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Children at increased genetic risk for type 1 diabetes
(T1D) after environmental exposures may develop pan-
creatic islet autoantibodies (IA) at a very young age.
Metabolic profile changes over timemay imply responses
to exposures and signal development of the first IA. Our
present research in The Environmental Determinants of
Diabetes in the Young (TEDDY) study aimed to identify
metabolome-wide signals preceding the first IA against
GAD (GADA-first) or against insulin (IAA-first). We profiled
metabolomes by mass spectrometry from children’s
plasma at 3-month intervals after birth until appear-
ance of the first IA. A trajectory analysis discovered each
first IA preceded by reduced amino acid proline and
branched-chain amino acids (BCAAs), respectively. With
independent time point analysis following birth, we dis-
covered dehydroascorbic acid (DHAA) contributing to
the risk of each first IA, and g-aminobutyric acid (GABAs)
associated with the first autoantibody against insulin
(IAA-first). Methionine and alanine, compounds pro-
duced in BCAA metabolism and fatty acids, also pre-
ceded IA at different time points. Unsaturated triglycerides
and phosphatidylethanolamines decreased in abundance
before appearance of either autoantibody. Our findings

suggest that IAA-first and GADA-first are heralded by
different patterns of DHAA, GABA, multiple amino acids,
and fatty acids, which may be important to primary pre-
vention of T1D.

Primary metabolites and complex lipid concentrations in
children’s blood may reflect genetic and environmental
exposure variations that contribute to the development of
diseases. Research of the prodrome to type 1 diabetes
(T1D) has indicated a strong association of the metabo-
lome or lipidome in healthy infants who later developed
pancreatic islet autoantibodies (IA) as markers of islet
autoimmunity and progressed to T1D (1–3). In a first
investigation, the appearance of autoantibodies against
insulin (IAA) and GAD (GADA) was preceded by dimin-
ished ketoleucine and elevated glutamic acid (4). Subse-
quently, it was reported that, in children born to a father
or a mother with T1D, autoantibody-positive children had
higher levels of odd-chain triglycerides (TGs) and poly-
unsaturated fatty acid–containing phospholipids at first
autoantibody appearance than autoantibody-negative children
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(5). Children who had a first-degree relative with T1D and
developed autoantibodies by 2 years of age also had two-
fold lower levels of methionine compared with those who
developed autoantibodies in later childhood or remained
autoantibody negative (1,5,6). However, the studies ref-
erenced abovemostly identified biomarkers for IA and T1D
based either on longitudinal blood samples at and after
seroconversion (5) or on samples at only one time point
prior to seroconversion (4). The study in 3 used longitu-
dinal metabolome in plasma prior to IA only for the
children with two or three autoantibodies, without con-
sidering the subtypes of first-appearing IA. For prediction
of IA for the use of primary prevention therapy, it is critical
to analyze the preseroconversion metabolome in longitu-
dinal samples after birth, as well as to compare metabolic
patterns preceding IA between different first-appearing
autoantibodies.

The Environmental Determinants of Diabetes in the
Young (TEDDY) is a multicenter prospective cohort study
to identify environmental factors that trigger or protect
against the development of islet autoimmunity and T1D.
The first end point is the appearance of a first IA such as
IAA, GADA, IA-2A, or zinc transporter 8 (ZnT8)A. The
second end point is the clinical onset of diabetes (7,8). The
end point for IA is the first persistent confirmed autoan-
tibody, defined as one autoantibody confirmed on two or
more consecutive samples (9). The first persistent con-
firmed, i.e., first-appearing autoantibodies, can be one or
a combination of GADA, IAA, and IA-2A. IAA as the first-
appearing autoantibody (IAA-first) was associated with
HLA DR4-DQ8 and a peak of IAA incidence rate at 1–2
years of age, while GADA as the first-appearing IA (GADA-
first) tended to occur in children with DR3-DQ2 and
displayed a later incidence peak (10). Furthermore, IAA-
first was related to the INS gene polymorphism, while
GADA-first was related to polymorphisms in the ERBB3,
SH2B3, and BACH2 gene polymorphisms (10). Probiotics
before 28 days of age reduced the risk for IAA-first but not
GADA-first (11). Hence, we aimed to investigate whether
longitudinal metabolome profiles of TEDDY subjects show
similar patterns associated with the risk of different first-
appearing autoantibodies. The current study used mass
spectrometry (MS) with gas chromatography time-of-flight
(GC-TOF MS) and liquid chromatography quadrupole time
of flight (LC-QTOF MS) to analyze nested case-control
TEDDY plasma samples at the West Coast Metabolomics
Center, University of California, Davis.

