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Abstract

Mast cells are a major component of the immune microenvironment in tumour tissues and 

modulate tumour progression by releasing pro-tumorigenic and anti-tumorigenic 

molecules. Regarding the impact of mast cells on the outcomes of patients with lung 

adenocarcinoma (LUAD) patient, several published studies have shown contradictory 

results. Here, we aimed at elucidating the role of mast cells in early-stage LUAD. We 

found that high mast cell abundance was correlated with prolonged survival in early-stage 

LUAD patients. The mast cell-related gene signature and gene mutation datasets were 

used to stratify early-stage LUAD patients into two molecular subtypes (subtype one and 

subtype two). The neural network-based framework constructed with the mast cell-related 

signature showed high accuracy in predicting response to immunotherapy. Importantly, 

the prognostic mast cell-related signature predicted the survival probability and the 

potential relationship between TP53 mutation, c-MYC activation and mast cell activities. 

The meta-analysis confirmed the prognostic value of the mast cell-related gene signature. 

In summary, this study might improve our understanding of the role of mast cells in 

early-stage LUAD and aid in the development of immunotherapy and personalized 

treatments for early-stage LUAD patients.

Keywords: early-stage lung adenocarcinoma (LUAD); mast cell; prognosis; 

immunotherapyA
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Introduction

Lung adenocarcinoma (LUAD) is one of the most complex and heterogeneous 

malignancies, both in molecular and phenotypic terms (Li et al., 2016; Mao et al., 2016; 

Wang et al., 2019a). The incidence of LUAD has been increasing in recent years. The 

treatment for early-stage LUAD includes operation, chemotherapy and radiotherapy 

(Besse et al., 2015). Additionally, immunotherapy serves a promising therapeutic strategy 

in many cancer types (Bao et al., 2019b; Couzin-Frankel, 2013; Purwar et al., 2012; 

Schumacher and Schreiber, 2015; Wasiuk et al., 2012) as well. However, there is still a 

long way to go for immunotherapy in LUAD. A clear understanding of the tumour immune 

microenvironment may aid in the development of immunotherapy for LUAD patients.

Mast cell is widely distributed in different tissues and is a major component of the 

immune microenvironment in tumour tissues. Mast cells modulate tumour initiation and 

progression through the secretion of pro-tumorigenic and anti-tumorigenic molecules 

(Varricchi et al., 2017). The controversial roles of mast cells result in conflicting effects 

among different tumour types (Alì et al., 2009; Carlini et al., 2010; Gounaris et al., 2007; 

Jeong et al., 2013; Nordlund and Askenase, 1983; Sinnamon et al., 2008; Welsh et al., 

2005; Yang et al., 2011). Regarding the impact of mast cells on LUAD patient clinical 

outcomes, several contradictory results have been published (Carlini et al., 2010; Imada 

et al., 2000; Kurebayashi et al., 2016; Li et al., 2018; Nagata et al., 2003; Takanami et al., 

2000). Although the results of these studies are quite different with respect to the 

prognostic values of mast cells, previous studies have shown that mast cell infiltration is 

more intensive in well-differentiated tumours and low-grade histologic subtypes than in 

poorly differentiated and high-grade subtypes (Carlini et al., 2010; Nagata et al., 2003). 

Thus, in this study, we focused on the effect of mast cells in early-stage LUAD patients. 

We analysed the potential role of mast cell,  mast cell-related genes, and immunotherapy A
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outcomes in early-stage LUAD using bioinformatics models and machine learning 

methods. 

Method

Data processing

The Cancer Genome Atlas (TCGA) transcriptome data, mutation data and clinical 

information were downloaded via the UCSC Xena browser (https://xenabrowser.net/). 

GSE11969, GSE13213, GSE29013, GSE30219, GSE31210, GSE37745, GSE42127, 

GSE50081, and GSE72094 were downloaded from the Gene Expression Omnibus (GEO) 

database (http://www.ncbi.nlm.nih.gov/geo/). The detailed TCGA clinical information is 

summarized in Table 1 and supplementary file 1.

