization of the antibodies and oligonu-
cleotides with the click groups is achieved via NHS chemistry. In case of the antibody, the NHS ester is targeted 
using none-site-specific primary amines, for example lysine side chains. In case of the oligonucleotide, the NHS 
ester reacts with an amine modification at the 5′ end.

Antibody and oligonucleotide functionalization.  In order to maximize the yield of the 
antibody-oligonucleotide click chemistry conjugation reaction, we first sought to optimize the functionalization 
of the antibody and oligonucleotide. This was particularly important for the antibody functionalization for two 
reasons. Firstly, DBCO is hydrophobic, similar to the other click reactive groups, e.g. trans-cyclooctene. Thus, an 
increased number of DBCO molecules conjugated to the antibody reduces its solubility. A high number of DBCO 
moieties in the antibody may also change the specificity due to an increasing chance to label lysine residues at 
the binding domain of the antibody. Secondly, only a low fraction of DBCO groups on the antibody will react in 
the subsequent click reaction with an oligonucleotide due to the necessary alignment of the functional groups 
attached to two large polymers.

The low solubility of DBCO-NHS reportedly leads to the formation of turbid solutions during protein conju-
gation, which is an indication of the precipitation of reactants. Therefore, DBCO conjugation via NHS exhibits 
a low reproducibility and requires an analytical control of the conjugation products. For this reason, derivates 
of DBCO-NHS with variable soluble side groups and linkers have been developed. Linker length and their 
accompanied steric effects, however, are modulators of the copper-free click chemistry reactions. To investigate 
these factors in the NHS coupling reaction, but also in the click chemistry reaction, we included four different 
DBCO-NHS derivates in our test series.

Figure 1 shows the conjugation yield of an azide fluorophore (N3-Cy3) to an IgG antibody functionalized 
with different numbers of DBCO-NHS, DBCO-Sulfo-NHS, DBCO-PEG4-NHS, and DBCO-SS-NHS mole-
cules per antibody. The number of DBCO molecules on the antibody was adjusted by varying the molar ratio of 
DBCO-NHS and its derivates to the antibody in the functionalization step. The conjugate yield in the subsequent 
click reaction is expressed as the average number of Cy3-azide fluorophores coupled per the average number of 
DBCO groups on the antibody. This takes into account the fact that not all the DBCO groups on an antibody will 
react in the click reaction. At high DBCO/IgG ratios, the antibody-Cy3 conjugation yield is slightly higher for 
antibodies functionalized with DBCO-PEG4-NHS compared to DBCO-SS-NHS while the other two more hydro-
phobic derivates showed a low yield at higher molar ratios due to strong precipitation.
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In contrast, the azide labeling of oligonucleotides with 3-azidopropionic acid (3AA-NHS) showed a maximum 
at a molar ratio of 3:1. All reactants are highly water soluble and thus no further optimization steps were needed.

Removal of excess click reagents after antibody and oligonucleotide functionalization was essential for increas-
ing the yield of the subsequent click reaction by reducing the occurrence of unwanted reactions with left-over 
reactants. For this reason, we determined the removal and recovery yield of the three different purification 
methods with an entry volume of ≤100 µL, namely desalting, membrane ultrafiltration, and dialysis. The results 
are shown in Figs. S1 and S2 for the antibody and oligonucleotide NHS functionalization samples, respectively. 
Desalting and ultrafiltration were both performed with spin columns and removed a molar excess of 5 DBCO 
per antibody only to an extent of 82%, while retaining 90.1% and 82.3% of the antibody, respectively. After desalt-
ing a second time, only 12.2% of the DBCO remained in the solution, which resulted in an acceptable yield in 
the subsequent click conjugation reaction (see below); however, a large fraction of the antibody was lost. Dialysis 
lowered the DBCO to 13.2% of the initial content, while maintaining 94.6% of the antibody. Similar results were 
obtained for the purification of the oligonucleotide-azide functionalization reaction (Fig. S2). Therefore, hereafter,  
all antibody-DBCO and oligonucleotide-azide samples were purified by dialysis after click functionalization.