Existing metabolomics studies have revealed that the
human metabolome may be affected by age, genetics,
seasons, and environmental exposures (12–15). In this
study, we performed metabolome-wide trajectory and in-
dependent time point analyses, respectively, to identify
trajectories and precursory biomarkers per time point
associated with prospective IA risk without considering
seasonality or environmental exposure factors. Recent re-
search in TEDDY identified genetic risks for IA (16,17),
which were also incorporated as covariates in our analyses.

In addition to identifying predictive trajectories and bio-
markers, we performed metabolite set enrichment analysis
based on time points at infancy to show metabolites and
lipid clusters enriched for the compounds potentially
associated with IA risk.

RESEARCH DESIGN AND METHODS

Mass Spectrum Profiling of Longitudinal Plasma
Samples
The TEDDY study enrolled 8,676 children based on HLA-
DR-DQ haplogenotypes for the risk of T1D in a prospective
cohort. Blood sample collection for participants in TEDDY
began at the 3months of age visit and continued at a 3-month
interval up to development of IA before 4 years of age
(7,18), although most subjects have randomly missing
visits. If a subject develops persistent IA, they continue
on the 3-month interval schedule up to the age of 15 years;
otherwise, they switch to a 6-month interval schedule. The
metabolomes of the TEDDY first nested case-control
(NCC) cohort (19,20) subjects for IA were profiled from
10,522 plasma samples. Characteristics of the study pop-
ulation and distribution of plasma samples in the TEDDY
NCC cohort have previously been described (9).

The primary metabolite assay in TEDDY was profiled by
GC-TOF MS on a LECO Pegasus III instrument, annotated
by BinBase (21). The complex lipid assay was analyzed by
charged-surface hybrid column with electrospray ioniza-
tion (CSH-ESI) on Agilent ultrahigh-pressure LC-QTOFMS
instruments, annotated with LipidBlast (22). Peaks from
GC-TOF MS platform were automatically detected
and deconvoluted from coeluting peaks by the LECO
ChromaTOF (23) software (v3.0). Raw data output from
CSH-ESI-QTOF instruments were processed in an untar-
geted (qualitative) manner by Agilent software (24) Mass-
Hunter Qual (v. B.05.00) to find peaks. Peak features are
then imported into Mass Profiler Professional for peak
alignments to seek which peaks are present in multiple
chromatograms. These peaks are then collated and con-
strained within the MassHunter quantification software
(v. B.05.01) on the accurate mass precursor ion level, using
the MS information and the LipidBlast library. The TEDDY
Data Coordinating Center applied a comprehensive nor-
malization pipeline, systematic error removal using ran-
dom forest (SERRF) (25), to the raw quantified intensity of
primary metabolites and complex lipids and successfully
removed laboratory running order effects. The GC-TOF
normalized data contained compounds with minimum
abundance levels occurring in.10 samples. The recursive
minimum abundances were treated as missing and then
filled by the values generated from a label-free metabolo-
mics missing value imputation tool, GMSimpute (26).

Time Course Differential Analysis for Trajectories
The metabolome-wide trajectory analysis was performed
by time course differential analysis in the Bioconductor
package edge (27,28), which was developed for microarray
gene expression time course analysis. The abundances of
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primary metabolites and complex lipids were first trans-
formed to log2 scale and then fitted by a mixed-effects
model. Age points were modeled as a random effect, and
the mean abundance over time was a fixed effect modeled
by cubic spline. IA case versus control was the biological
group factor for comparison, and the matched risk pairs
were included as an adjustment covariate. Significance of
contrast between IA case and control subjects was de-
termined by the P values of likelihood ratio test on full and
null models, where null model included age random effect
and the adjustment covariate.

Statistical and Machine Learning Methods for
Independent Time Point Biomarkers
For each visit before IA seroconversion, we evaluated the
interaction between metabolome and genetics risks using
a mixed-effects model (29). The known genetic risk factors
were HLA haplogenotypes and five single nucleotide poly-
morphisms (SNPs), rs2476601 (PTPN22), rs2816316 (RGS1),
rs2292239 (ERBB3), rs10517086, and rs3184504 (SH2B3),
associated with IA risk, reported in previous TEDDY genetic
analyses (16,17). The HLA subtyping for TEDDY-eligible
subjects has previously been described (8,17), including
nine different haplogenotypes, and are converted to a bi-
nary factor—DR3/4 compared with others—for this analysis.
The mixed-effects modeling was applied to each compound
individually. The known compounds with Benjamini-
Hochberg–adjusted (30) P values,0.1 were considered to
be associated with a genetic risk.