Estimation of the abundance of immune cell populations and implementation of 

weighted correlation network analysis (WGCNA)

Transcriptome file of TCGA early-stage LUAD was applied on xCELL to estimate the 

abundance of different immune cell populations (Aran et al., 2017; Newman et al., 2015). 

WGCNA was accomplished with the R package “WGCNA” (Bao et al., 2019a; Langfelder 

and Horvath, 2008; Wang et al., 2019b). The expression profile of immune-related gene 

(from https://www.innatedb.com/redirect.do?go=resourcesGeneLists) was applied as the 

input of WGCNA. Gene significance quantified the association of individual genes with 

mast cell density, and module membership represented the correlation between module 

eigengenes and gene expression profiles. A power of β = 3 and a scale-free R2 = 0.95 

were set as soft-threshold parameters to ensure a signed scale-free co-expression gene 

network. A total of 6 non-grey modules were generated. Among these modules, the yellow 

module depicting the highest correlation (r=0.92, p=4.2e-115) was considered the most 

correlated with mast cell density. Survival analysis was performed using the R package 

“survival”. Cox regression analysis was used to determine the hazard ratio (HR). All genes 

in the yellow module were subjected to univariate Cox regression. The 110 genes that 

significantly associated with the survival of early-stage LUAD patients in the yellow 

module were identified as the mast cell-related gene signature. These identified genes A
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were applied on Gene Ontology (GO) analysis with the “clusterProfiler” package (Yu et al., 

2012) to elucidate the potential mechanism behind the gene signature. R software 

(version: 3.5.3) was used for all the analyses in the manuscript.

Molecular subtype identification

The R package “CancerSubtypes” was applied to perform molecular subtype 

identification (Xu et al., 2017). Transcriptome profile and gene mutation datasets were 

used to perform cancer subtype analysis. The default parameters were used to perform 

the classification. The cluster number was selected as 2. Gene set enrichment analysis 

(GSEA) was performed with GSEA software from Broad Institute.

Differently expressed gene (DEG) analysis

The DEG analysis was performed with “Limma” package (Smyth, 2005). An empirical 

Bayesian method was applied to estimate the fold change between the molecular subtype 

one and two using moderated t-tests. The adjusted p-value for multiple testing was 

calculated using the Benjamini-Hochberg correction. The genes with an adjusted p-value 

less than 0.05 and absolute log2 (log to base two of) fold change greater than 1.5 were 

identified as DEGs between two molecular subtypes. GO analysis was performed based 

on the significant genes. 

Prognostic gene signature-based risk score and ssGSEA implementation

The genes in the WGCNA yellow module were analysed with univariate Cox 

regression analysis. The comprehensive mast cell-related signature was calculated by 

PCA. The PCA-based risk score  was derived from the first principal 𝑀𝑎𝑠𝑡𝐶𝑒𝑙𝑙𝑝𝑐𝑎

component of the 110 genes from mast cell-related gene signature. Let  represent the 𝐸𝑖,𝑗

 value of the key gene  in tumour sample , and  represents the 𝑙𝑜𝑔2(𝑅𝑆𝐸𝑀 + 1) 𝑖 𝑗 𝐶𝑖

corresponding coefficient of the mast cell-related genes. The risk score  was 𝑀𝑎𝑠𝑡𝐶𝑒𝑙𝑙𝑝𝑐𝑎

calculated as follows:

𝑀𝑎𝑠𝑡𝐶𝑒𝑙𝑙𝑝𝑐𝑎 = [𝐸11 ⋯ 𝐸1𝑗
⋮ ⋱ ⋮

𝐸𝑖1 ⋯ 𝐸𝑖𝑗
][𝐶1…𝐶𝑖]𝑇A
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ssGSEA implementation and clinical response prediction

The enrichment scores of the hallmark genes were evaluated using single-sample 

GSEA (ssGSEA) with R package “GSVA” (Hänzelmann et al., 2013). The hallmark gene 

sets were obtained from MSigDB. Spearman’s coefficient analysis was performed to 

analysing the correlation between prognostic gene signature-based risk score and each 

hallmark. The Tumor Immune Dysfunction and Exclusion (TIDE) algorithm was used to 

predict the clinical response to immune checkpoint blockade (Jiang et al., 2018).