Antibody-oligonucleotide click conjugation and purification.  The click reaction between function-
alized antibodies and oligonucleotides is a consecutive second-order reaction. The yield and product types of 
the click reaction are dependent on: (i) number of DBCO molecules on the antibody; (ii) the molar ratio of the 
functionalized antibody to oligonucleotide; (iii) the conjugation time; (iv) the reaction temperature. For example, 
increasing the number of DBCO molecules on the antibody may lead to antibodies being conjugated to two or 
more oligonucleotides instead of one. Therefore, we aimed to find the optimal click reaction conditions to max-
imize the yield of antibodies with a single conjugated oligonucleotide. In order to differentiate but also purify 
unconjugated, single, and multiple conjugated antibody-oligonucleotides, the click reaction samples were sepa-
rated using ion-exchange chromatography (IEX). Figure 2A shows a representative IEX chromatogram recorded 
at an absorption wavelength of 260 nm. Unconjugated antibodies have the lowest negative net charge and, thus, 
eluted first from the anion exchange column, followed by the single and double oligonucleotide-conjugated anti-
bodies. The unconjugated oligonucleotides were last to be eluted from the column. The number of oligonucleotide 
conjugates per antibody in the different fractions was confirmed by SDS gel chromatography (see Fig. S4).

Using this separation technique, we started to optimize the click reaction by determining the influence of 
the number of DBCO molecules in the antibody on the conjugation yield. The number of DBCO molecules 
per antibody was adjusted by varying the molar ratio of DBCO to antibody during functionalization. The 
molar ratio of oligonucleotide to antibody was kept constant at 3. The conjugation yield for single and double 
oligonucleotide-conjugated antibodies was calculated by determining the protein concentration of the individual 
IEX peaks. The results are provided in Fig. 2B. While the yield of single oligonucleotide-conjugated antibodies 
reached saturation at a molar ratio of 10 (DBCOs/IgG), the amount of double conjugates continued to increase 

Figure 1.  Click reaction yield in dependence of the molar ratio of DBCO-NHS to antibody used for the 
functionalization of the antibody. The average number of DBCO and Cy3 groups was determined by measuring 
the absorbance at 309 nm and 554 nm, respectively. After antibody functionalization, Cy3-azide was added at 
a 50 molar excess to saturate all functional DBCO groups. At a molar excess of about 5 to 10 mol DBCO per 
mol antibody, the reaction shows the highest conjugation yield in the subsequent click chemistry reaction for 
all tested DBCO derivates. Conjugation reactions with DBCO-Sulfo-NHS and DBCO-NHS with a molar ratio 
of DBCO to antibody above 5 resulted in protein and/or DBCO precipitation and, thus, a lower reaction yield. 
Error bars represent the standard error.
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for higher ratios. The offset of the molar ratio for double compared to the single oligonucleotide-conjugated anti-
bodies was expected due to its dependence on the presence of single conjugates.

Next, the molar ratio of oligonucleotide to antibody was optimized to increase the yield of single 
oligonucleotide-conjugated antibodies. For this, only the antibodies functionalized with a molar DBCO/anti-
body ratio of 10 were used. Figure 2C shows these results. The saturation of single oligonucleotide-conjugated 
antibodies was already obtained at a molar ratio of two. Notably, even for high molar ratios of oligonucleotide to 
antibody, the double oligonucleotide-conjugated antibodies were not saturated. For the next optimization steps, 
the molar ratio of oligonucleotide to antibody in the click reaction was kept constant at 3.

An essential question within the antibody DBCO functionalization and oligonucleotide conjugation reactions 
is whether the antibody maintains its specificity. To evaluate the specificity of the antibodies with PLA, single and 
double conjugates of O1 and anti-Igfr-L1 were created with molar ratios of 10 DBCO/IgG and 3 oligonucleotides/
IgG. Figure 2D shows the corresponding PLA images in Min6 wild type cells and Min6 cells with knocked out 
Igfr-L1 as control. The Igfr-L1 receptor has been previously shown to localize to the endoplasmic reticulum (ER). 
All antibodies maintained their specificity and dots were highly localized close to the nucleus in the ER region, 
while the knock out cells showed no signal. Upon changing the crosslinker chemistry, the specificity of the anti-
body did not change, although the best quality of the IF images was obtained with oligonucleotide-conjugated 
IgG carried an DBCO-PEG4 linker (see Fig. S3).