Since none of the metabolites were found to interact
with known genetics risks for IA, we first employed the
elastic net conditional logistic regression (CLR) model (31)
without genetic risk factors to select a subset of candidate
compounds contributing to the risk of IA. This machine
learning method combines ridge (32) and lasso (33) re-
gression penalties and used the strata of subjects to
account for the nested case-control design. The CLR
coefficients were estimated by elastic net penalty con-
straint with the weight for lasso at a 5 0.1. These
candidate compounds per time point were selected based
on a 10-fold cross validation, implemented in R package
clogitL1. Secondly, we applied the CLR without elastic net
penalty to each candidate compound, using the available
profiles of IA case and control subjects per time point. In
this step, HLA DR3/4 and the five IA risk SNPs were
included as covariates to account for possible false neg-
atives in the association analysis of metabolites with
genetic factors, and the compounds with P value ,0.05
were selected as the “potential biomarkers” for end point
risk. In the third step, for each time point we reapplied one
CLR model to the potential biomarkers simultaneously
with HLA DR3/4 and the risk SNPs as covariates and then
identified significant biomarkers by the threshold of P ,
0.05. This analysis was performed sequentially by time
points.

In this analysis, we did not select the biomarkers from
compound-wise multiple hypothesis testing because the

limited number of preseroconversion metabolic profiles at
a later age may result in reduced testing power and no
detected biomarkers for a uniform adjusted P value thresh-
old across time points. In addition, it is hard to select the
optimal uniform threshold of adjusted P values at different
time points, while varying thresholds across time points
are also prone to bias. Furthermore, conditional logistic
regression modeling of multiple potential biomarkers may
lead to false negatives in lipidomics biomarkers, due to the
strong correlation among complex lipids. Therefore, we
also performed the metabolite set enrichment analysis as
follows.

Metabolite Set Enrichment Analysis
The metabolites and lipids were further investigated for
the association with IA risk by metabolite set enrichment
analysis using ChemRICH (34). We first used the InChi-
Keys of primary metabolites and complex lipids to identify
the corresponding PubChem CID and SMILES ID via the
Chemical Translation Service (35) and the PubChem Iden-
tifier Exchanger tool. Next, for each compound per infant
age visit (3, 6, and 9 months), we tested the association
against the risk of IA via the CLR model with HLA
genotypes and risk SNPs as covariates. We used the small-
est P value among these three visits per compound and the
corresponding odds ratio as the input for ChemRICH, since
the compound-wise P values at one single visit may result
in few enriched clusters.

Data and Resource Availability
The data sets generated and analyzed during the current
study will be made available in the National Institute of
Diabetes and Digestive and Kidney Diseases Central Re-
pository at https://www.niddkrepository.org/studies/teddy.

RESULTS

Longitudinal Metabolome in TEDDY Nested
Case-Control Design
The NCC cohort in TEDDY consists of 2124 subjects grouped
into multiple sets. Each set or “pair” contains a case subject
(either IA or T1D positive) and control subjects matched by
clinical sites, T1D family history (first-degree relative), and
sex (9). The case:control ratio within each matched pair in
the TEDDYmetabolomics study is 1:3 for both IA and T1D.
In the current study, we included subjects in the NCC
cohort only for IA (414 case and 1,234 matched control
subjects), ignoring their progression to T1D.

The details about enrolling eligible TEDDY subjects, the
first NCC cohort for IA and T1D, and the collection of
longitudinal plasma samples are provided in the flowchart
in Supplementary Fig. 1. Blood samples at visits after
seroconversion were not included in the present analysis.
The number of IA case subjects having plasma samples up
to end point within 3 years (36 months) after birth is
shown in Table 1. The numbers in boldface type in Table 1
represent case subjects with plasma samples available at
seroconversion, which may be less than the total number
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of case subjects per end point age. A complete summary for
the metabolome profiles of all IA case subjects in the
TEDDY NCC cohort is provided in Supplementary Table
1. The total number of IA case subjects dropped to #38
if preseroconversion profiles at or after the 39-month
visit were analyzed. The 36-month visit was the latest
age point after birth in which at least 50 IA case subjects
had concurrent plasma samples available and their first-
appearing autoantibody had not been positively con-
firmed. Therefore, for maintaining statistical power,
most of our downstream analyses included preseroconver-
sion visits up to 3 years of age.

The longitudinal metabolomes for matched control
subjects in the TEDDY NCC design were also profiled via
mass spectrometry platforms, the available visits for

which may not be identical to those of case subjects. In
total, the metabolome-wide profiles for all subjects in
the TEDDY NCC cohort revealed 144 known pri-
mary metabolites and 213 known complex lipids. Down-
stream statistical analyses need to be performed on
metabolites and lipids, respectively, because of different
instruments used in profiling. Furthermore, the longitu-
dinal abundance of certain metabolites or lipids up
to IA seroconversion in TEDDY subjects displayed vis-
ible age patterns (Fig. 1), such as glycine, valine, leu-
cine, isoleucine, 2‐hydroxybutyric acid in Fig. 1A, TGs,
phosphatidylethanolamines (PEs), phosphatidylcholines
(PCs), and plasmenyl-PEs in Fig. 1B. For better visualiza-
tion, we plotted the top metabolites and lipids in Fig. 1,
selected by the smallest P values of the Spearman