Neural network construction

PyTorch was employed to construct the neural network to predict the immunotherapy 

response by the mast cell-related gene signature in Python (Version: 3.5) (Paszke et al., 

2017). Stochastic gradient descent method and learning rate 0.001 were chosen for the 

optimizer of the model. Five layer was built with different input and output number. Batch 

normalization was performed in each layer. Dropout function (dropout rate: 0.2) was used 

in the training process but not in the testing process. Relu function was applied as the 

activate function. A logistic sigmoid function was used in the output layer. The python 

script is provided in supplementary file 2. 

Random forest algorithm for feature importance ranking

A random forest algorithm was applied to find the most critical mutations associated 

with the mast cell signature-based risk score. Briefly, the gene mutation dataset 

(supplementary file 3) and mast cell signature-based risk score were applied to find the 

most important gene mutations associated with the mast cell signature-based risk score. 

First, the “ranger” package was used to find the best hyperparameter in the regression 

process (Wright and Ziegler, 2015). Then, the “randomforest” package was applied for the 

construction of the regression model (Liaw and Wiener, 2002). The R code for the 

analysis in the manuscript is in supplementary file 4.

Results

High mast cell abundance in early-stage LUAD benefits the survival of patientsA
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The workflow of the manuscript is shown in Fig. 1A. To illustrate the correlation 

between mast cells and survival in early-stage LUAD patients, we first analysed the 

abundance of immune cell populations in early-stage LUAD tumours samples. We 

identified twenty-two immune cell populations and the correlations between these 

populations are shown in Fig. 1B. We found that high mast cell abundance benefited the 

survival of early-stage LUAD patients in the TCGA cohorts (Fig. 1C). To further confirm 

the association between mast cells and the survival of early-stage LUAD patients, we 

estimated the abundance of mast cells in two external cohorts (GSE31210 and 

GSE50081). The results showed that high mast cell abundance are associated with 

prolonged survival of early-stage LUAD patients, as we observed in the TCGA early-stage 

LUAD cohort (Fig. 1D and Fig. 1E).

Identification of a gene signature associated with mast cells

The immune-related genes were determined with WGCNA. Genes were clustered into 

seven modules (Fig. 2A). The correlation between the modules and mast cell abundance 

was calculated by Pearson’s correlation coefficient (Fig. 2B). The yellow module showed 

the highest correlation coefficient with mast cells (Cor: 0.73). The plots of module 

membership and gene significance illustrated a significant correlation for each gene in the 

yellow module (cor: 0.92) (Fig. 2C). Then, each gene in the yellow module was analysed 

with a univariate Cox regression analysis. We identified 110 genes that were significantly 

associated with the survival of early-stage LUAD patients (Fig. 2D). The heatmap shows 

the expression level of the 110 genes (Fig. 2E). The 110 genes were defined as a mast 

cell-related gene signature (supplementary file 5) in early-stage LUAD patients. GO 

analysis revealed that cellular metabolic pathways, WNT signalling, antigen processing 

and presentation, and other enriched pathways were associated with the mast cell-related 

key genes (Fig. 2F).