Figure 2.  Ion exchange separation (IEX) of antibody-oligonucleotide conjugates. (A) Example of a typical IEX 
chromatogram of an antibody-oligonucleotide click conjugation reaction obtained with an anion exchange 
column at a flow rate of 1 ml/min. The gray area shows the salt gradient used for elution. For buffer conditions 
see Experimental Procedures. (B) Antibody-oligonucleotide click conjugation efficiency in dependence of 
the molar ratio of DBCO to antibody used in the functionalization reaction. (C) Antibody-oligonucleotide 
click conjugation efficiency in dependence of molar oligonucleotide excess at constant molar ratio of DBCO 
to antibody. Error bars represent standard error. (D) IF images of the oligonucleotide-conjugated anti-Igfr-L1 
antibody in wild type and anti-Igfr-L1 knock out Min6 cells. Scale bar: 20 µm.
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Next, the optimal reaction time and temperature for the click reaction between the antibody and oligonucle-
otide was determined. For this, the molar ratio of DBCO to antibody in the functionalization reaction was set to 
10 and the molar ratio of the oligonucleotide to antibody to 3 within the click reaction. The click reaction kinetics 
for single and double oligonucleotide-conjugated antibodies at 4, 22, and 37 °C are provided in Fig. 3. A steady 
state level of the consecutive conjugation reaction was observed for all the reaction temperatures after 10 and 4 h 
for the single and double oligonucleotide-conjugated antibody, respectively. As the temperature increased, the 
yield of the antibodies also increased. This indicates that 37 °C is a physiological temperature, however, the long 
reaction time may influence the stability of the antibody and thus its specificity. Whether high temperatures and 
long incubation times reduce the specificity of the antibody was tested by IF. We did not observe any changes in 
specificity.

Influence of oligonucleotide length and secondary structure on the click conjugation 
yield.  Depending on the application of antibody-oligonucleotide conjugates, the length and sequence of the 
oligonucleotide can change. Therefore, we investigated whether the oligonucleotide length or structure elements 
within the oligonucleotide influence the conjugation efficiency. For this, the previously determined parameters 
for NHS functionalization and the click conjugation reactions were kept constant. We used two oligonucleotides 
with 32 (O1) and 64 nucleotides (nt), where the longer oligonucleotide contained two sequence repeats of the 32 
nt oligonucleotides (O2). The sequence of the 32 nt oligonucleotide was designed by minimizing its free energy 
for the secondary structure. The repeat of the 32 nt sequences showed equally low theoretical free energy values 
for the secondary structure formation. Figure 4B shows the click reaction efficiencies for obtaining single and 
double oligonucleotide-conjugated antibodies. In fact, we observed no differences in this length regime. However, 
when we included a hairpin structure of 11 nt at the 3′ end of a 32 nt long oligonucleotide (O3), the coupling effi-
ciency for single oligonucleotide-conjugated antibodies decreased to 44.1%. Notably, the hairpin was designed to 
not mask the free azide group of the oligonucleotide at the 5′ end. Single and double oligonucleotide-conjugated 
antibodies with the 32 nt, 64 nt, and 32 nt oligonculeotide with hairpin structure localized correctly at the ER, as 
tested by IF staining, in Min6 cells (see Fig. 4A). However, we observed a higher background fluorescence along 
with low fluorescence in the knock out cells for the 64 nt oligonucleotide conjugate.

In order to demonstrate that our oligonucleotide conjugation approach is of general use and not specific to 
anti-Igfr-L1, we labeled 19 different antibodies under the optimized click reaction conditions with 18 different 
oligonucleotide, respectively. The oligonucleotide length ranged between 32 nt and 43 nt. The average conjugation 
yield for the single and double oligonucleotide-conjugated antibodies was 18 and 8%, respectively, of the entry 
antibody mass (see Fig. S5).