Table 1—Number of available plasma samples by 3 years (36 months) of age for TEDDY subjects developing IA

IA case subjects’ end point age (visit month) Total number
of samples3M 6M 9M 12M 15M 18M 21M 24M 27M 30M 33M 36M .36M

Time point (visit month)
3M 14 14 37 28 33 26 24 23 26 13 7 12 49 306
6M 14 44 29 30 23 27 19 25 16 13 12 51 303
9M 48 26 32 26 29 21 29 16 14 14 55 310
12M 29 28 29 27 22 27 15 14 17 48 256
15M 34 23 28 20 28 15 13 17 53 231
18M 31 33 19 31 15 14 16 55 214
21M 33 18 25 15 16 12 54 173
24M 26 26 13 17 14 46 142
27M 31 15 14 13 50 123
30M 19 16 13 48 96
33M 18 13 54 85
36M 16 51 67

Total number of case subjects 15 18 52 35 38 35 38 27 32 19 19 17 69 2,306

The numbers in boldface type on the table diagonal indicate case subjects with plasma samples available at seroconversion. Plasma
samples after IA seroconversion (below the table diagonal) were not included in the current analysis. M, months.

Figure 1—Age effect on the longitudinal metabolome of TEDDY subjects in the nested case-control cohort for islet autoimmunity.
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correlation test for compound abundance in relation to
the 3-month age. This age effect on the TEDDY child-
ren’s metabolome may be confounding with underlying
case to control contrast over time. Hence, we needed to
identify the compounds with differentiated trajectories
between case and control subjects in the presence of
a common age effect.

Differentiated Preseroconversion Trajectories
We compared the trajectories of known compounds be-
tween IA case and control subjects via a metabolome-wide
trajectory differential analysis based on matched pairs for
GADA-first and IAA-first, respectively. The case subjects in
each autoantibody subset had seroconversion at various
ages ranging from 6 months to 72 months. The preser-
oconversion visits used in this trajectory analysis were at
no later than 36 months of age. A trajectory might be
“falsely” identified as different if the fold change across
visits after 36 months of age was biased due to limited IA
cases (e.g., ,15 in IAA-first). In the first step, the signif-
icance of case compared with control over time per com-
pound was evaluated by the likelihood ratio test P value,
listed in Supplementary Tables 2 and 3. Second, we

reapplied the analysis to matched pairs with end point
age before and after 2 years of age, individually, confirming
that valine (P 5 0.0003) and isoleucine (P 5 0.01) were
still different in subjects who experienced IAA-first after
2 years of age, while piperidone (P 5 0.006) and proline
(P 5 0.0004) remained different for GADA-first after
2 years of age. On the other hand, none of the metabolic
trajectories were found different with statistical signif-
icance (P, 0.01) before 2 years of age for either autoantibody.

The trajectories differentiating IA case from control
subjects with P value ,0.01 in both steps were plotted
(Fig. 2) based on end point age, displaying consistently
higher or lower mean abundance level across multiple age
points before the onset of each autoantibody. According to
the mean abundance and P values (Fig. 2), during 12–
24 months of age constantly reduced levels of isoleucine
and valine were potential signals for the onset of IAA-first
after 2 years of age, while a similar and stable pattern in
proline was found in subjects having GADA-first onset
after 2 years of age. GADA-first case subjects with the end
point before 2 years of age also displayed reduced levels of
proline at preseroconversion visits (Fig. 2A), although
statistical power in this subset analysis was limited due

Figure 2—Metabolites with preseroconversion trajectories identified as top differentiated in the two-step time course analysis. Mean
abundance of metabolites per age point is plotted for matched pairs who had preseroconversion measurement available and experienced
seroconversion before 2 years of age (A) or after 2 years of age (B).P values,0.01 in the second step of time course analysis are presented on
the plots.
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to low incidence rate of early-age GADA-first (10). An
increased level of piperidone throughout 2–3 years of
age for the later onset of GADA-first was also observed
(Fig. 2B). The higher abundance in piperidone may be
a result of dietary patterns, since piperidone is derived
from piperidine, which is mainly present in peppers,
barley, and flavoring agents (36). These top-differentiated
preseroconversion trajectories for IAA-first or GADA-first
compared with control subjects might be associated with
genetic risk factors, and the association between indepen-
dent time point levels of these metabolites and future risk
of IA is still unknown. Therefore, we further performed an

independent time point analysis on subsets of metabolites
or lipids and multiple genetic risks simultaneously to
identify IA-risk metabolic biomarkers.