Molecular subtype identification based on the mast cell-related gene signature in 

early-stage LUAD

As we observed, two expression patterns were identified in the expression profiles of A
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mast cell-related genes from expression heatmap of mast cell-related gene signature. We 

asked whether the mast cell-related gene signature could distinguish the molecular 

subtypes of early-stage LUAD. Using a combination of gene mutation datasets (genome 

characteristics) and the expression profiles of mast cell-related key gene signature 

(genetic characteristics), we performed molecular subtype identification on early-stage 

LUAD patients. Three methods were applied to show the classification effect of the 

molecular subtypes: (1) a clustering heatmap was generated to intuitively visualize the 

effect of sample clustering (Fig. 3A); (2) univariate Cox and Kaplan-Meier analyses were 

used to evaluate the significance of the difference in survival profiles between subtypes 

(HR=0.59) (Fig. 3B); and (3) the average silhouette width, a measure of cluster 

coherence, was calculated to appraise whether samples were more similar within or 

across subtypes (Fig. 3C). The results above indicated that mast cell-related key genes 

could stratify early-stage LUAD into two molecular subtypes (subtype one and subtype 

two) with distinct clinical and molecular characteristics. Tumors of molecular subtype two 

had greater average mast cell densities compared with tumors of molecular subtype one.

DEG analysis was performed to identify the DEGs between the subtype one and 

subtype two molecular subtypes. The heatmap shows the expression profile of the DEGs 

(adjusted p-value < 0.05 & log2 (FC) > 1.5) (Fig. 3D). Then, the DEGs were subjected to 

GO analysis (Fig. 3E). The results revealed enrichments in cell cycle-related terms. GSEA 

was performed on the subtype one and subtype two of early-stage LUAD. Upregulated 

pathways included pathways related to coagulation, inflammatory response and 

myogenesis in the subtype one (Fig. 3F). Downregulated pathways included pathways 

related to E2F targets, G2M checkpoints and MYC targets in the subtype one (Fig. 3G). 

The immune cell population distribution in the subtype one and subtype two further 

illustrated the different tumour immune microenvironments in the two molecular subtypes 

of early-stage LUAD (Fig. 3H). Among all immune cell populations, mast cells showed the 

most significant difference between the subtype one and subtype two (Fig. 3I).

Neural network-based model to identifying immunotherapy treatment outcomesA
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To further utilize the mast cell-related gene signature we identified, we built a neural 

network-based framework to predict which patient would respond to immunotherapy 

according to mast cell-related key genes. The detailed code is provided in supplementary 

file 2. Fig. 4A illustrates a diagram of  the neural network. Briefly, the early-stage LUAD 

dataset was divided into training and testing datasets. We constructed the neural network 

with the mast cell-related gene signature by the training dataset. The test dataset was 

applied to evaluate the accuracy of the neural network. With the increased epoch number 

for training, the loss value of the model in the testing set decreased (Fig. 4B). The 

confusion matrix showed only one sample was recognized wrongly in the testing set (Fig. 

4C). The receiver operating characteristic (ROC) curve illustrated a high accuracy rate 

with the area under the curve reaching 98.7% (Fig. 4D).

Mast cell-related signature predicts the prognosis and clinical outcome of 

early-stage LUAD patients

The mast cell-related gene signature was employed to calculate a prognostic risk 

score. The risk score  was calculated for each patient using the PCA method. 𝑀𝑎𝑠𝑡𝐶𝑒𝑙𝑙𝑝𝑐𝑎

Fig. 5A shows the first principal component (PCA1) score for each key mast cell-related 

gene.  was calculated with the expression level of each gene and the PCA1 𝑀𝑎𝑠𝑡𝐶𝑒𝑙𝑙𝑝𝑐𝑎

score. The results showed a highly negative correlation between  and mast 𝑀𝑎𝑠𝑡𝐶𝑒𝑙𝑙𝑝𝑐𝑎

cell abundance, which further confirmed the correlation between the mast cell-related key 

genes and mast cells (Fig. 5B). The Kaplan–Meier plot revealed that patients with a 

low-risk score had a better prognosis than patients with a high-risk score (Fig. 5C). 

ssGSEA results revealed a high association of DNA repair and the c-MYC pathway with 

the mast cell-related risk score (Fig. 5D). TP53 mutations can regulate the activation of 

c-MYC pathway (Frazier et al., 1998). Due to the high correlation between the c-MYC 

pathway and the mast cell-related risk score, we selected TP53 mutation as an example 

given its role in regulating the activation of c-MYC pathway (Frazier et al., 1998) and 

analysed the mast cell-related risk score in TP53-mutated and wild-type patients (Fig. 