Figure 3.  Temperature dependence of the oligonucleotide/antibody click conjugation kinetic. (A,B) Click 
reaction kinetics for the single and double oligonucleotide conjugation products over the course of 48 h for 4, 
22, and 37 °C, respectively. Antibody yields were calculated from the chromatograms of IEX separations.
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Proximity ligation assay with single and double oligonucleotide-conjugated antibodies.  To 
demonstrate the functionality and advantage of using purified antibody-oligonucleotide conjugates, we per-
formed a PLA. In a PLA, antibodies bind to their targets within a fixed cell. Their proximity is tested by the addi-
tion of connectors bridging the two oligonucleotide conjugates. Two connectors are used to form a circular DNA 
template that can be amplified by rolling circle amplification. The product is an ssDNA polymer with a diameter of 
∼0.5 μm that is detectable by fluorescence microscopy at low magnification. We previously noted a large variation 
in the PLA results between batches of self-conjugated antibodies. We hypothesized that one reason for this may 
be the unoptimized conjugation parameters. Another reason could be the purity of the antibody-oligonucleotide 
solution, since, in previously described protocols for antibody oligonucleotide conjugation reactions, the excess 
of unconjugated oligonucleotides was not efficiently removed, where the remaining oligonucleotides can lead to 
false-positive signals.

The Igfr-L1 receptor forms a homodimer. To generate PLA signals with single and double 
oligonucleotide-conjugated anti-Igfr-L1, the antibody was conjugated once with oligonucleotides O1 and O4. 
Figure 5B shows the PLA dot count per cell for the single and double oligonucleotide-conjugated anti-Igfr-L1 in 
wild type Min6 cells. Both anti-Igfr-L1 conjugates show comparable PLA dot counts per cell. In Min6 cells with 
the Igfr-L1 KO, the purified anti-Igfr-L1 conjugates showed no signal. The unpurified anti-Igfr-L1 conjugates 
exhibited a significantly higher PLA dot count in WT and KO Min6 cells, a reduced ER localization, and a higher 
cell-to-cell variability (see Fig. 5A).

Figure 4.  Influence of the oligonucleotide length and secondary structure on the antibody-oligonucleotide 
conjugation yield and specificity. (A) IF images of single O2 and O3 conjugated anti-Igfr-L1 in wild type and 
Igfr-L1 knock out Min6 cells. Scale bar: 20 µm. (B) Comparison of the influence of oligonucleotides with 
different compositions on the conjugation yield. Comparing oligonucleotides with a length of 32 nt and 64 nt,  
no conjugation differences were observed. A secondary structure within the oligonucleotide reduced the 
fraction of single oligonucleotide conjugate antibody by about 56%. Error bars represent standard error.
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Single and double conjugated-oligonucleotide antibodies in quantitative sequencing read 
count statistics.  To demonstrate the influence of the oligonucleotide number on an antibody within quan-
titative measurements of proteins with help of read count statistics from next generation sequencing approaches, 
we performed a CITE-seq experiment. For this, single and double oligonucleotide-conjugated anti-CD49e were 
generated following the optimized conjugation protocol given for anti-Igfr-L1 in Fig. 5, with the difference that a 
DBCO-SS-NHS ester was used instead of an DBCO-NHS ester linker. Anti-CD49e was detected on the surface 
of single HUVECs by using 10x Genomics droplet technology. For this, two HUVEC samples, one stained with 
single and another one with double oligonucleotide-conjugated anti-CD49e were encapsulated into a water/oil 
droplet of the 10x Genomics Chromium platform. Within the reducing environment of the droplets the conju-
gated oligonucleotides are released from the antibody, captured, and barcoded to assign the oligonucleotide to 
one particular cell. A unique molecular identifier (UMI) sequence, along with a cell specific barcode added to the 
conjugated oligonucleotide sequence allows to count single antibody binding events on a cell by exploiting read 

Figure 5.  Proximity ligation assay (PLA) with purified single and double oligonucleotide-conjugated antibodies 
compared to unpurified oligonucleotide-conjugated antibodies. (A) Fluorescence images of wild type Min6 cells 
with PLA dots (red) generated by targeting the homodimer receptor Igfr-L1. Nucleus and actin cytoskeleton 
of the Min6 cells were counterstained with DAPI (blue) and phalloidin (green). Scale bar: 20 µm. (B) PLA dot 
counts per cell to the corresponding fluorescence images in A. Samples size: 8180 cells. Error bars represent 
standard deviation.