Precursory Biomarkers for IA at Independent Time
Points
We selected independent time points by two scenarios to
investigate whether the association between IA risk and
compounds is age dependent or related to time to sero-
conversion, i.e., the preseroconversion visits up to 3 years
of age or the visits within 1 year prior to seroconversion.
Age at each time point or visit for matched case and control

Table 2—GADA-first or IAA-first precursory biomarkers per age point regardless of time to seroconversion

Time after birth Metabolite Autoantibody Odds ratio Lower 95% Upper 95% P value

3 months Lactulose GADA-first 0.7899 0.6556 0.9516 0.0131
DHAA GADA-first 1.3351 1.0306 1.7294 0.0286

Ethanolamine GADA-first 1.223 1.0183 1.4689 0.0313
Methanolphosphate GADA-first 0.674 0.461 0.9854 0.0418

Lauric acid IAA-first 0.6002 0.4439 0.8116 0.0009
Diglycerol IAA-first 0.5564 0.3900 0.7937 0.0012
DHAA IAA-first 1.3360 1.0922 1.6341 0.0048

g-aminobutyric acid IAA-first 1.3399 1.0684 1.6804 0.0113
Uric acid IAA-first 1.4010 1.0013 1.9600 0.0491

6 months Methionine GADA-first 0.5441 0.3695 0.8011 0.0020
e caprolactam GADA-first 0.5790 0.3951 0.8485 0.0051
Diglycerol GADA-first 1.6853 1.1112 2.5561 0.0140

5-methoxytryptamine IAA-first 0.7152 0.5813 0.88 0.0015
Lactamide IAA-first 1.2384 1.0309 1.4877 0.0223

Itaconic acid IAA-first 1.4184 1.0385 1.9372 0.0280

9 months 2,3-dihydroxybutanoic acid NIST GADA-first 0.4850 0.3064 0.7678 0.0020
2-hydroxyglutaric acid GADA-first 1.5644 1.1141 2.1966 0.0098

Xylitol GADA-first 0.6113 0.3835 0.9745 0.0386
Pelargonic acid IAA-first 0.4489 0.2596 0.7762 0.0042

5-methoxytryptamine IAA-first 1.2375 1.0523 1.4553 0.0100
1-monoolein IAA-first 1.2602 1.0564 1.5033 0.0102
Threonic acid IAA-first 1.7957 1.1424 2.8225 0.0112

Uridine IAA-first 1.5648 1.0794 2.2685 0.0181

12 months Xylose GADA-first 0.7681 0.6143 0.9603 0.0206
Lactic acid IAA-first 1.5210 1.1226 2.0607 0.0068
Cystine IAA-first 0.5912 0.3860 0.9057 0.0157
Alanine IAA-first 0.6456 0.4371 0.9536 0.0279

15 months Arachidonic acid GADA-first 1.4607 1.0818 1.9724 0.0134
Levoglucosan IAA-first 1.3530 1.0599 1.7271 0.0152

18 months Lactose GADA-first 0.5541 0.3336 0.9204 0.0226
Benzoic acid IAA-first 0.4786 0.2550 0.8983 0.0218

21 months Hippuric acid GADA-first 0.7381 0.5896 0.9239 0.0080
Ethanolamine GADA-first 0.8050 0.6689 0.9689 0.0218

24 months Ribose GADA-first 1.8469 1.1923 2.8608 0.006
e-caprolactam IAA-first 2.8974 1.3804 6.0818 0.0049

3-hydroxybutyric acid IAA-first 0.6948 0.5206 0.9272 0.0134
Uracil IAA-first 2.1945 1.0151 4.7443 0.0457

27 months trans-4-hydroxyproline GADA-first 0.3086 0.1175 0.8107 0.0170
Pyruvic acid GADA-first 0.7914 0.6332 0.9891 0.0398

30 months Proline GADA-first 0.0638 0.0144 0.2822 0.0003
Piperidone GADA-first 2.0026 1.3209 3.0362 0.0011
Lauric acid GADA-first 0.2793 0.1140 0.6844 0.0053
Linoleic acid GADA-first 0.4816 0.2579 0.8993 0.0218