5E-5F). The results showed a high-risk score in the TP53-mutated patients.A
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Furthermore, patients with high mast cell abundance had a low mast cell-related risk 

score and responded to immunotherapy (Fig. 5G). In patients who received 

chemo(radio)therapy and molecular therapy, the patients with low mast cell-related risk 

scores had better survival outcomes than those with nigh mast cell-related risk scores 

(Fig. 5H-5I).

The association between mast cell-related signature and gene mutation in 

early-stage LUAD

The random forest algorithm was employed to determine the importance of gene 

mutations associated mast cell-related risk score (Fig. 6). The results revealed that TP53 

and CSMD3 were the most important gene mutations associated with the mast 

cell-related risk score. The patients with TP53 mutations had significantly higher mast 

cell-related risk scores than the patients without TP53 mutations.

External validation and meta-analysis

Nine external cohorts were used to confirm the association between the mast 

cell-related gene signature and survival outcomes in early-stage LUAD patients. The 

detailed information for each cohort is shown in the Kaplan–Meier plot (Fig. 7A). A 

meta-analysis was performed with a random-effects model, and the results showed that 

patients with a high mast cell-related risk score had poor survival outcomes in the overall 

dataset (HR = 3.79) (Fig. 7B).

Discussion

Previous studies have investigated the relationship between immune cell populations 

and the clinical outcomes of cancer patients (Bao et al., 2019b; Bindea et al., 2013; Chung 

et al., 2017; Homma et al., 2014). The heterogeneity of immune cell populations in 

different cancer types leads to a complicated immune network in the tumour 

microenvironment and differentially influences tumour initiation and progression. As a 

major component of the immune microenvironment in tumour tissues, mast cells may play A
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a pro-tumorigenic or antitumorigenic role by releasing different mediators (Varricchi et al., 

2017). For instance, angiogenic and lymphangiogenic factors secreted by mast cells 

promote tumour angiogenesis and lymphangiogenesis (Detoraki et al., 2010; Detoraki et 

al., 2009; Theoharides et al., 2010). Several matrix metalloproteinases released by mast 

cells regulate the digestion of tumour extracellular matrix and favour the distant 

metastasis of cancer cells (Baram et al., 2001). Specifically, activation of MYC triggers 

rapid recruitment of mast cells to the tumor site to promote tumor expansion in pancreatic 

cancer. MYC directly commandeers and instructs tissue remodeling, angiogenesis, and 

inflammation by activation of mast cells (Soucek et al., 2007). Mast cells release tryptase 

AB1 and Interleukin-1β, which in turn induced pleural vasculature leakiness and triggered 

NF-κB activation in pleural tumor cells, thereby fostering pleural fluid accumulation and 

tumor growth (Giannou et al., 2015). In contrast, mast cells can exhibit anti-tumour activity 

directly through tumour cell cytotoxicity mediated by TNF-α and ROS or indirectly through 

the release of Interleukin-9 and heparin and the stimulation of dendritic cell maturation 

(Varricchi et al., 2017). The complicated roles of mast cells allow them to play different 

functions in different cancer types and stages. 