Figure 6.  Distribution of feature barcode binding events per single cell in a CiteSeq experiment with single 
and double oligonucleotide-conjugated anti-CD49e. Double oligonucleotide-conjugated anti-CD49e increase 
the number of retrieved sequencing reads per HUVEC. The number of reads per cell was corrected for UMI 
duplication and adjusted by the total read number per sample.
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count statistics from next generation sequencing technology. Figure 6 shows the density plot of adjusted feature 
barcode reads per cell for the single and double conjugated anti-CD49e from single HUVCES cells. Following the 
expectation we find that double oligonucleotide-conjugated anti-CD49e leads to a doubling of the sequencing 
read count statistics. The low read number per cell is explained by the low sequencing depth of 4.1 and 2.6 million 
mapped reads for the single and double oligonucleotide-conjugated anti-CD40e sample, respectively.

Conclusion
In this study, we developed and optimized a workflow to obtain purified antibodies with defined numbers of 
conjugated oligonucleotides. Upon establishing the IEX purification of the reaction products, we systematically 
optimized the parameters of the copper free click chemistry conjugation reaction between an IgG antibody and 
oligonucleotides. The presented workflow allows to conjugate antibody quantities down to 25 ng with a yield of 
5 ng (20%) single oligonucleotide-conjugated IgG antibody. Thus, the method presented here is cost-effective and 
suitable for the conjugation of antibody quantities available from commercial sources. However, it is worth noting 
that this only holds true when no amine-containing additive is used in the formulation of the antibody.

In contrast to previous oligonucleotide to antibody conjugation protocols, we validated all antibody con-
jugates against knock out controls for their specificity and prove general applicability17,26. This allowed for the 
optimization of all parameters with regards to the antibody specificity. In particular, we observed that our test 
antibody conjugated to oligonucleotides with a length of 64 nt exhibited an increased background signal in IF and 
PLA compared to the same antibodies conjugated with an oligonucleotide of 32 nt length. This finding holds true 
for 19 other antibodies but still may slightly vary for others. Importantly, for the design of oligonucleotides for 
antibody conjugation, we showed that structured oligonucleotides exhibit a lower conjugation yield compared to 
unstructured oligonucleotides with the same length. Therefore, techniques requiring hairpins or toeholds for sig-
nal detection must consider a higher starting quantity of antibodies. The different crosslinkers for functionalized 
antibodies with DBCO had no influence on the specificity within the IF and PLA experiments. However, to obtain 
comparable reaction yields with more hydrophobic crosslinkers for DBCO, the molar ratio between DBCO and 
antibody has to be kept ≤10, which is far lower than previously used molar ratios for protein functionalization.

In conclusion, the importance of the purification of oligonucleotide-conjugated antibodies is apparent for 
proximity ligation assays. After removing the excess oligonucleotides, the PLA signal for the homodimer forma-
tion of anti-Igfr-L1 negative controls in a knock out cell line showed no signal, whereas the unpurified antibodies 
showed a background signal. PLA has been reported to be error-prone due to their long processing steps. By 
including a step for the purification of the reaction components, we believe that we can increase the reliability of 
the detection system for protein interactions. For quantitative protein detection via amplification methods and/
or absolute read count statistics by next generation sequencing not only the purity of oligonucleotide-conjugated 
antibodies is of importance but also the control of the precise number of conjugated oligonucleotides. This we 
demonstrated by using single and double oligonucleotide-conjugated anti-CD49e antibodies in a CITE-seq 
experiment. According to our expectations the read numbers for antibodies increased with double-conjugated 
oligonucleotides by a factor of two. Importantly, all current CITE-seq protocols do not include a control of the 
number of conjugated-oligonucleotides per antibody12,27. None-site-directed antibody conjugation strategies lead 
to mixed antibody products with varying numbers of conjugated oligonucleotides. In consequence CITE-seq 
results are biased in their read count statistics and in particular contain a large variation between experiments 
when not using the same batch of conjugated antibodies.

In summary, the method presented here could be used to increase the popularity of the use of 
oligonucleotide-conjugated antibodies. With these improvements, it would be of interest to combine the use 
of single oligonucleotide-conjugated antibodies with multiplexed CITE-seq screens, to validate the increased 
robustness of the protein quantification method.