33 months Octadecanol GADA-first 4.9297 1.2056 20.1565 0.0264

NIST, National Institute of Standards and Technology.
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subjects was identical in this analysis. The identified pre-
cursory metabolic biomarkers for each first-appearing
autoantibody were summarized in Tables 2 and 3 along with
P values and odds ratios. Higher levels of dehydroascorbic
acid (DHAA) (oxidized vitamin C) after birth (3 months of
age) significantly increased the prospective risk of either
GADA-first (P 5 0.028) or IAA-first (P 5 0.0048) (with
odds ratio 1.34 [Table 2]). Furthermore, g-aminobutyric
acid (GABA) after birth was found to be associated with
future risk of IAA-first only (P 5 0.0113). Moreover, our
analysis found the risk of IAA-first or GADA-first to be
negatively associated with amino acid alanine (Tables 2
and 3) and higher risk of GADA-first to be associated
with reduced level of amino acid methionine at 6 months
of age (Table 2). We also identified fatty acids at differ-
ent time points as IA precursory biomarkers for GADA-

first onset, i.e., lauric acid and linoleic acid and
palmitoleic acid (Tables 2 and 3), which might be a result
of daily diet exposures. Intermediate compounds in
a branched-chain amino acid (BCAA) metabolic pathway,
i.e., a-ketoisocaproic acid and a-ketoisovaleric acid
(Table 3), were precursors for GADA-first and IAA-first,
respectively.

Few precursory biomarkers were found in lipids com-
pared with primary metabolites, as strong correlation
among lipids alleviated the significance of lipid biomarkers
fitted simultaneously in a conditional logistic regression
model. In addition, primary metabolite biomarkers were
rarely detected after 18 months of age for IAA-first, while
GADA-first metabolite biomarkers were present up to
33 months. This contrast of age points between GADA-
first and IAA-first metabolic biomarkers is consistent

Table 3—GADA-first or IAA-first precursory biomarkers per time point within 1 year before seroconversion

Months to IA Metabolite Autoantibody Odds ratio Lower 95% Upper 95% P value

3 months Palmitoleic acid GADA-first 1.2282 1.0374 1.4541 0.017
Salicylaldehyde GADA-first 0.7085 0.5268 0.9529 0.0227

Xylose GADA-first 0.7646 0.5905 0.9902 0.0419
Lactamide IAA-first 1.3493 1.1034 1.6501 0.0035

Indole-3-lactate IAA-first 1.4403 1.0667 1.9448 0.0172
Xylose IAA-first 1.1904 1.0095 1.4037 0.0382

6 months N-methylalanine GADA-first 0.4313 0.2363 0.7874 0.0062
Salicylaldehyde GADA-first 1.3796 1.0315 1.845 0.0301

Tagatose IAA-first 0.844 0.7253 0.982 0.0282
Tocopherol a IAA-first 2.1471 1.2686 3.6338 0.0044

9 months Salicylaldehyde GADA-first 1.3981 1.048 1.8653 0.0227
Phosphate GADA-first 2.1096 1.1297 3.9393 0.0191

2-ketoisovaleric acid IAA-first 1.3308 1.0596 1.6714 0.014

12 months Hexitol GADA-first 0.5098 0.332 0.7829 0.0021
Alanine GADA-first 0.2094 0.0736 0.5958 0.0034

N-acetylmannosamine GADA-first 0.4875 0.2908 0.8173 0.0064
Phosphoethanolamine GADA-first 1.7059 1.1561 2.5171 0.0071

Xylose GADA-first 1.4224 1.0944 1.8488 0.0084
2-ketoisocaproic acid GADA-first 0.4103 0.2098 0.8025 0.0093

1-monoolein GADA-first 1.3622 1.069 1.736 0.0125
1,2-dihydroxycylohexane NIST IAA-first 1.379 1.0262 1.8532 0.0331

Levoglucosan IAA-first 1.2465 1.0139 1.5323 0.0365

NIST, National Institute of Standards and Technology.

Table 4—Top compound clusters enriched for IA-risk primary metabolites or complex lipids at infant age

Compound cluster name
Cluster
size P values

Adjusted
P values Key compound

Altered
metabolites Increased Decreased

GADA-first
Unsaturated TGs 53 4E-14 1E-12 TG62:1 5 0 5
Unsaturated PCs 40 5E-07 9E-06 Plasmenyl-PC38:5 6 1 5
Plasmalogens 8 4E-05 0.0005 Plasmenyl-PE36:6 2 0 2
Sphingomyelins 14 0.0005 0.005 SM(d18:1/18:1) 2 1 1
PEs 13 0.002 0.012 PE38:2 3 0 3
Unsaturated diglycerides 7 0.002 0.012 DG38:5 2 0 2

IAA-first
Unsaturated TGs 53 5E-14 2E-12 TG52:4 11 0 11
Sugar alcohols 11 1E-05 0.0002 Glycerol 3 1 2
Unsaturated

phosphatidylcholines 40 9E-05 0.0011 PC32:1 8 3 5
Butyrates 4 0.0013 0.0091 g-aminobutyric acid 3 2 1
PEs 13 0.0082 0.056 LPE18:2 4 1 3
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with the mean onset ages for these autoantibodies, i.e.,
33 months for GADA-first and 18.3 months for IAA-
first. Reduced sample size at later age points may also
lead to the absence of metabolic biomarkers. To verify
this possibility, we further visualized the contrast be-
tween the metabolite profiles of IA case and control
subjects prior to seroconversion at 3-, 12-, 24-, and
36-month visits, individually, using partial least squares
regression with discriminant analysis (37), presented by
principal components plots in Supplementary Fig. 2. The
contrast between case and control subjects was greater at
2–3 years of age compared with earlier visits. Therefore, it
was the reduced statistical power of limited preserocon-
version profiles at 2–3 years of age that resulted in few
biomarkers detected for future risk of IAA-first.