Regarding the impact of mast cells on LUAD patient outcomes, several contradictory 

studies have been published. One study revealed that mast cells correlated with 

angiogenesis and poor outcome in stage I LUAD (Baram et al., 2001). Another study has 

revealed KIT-competent mast cells fuel KRAS-mutant lung adenocarcinoma formation, 

growth, and metastasis by providing Interleukin-1β and are associated with LUAD 

progression (Lilis et al., 2019). However, one research indicated that only mast cells were 

found by univariate analysis to be associated with better prognosis in LUAD (Kurebayashi 

et al., 2016). Although the results of these studies are quite different with respect to the 

prognostic value of mast cells, previous studies have shown that mast cell infiltration is 

more intensive in low-grade histologic subtypes than in high-grade subtypes (Carlini et al., 

2010). Understanding the potential mechanism and roles of mast cells in early-stage 

LUAD may be helpful for the development of immunotherapy. Thus, in this study, we A
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analysed the potential role and mast cell-related genes in early-stage LUAD. The 

abundance of mast cells was estimated in several cohorts. Cox regression was performed 

to identify the prognostic value of mast cells in early-stage LUAD. WGCNA was employed 

to identify the mast cell-related gene signature. Molecular subtypes (subtype one and 

subtype two) were identified according to the mast cell-related gene signature in a 

mutation dataset of early-stage LUAD. A neural network-based framework was 

constructed to predict the immunotherapy outcome of early-stage LUAD patients 

according to the mast cell-related gene signature. A mast cell-related risk score 

 was calculated by the expression levels of mast cell-related gene signature 𝑀𝑎𝑠𝑡𝐶𝑒𝑙𝑙𝑝𝑐𝑎

using the PCA method. ssGSEA was performed to identify the potential molecular 

mechanism associated with the mast cell-related prognostic signature. The association 

between gene mutations and the risk scores was identified by a random forest algorithm. 

A meta-analysis was performed to validate the mast cell-related signature in external 

cohorts.

In our analysis, we revealed that a high abundance of mast cells was associated with 

prolonged survival in early-stage LUAD patients. Two external cohorts confirmed this 

conclusion. The differences and controversial conclusions in different studies (Baram et 

al., 2001; Kurebayashi et al., 2016; Lilis et al., 2019) may be due to the mixture of 

activated and resting mast cells. The function of activated mast cells may be masked by 

the resting mast cells. Therefore, it is essential to analyse the activated and resting mast 

cells separately. In an alternative way, we employed the following workflow to identify the 

potential mechanisms and genes associated with mast cells.

First, the immune-related genes were clustered into several modules by unsupervised 

clustering. The yellow module was identified as the most important module correlated with 

mast cells according to Pearson’s correlation coefficient. The mast cell-related gene 

signature was obtained from the yellow module. The genes in the mast cell-related gene 

signature were highly asscoaited with the mast cell density in early-stage LUAD. 

According to the mast cell-related gene signature and genome characteristics, the A
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early-stage LUAD tissues were stratified into two molecular subtypes (subtype one and 

subtype two). Interestingly, the GO analysis and GSEA both indicated enrichments in cell 

cycle and c-MYC related pathways in the subtype two. Thus, we concluded the potential 

involvement of mast cells in the c-MYC pathway in early-stage LUAD. One previous study 

has demonstrated the important roles of mast cells in MYC activation and the potential 

tumor expansion promoted by mast cells in pancreatic cancer. MYC is a highly pleiotropic 

transcription factor whose aberrant activation links tightly with tumor progression, 

including both cell-intrinsic proliferation and extracellular microenvironment alterations 

such as tissue remodelling, angiogenesis and invison (Gabay et al., 2014). Aberrant MYC 

activities induces the dysregulated expression of a chemokine-encoding gene cluster, 

therefore chemoattracting mast cells into the islets of pancreatic cancer (Soucek et al., 

2007). In consistent with the pancreatic cancer study, the transcriptomic and downstream 

analysis underscore the importance of mast cell in MYC activation in early-stage LUAD. 