Received: 22 October 2019; Accepted: 9 January 2020;
Published: xx xx xxxx

References
	 1.	 Arnold, A. E. et al. Antibody-antisense oligonucleotide conjugate downregulates a key gene in glioblastoma stem cells. Mol. Ther. - 

Nucleic Acids 11, 518–527 (2018).
	 2.	 Ali, M. M. et al. Rolling circle amplification: a versatile tool for chemical biology, materials science and medicine. Chem. Soc. Rev. 

43, 3324–3341 (2014).
	 3.	 Sano, T., Smith, C. & Cantor, C. Immuno-PCR: very sensitive antigen detection by means of specific antibody-DNA conjugates. Sci. 

258, 120–122 (1992).
	 4.	 Zhang, B. et al. DNA-Based Hybridization Chain Reaction for Amplified Bioelectronic Signal and Ultrasensitive Detection of 

Proteins. Anal. Chem. 84, 5392–5399 (2012).
	 5.	 Tang, J. et al. Hemin/G-quadruplex-based DNAzyme concatamers as electrocatalysts and biolabels for amplified electrochemical 

immunosensing of IgG1. Chem. Commun. 48, 8180–8182 (2012).
	 6.	 Zhou, J. et al. Nanogold-based bio-bar codes for label-free immunosensing of proteins coupling with an in situ DNA-based 

hybridization chain reaction. Chem. Commun. 48, 12207–12209 (2012).
	 7.	 Söderberg, O. et al. Direct observation of individual endogenous protein complexes in situ by proximity ligation. Nat. Methods 3, 

nmeth947 (2006).
	 8.	 Li, G. et al. An activity-dependent proximity ligation platform for spatially resolved quantification of active enzymes in single cells. 

Nat. Commun. 8, 1775 (2017).
	 9.	 Schweitzer, B. et al. Immunoassays with rolling circle DNA amplification: a versatile platform for ultrasensitive antigen detection. 

Proc. Natl Acad. Sci. 97(10113), 10119 (2000).
	10.	 Assarsson, E. et al. Homogenous 96-Plex PEA Immunoassay Exhibiting High Sensitivity, Specificity, and Excellent Scalability. PLoS 

One 9, e95192 (2014).
	11.	 Lundberg, M., Eriksson, A., Tran, B., Assarsson, E. & Fredriksson, S. Homogeneous antibody-based proximity extension assays 

provide sensitive and specific detection of low-abundant proteins in human blood. Nucleic Acids Res. 39, e102–e102 (2011).

https://doi.org/10.1038/s41598-020-58238-6


1 1Scientific Reports |         (2020) 10:1457  | https://doi.org/10.1038/s41598-020-58238-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

	12.	 Stoeckius, M. et al. Simultaneous epitope and transcriptome measurement in single cells. Nat. Methods 14, 865–868 (2017).
	13.	 Saka, S. K. et al. Immuno-SABER enables highly multiplexed and amplified protein imaging in tissues. Nat. Biotechnol. 37, 

1080–1090 (2019).
	14.	 Gong, H. et al. Simple Method To Prepare Oligonucleotide-Conjugated Antibodies and Its Application in Multiplex Protein 

Detection in Single Cells. Bioconjugate Chem. 27, 217–225 (2016).
	15.	 Nong, R. et al. Solid-phase proximity ligation assays for individual or parallel protein analyses with readout via real-time PCR or 

sequencing. Nat. Protoc. 8(1234), 1248 (2013).
	16.	 Yan, J. et al. A Universal Approach to Prepare Reagents for DNA-Assisted Protein Analysis. PLoS One 9, e108061 (2014).
	17.	 van Buggenum, J. A. et al. A covalent and cleavable antibody-DNA conjugation strategy for sensitive protein detection via immuno-

PCR. Sci. Rep-uk 6, 22675 (2016).
	18.	 Boeggeman, E. et al. Site Specific Conjugation of Fluoroprobes to the Remodeled Fc N-Glycans of Monoclonal Antibodies Using 

Mutant Glycosyltransferases: Application for Cell Surface Antigen Detection. Bioconjugate Chem. 20, 1228–1236 (2009).
	19.	 Adumeau, P., Sharma, S., Brent, C. & Zeglis, B. M. Site-Specifically Labeled Immunoconjugates for Molecular Imaging—Part 1: 