Primary Metabolites and Complex Lipid Sets Enriched
for Prospective IA Risk
The third result based on longitudinal metabolome profiles
is primary metabolite or complex lipid clusters enriched for
compounds potentially associated with IA-risk. The input
and output information of ChemRICH is listed in Supple-
mentary Tables 4 and 5. The top enriched compound
clusters were selected by a threshold of adjusted P

value ,0.05 (Table 4). The results showed an overlap
and some difference in the enriched compound clus-
ters between GADA-first and IAA-first. Specifically, un-
saturated TGs, unsaturated PCs, PEs were enriched for
both autoantibodies, while sugar alcohols and butyrates
were enriched only for IAA-first and plasmalogens, sphin-
gomyelins, unsaturated diglycerides were enriched only for
GADA-first. For either first-appearing autoantibody, un-
saturated TGs and PEs decreased prior to future serocon-
version, while the butyrate cluster (containing GABA) was
positively associated with the risk of IAA-first, confirming
a similar result from the independent time point analysis.

DISCUSSION

The TEDDY study offers a robust analysis of the metab-
olome in 417 infants who developed IA, with primarily
either IAA only (49%) or GADA only (33%) as the first
appearing autoantibodies. The subjects who experienced
both IAA and GADA (14%) as the first appearing autoanti-
bodies were not considered in the current analysis. Our
aim in the current study was to discover longitudinal
metabolic patterns preceding different first appearing IA
in the presence of the well-known age effect on metabolic
profiles (3,5).

Our data suggest that IAA-first and GADA-first differ in
the way that metabolites and lipids precede seroconver-
sion. The significantly lower abundance of isoleucine and
valine prior to seroconversion in IAA-first subjects (Fig. 2)
is of interest, as isoleucine and valine are BCAAs widely
known to potentiate glucose-stimulated insulin secretion
(38,39). On the other hand, proline as a nonessential
amino acid produced from glutamate cyclization (40)
remained at a reduced level across multiple visits before
IA (Fig. 2). In addition to the differentiated trajectory,
proline was also found to be negatively associated with
the risk of GADA-first in independent time point analysis.
Proline biosynthesis involves L-glutamate, which interacts
with the metabolic pathway of glutamic acid (41), GAD,
and GABA (42), as illustrated in Fig. 3. Another critical
metabolite derived from glutamic acid, i.e., a-ketoglutarate
(42), also displayed lower concentration in GADA-first case
compared with control subjects over time before serocon-
version (Fig. 4). These results suggest that an enduring
decrease in proline and lower a-ketoglutarate level
may imply an abnormal glutamic acid metabolism caus-
ally related to the underlying change of GAD enzymatic
activity in subjects who later developed GADA-first,
with relatively higher glutamic acid levels prior to se-
roconversion (Fig. 4). The elevated level of glutamic acid
may also be an indicator for the emergence of GADA-
first.

Another major finding in the current study was the
association between plasma GABA after birth and the
future appearance of IAA-first. This finding was based on
both independent time point analysis (Table 2) and
enrichment analysis results (Table 4). Why GABA levels
would be associated with IAA-first and not GADA-first may

Figure 3—Metabolic pathways involving trajectory signals and in-
dependent time point biomarkers for IA in TEDDY. TCA, tricarboxylic
acid.
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be explained by the fact that b-cell GAD65, which produces
GABA, may not be affected before GADA onset. The impact
of GABA on the pancreatic b-cell function has been
thoroughly investigated (43,44). The odds ratio for plasma
GABA (Table 2) for IAA-first indicates that higher levels of
GABA immediately after birth may be related to b-cell
dysfunction, with the appearance of IAA-first possibly
related to abnormal insulin synthesis or secretion at early
ages. In contrast, we did not find the contribution of GABA
to future risk of seroconversion in GADA-first children,
providing evidence that GABA has no causal influence on
the appearance of GADA-first.

A third major finding of biomarkers for the risk of IA
in TEDDY was DHAA after birth. DHAA identified at
3 months of age did not discriminate between GADA-first
and IAA-first but showed statistical significance for both
autoantibodies. Elevated DHAA or oxidized vitamin C was
found to inhibit insulin secretion in mice (45–47), and
exposure of isolated mouse pancreatic islets to DHAA or
vitamin C reduced the responsiveness of the islets (48) or
led to inhibition of insulin secretion from the pancreatic
b-cells (47). The results for DHAA in TEDDY samples
would seem to be consistent with the existing findings,
showing a possible suppressive effect on human pancreatic
islet b-cells. Another recent study in TEDDY found im-
munoassay measurements of plasma vitamin C levels to be

associated with lower risk of IAA but not GADA. Further
analyses would therefore be required to include immuno-
assay measurement of DHAA to detail the possible impor-
tance of the vitamin C/DHAA ratio and its regulation.
Other compounds identified as contributing to IA devel-
opment in TEDDY were also found to be important metabolic
features in existing T1D-related studies, such as amino
acids alanine (4) andmethionine (5), fatty acids (49), vitamin E
(45), sugar alcohols, and unsaturated TGs (5,50). Furthermore,
we observed (Table 2) 5-methoxytryptamine at ages 6months
and 9 months contributing to the risk of IAA-first with
association altered from positive to negative between 6 and
9months, prior to and near the age of population-wide IAA-
first incidence peak (10). 5-methoxytryptamine is a metabo-
lite of melatonin and serotonin, which have been linked to
diabetes and autoimmune disorders in previous studies
(51,52).

The current study in TEDDY represents the largest
prospective cohort analysis of metabolomes in children at
increased genetic risk for T1D and identifies biomarkers
for islet autoimmunity (stage I and II) that precedes the
clinical onset of diabetes (stage III) (53). Similar observa-
tions were found in the Type 1 Diabetes Prediction and
Prevention (DIPP) study (4) reporting that changes in
GABA, glutamic acid, glutamine, a-ketoglutarate, leucine,
and plasmenyl-PCs (ether PCs) were age dependent and

Figure 4—Mean abundance of preseroconversion GABA, glutamic acid, glutamine, a-ketoglutarate, leucine, and plasmenyl-PC (ether PC)
per age point for case and control subjects in GADA-first and IAA-first groups.
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could be associated with the onset of GADA and IAA. Based
on the TEDDY longitudinal metabolome profiles, we not
only confirmed the DIPP findings using average abundance
of these compounds across time points but also separated
the age and time-to-seroconversion effects (Fig. 4 and
Supplementary Fig. 3). The trend of ether PC between
1 and 2 years of age in TEDDY subjects was similar to the
change over time before GADA-first onset observed in
DIPP, which was the result of overlapping effects of age
and time to seroconversion. On the other hand, the
decrease in GABA levels within 1 year before serocon-
version observed in DIPP was a pattern determined by time
to seroconversion instead of age. Furthermore, our results
in metabolite enrichment analysis (Table 4) not only agreed
with the reduced level of PC, TGs and plasmenyl- (or
ether) phospholipids found in individuals who devel-
oped T1D (4) but also revealed lower PE and sugar
alcohols during infancy associated with future onset
of IA.

A limitation to the current study is the quarterly time
sampling from 3 months of age and onward. The effect of
age on metabolites and complex lipids (4,5) would have
been better understood with a more frequent blood sam-
pling, especially in relation to IAA as the first appearing
autoantibody. IAA-first has been related to prior infectious
episodes both in DIPP (54) and TEDDY (55), and at this
early age, statistical analyses will have to take both age-
related effects and environmental exposures into account
to further delineate the mechanisms that trigger an au-
toimmune response against insulin.

Current analyses focused on metabolic markers for IA
prior to seroconversion and included TEDDY participants
who only developed IAA or GADA as the first-appearing
autoantibody. It is worthwhile to extend future analyses to
participants who experienced multiple autoantibodies ei-
ther at seroconversion or throughout the follow-up, since
the age at development of multiple autoantibodies has
been found associated with the risk of progression to T1D
(16). Genetics or environmental causes leading to meta-
bolic signals (such as DHAA, GABA, and proline) identified
in present analyses were still unknown and should be
investigated further jointly with genome-wide SNP data,
gut microbiome, and dietary patterns.

Conclusion
These results from metabolome-wide trajectory, indepen-
dent time point, and enrichment analyses support the
notion that the onset of IA as GADA-first or IAA-first in
TEDDY children is heralded by distinct metabolic pre-
cursors in plasma after birth. The precursory signals for
each autoantibody include DHAA; GABA; amino acids
proline, alanine, and methionine; and compounds in
BCAA metabolism as well as fatty acids. Unsaturated
TGs and PEs at infant age were found to be decreased
before appearance of either autoantibody. The distinct
metabolic patterns for these autoantibodies support the
idea that the causes of each type of initial autoimmunity

may be different, and may account for the earlier in-
cidence peak of IAA-first compared with that of GADA-first
in TEDDY.
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