Cysteine Residues and Glycans. Mol. Imaging Biol. 18, 1–17 (2016).
	20.	 Kazane, S. A. et al. Site-specific DNA-antibody conjugates for specific and sensitive immuno-PCR. Proc. Natl Acad. Sci. 109, 

3731–3736 (2012).
	21.	 Rahim, M. K., Kota, R. & Haun, J. B. Enhancing Reactivity for Bioorthogonal Pretargeting by Unmasking Antibody-Conjugated 

trans -Cyclooctenes. Bioconjugate Chem. 26, 352–360 (2015).
	22.	 Weibrecht, I. et al. Visualising individual sequence-specific protein–DNA interactions in situ. N. Biotechnol. 29(589), 598 (2012).
	23.	 Mustafaoglu, N., Kiziltepe, T. & Bilgicer, B. Site-specific conjugation of an antibody on a gold nanoparticle surface for one-step 

diagnosis of prostate specific antigen with dynamic light scattering. Nanoscale 9, 8684–8694 (2017).
	24.	 Edelstein, A. D. et al. Advanced methods of microscope control using μManager software. J Biological. Methods 1, 10 (2014).
	25.	 Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9(676), 682 (2012).
	26.	 Maerle, A. V. et al. Development of the covalent antibody-DNA conjugates technology for detection of IgE and IgM antibodies by 

immuno-PCR. PLoS One 14, e0209860 (2019).
	27.	 Stoeckius, M. et al. Cell Hashing with barcoded antibodies enables multiplexing and doublet detection for single cell genomics. 

Genome Biol. 19, 224 (2018).

Acknowledgements
This study was supported by the Helmholtz Pioneer Grant, the ERC Grant (no. 772646/Acronym. 
MicroAdiPSChip) and BMBF Project PancChip. We would like to thank the antibody core facility of the 
Helmholtz Centrum for their pivotal help.

Author contributions
J.W., D.K. and S.R. conducted experiments. J.W. performed image analysis and statistical calculations. J.W., D.K. 
and M.M. wrote the manuscript. M.M. advised on the experiments. M.M. and H.L. supervised the project. All 
authors read and reviewed the manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41598-020-58238-6.
Correspondence and requests for materials should be addressed to M.M.
Reprints and permissions information is available at www.nature.com/reprints.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2020

https://doi.org/10.1038/s41598-020-58238-6
https://doi.org/10.1038/s41598-020-58238-6
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Preparation of single- and double-oligonucleotide antibody conjugates and their application for protein analytics

	Experimental Procedures

	Antibody-crosslinker conjugation. 
	Oligonucleotide-crosslinker conjugation. 
	Antibody-oligonucleotide conjugation. 
	Purification of the antibody-oligonucleotide conjugate. 
	Cell culture. 
	Immunofluorescence (IF). 
	Proximity ligation assay. 
	Sequences of used oligonucleotides. 
	Image acquisition. 
	CITE-seq. 

	Results and Discussion

	Antibody and oligonucleotide functionalization. 
	Antibody-oligonucleotide click conjugation and purification. 
	Influence of oligonucleotide length and secondary structure on the click conjugation yield. 
	Proximity ligation assay with single and double oligonucleotide-conjugated antibodies. 
	Single and double conjugated-oligonucleotide antibodies in quantitative sequencing read count statistics. 

	Conclusion

	Acknowledgements

	Figure 1 Click reaction yield in dependence of the molar ratio of DBCO-NHS to antibody used for the functionalization of the antibody.
	Figure 2 Ion exchange separation (IEX) of antibody-oligonucleotide conjugates.
	Figure 3 Temperature dependence of the oligonucleotide/antibody click conjugation kinetic.
	Figure 4 Influence of the oligonucleotide length and secondary structure on the antibody-oligonucleotide conjugation yield and specificity.
	Figure 5 Proximity ligation assay (PLA) with purified single and double oligonucleotide-conjugated antibodies compared to unpurified oligonucleotide-conjugated antibodies.
	Figure 6 Distribution of feature barcode binding events per single cell in a CiteSeq experiment with single and double oligonucleotide-conjugated anti-CD49e.
	Table 1 Oligonucleotides sequences.