Moreover, the differences in mast cells between the two subtypes were the most 

significant of all the immune cell populations studied, which confirmed the relationship 

between the mast cell-related gene signature and mast cell abundance. The mast 

cell-related gene signature may represent targets for further study to aid in the 

understanding of the mechanism of mast cells in early-stage LUAD.

To further utilize the mast cell-related gene signature, we built a neural network-based 

framework to predict response to immunotherapy. The confusion matrix and ROC plot 

confirmed the accuracy of the network’s prediction capability. Hence, we were able to 

apply the expression profile of the mast cell-related genes to predict the response to 

immunotherapy using the neural network framework.

In the next step, we calculated the risk score  according to the expression 𝑀𝑎𝑠𝑡𝐶𝑒𝑙𝑙𝑝𝑐𝑎

level of the gene signature for each patient. ssGSEA revealed a significant correlation 

between DNA repair, the c-MYC pathway, and the signature-based risk score. The 

ssGSEA results further confirmed the results from the canonical GSEA of the molecular 

subtypes. c-MYC stimulates the expression of target genes that play important roles in cell A
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proliferation, growth arrest and apoptosis in lung cancer cells (Dang et al., 2006; Tong et 

al., 2004). Additionally, we further identified TP53 as the most critical mutation associated 

with the mast cell-related signature. Dysregulation of the c-MYC pathway induces the 

expression of endogenous TP53. As a cellular gatekeeper, TP53 plays crucial role in cell 

cycle arrest and apoptosis (Mogi and Kuwano, 2011). The close link between the mast 

cell-related signature, the c-MYC pathway and TP53 mutation in our analysis may 

highlight the roles of mast cells in early-stage LUAD. However, as we suggested, 

analysing the activated and resting mast cells separately would be a promising way for 

understanding the molecular mechanism of mast cells in early-stage LUAD. The mast 

cell-related gene signature we obtained may therefore prove useful information for further 

study in this field.

The mast cell-related signature also served as a promising marker to predict the 

survival of early-stage LUAD patients. We performed a meta-analysis by combining nine 

cohorts. The results revealed in both each cohort and the meta-analysis that the mast 

cell-related signature stratified the survival of patients with high and low signature-based 

risk scores. The results above also confirmed the pivotal roles of mast cells in early-stage 

LUAD.

A problem with the mast cell-related signature of early-stage LUAD as shown is that 

only in-silico analysis is performed. Experimental studies are required to further elucidate 

the biological functions underlying the mast cell-related signature in early-stage LUAD. 

Large, well-designed prospective population-based studies should be conducted to 

investigate the complex role of mass cell and testify our results on mast cell-related 

signature.

Conclusion

In this study, we depicted the correlation between mast cell populations and prognosis 

in early-stage LUAD patients. A mast cell-related gene signature was identified. A novel 

molecular subtype classification and a mast cell-related gene signature-based neural 

network were built to help understanding of mast cell activities in early-stage LUAD and A
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aid in the development of immunotherapy for early-stage LUAD patients. Potential 

pathways associated with the mast cell-related gene signature provide new directions for 

determining novel mechanisms in mast cells in early-stage LUAD. The results above may 

facilitate personalized medicine for early-stage LUAD patients.
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Patient information

Variable Number

Gender (female/male) 166/142

TNM Stage (stage I/stage II) 212/96

Lymph node metastasis (positive/negative) 61/247

Age (>60/<=60/missing) 221/78/9

KRAS Status (WT/MUT) 210/98

EGFR Status (WT/MUT) 271/37

Smoking (no/yes/missing) 15/93/200

Supplementary file 1: Patient clinical information

Supplementary file 2: The python script for building the neural network-based 

framework.

Supplementary file 3: The gene mutation dataset.

Supplementary file 4: The R script.

Supplementary file 5: The gene list of the mast cell-related gene signature.
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Figure legends

Fig. 1 The association between mast cell abundance and clinical outcomes in A
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early-stage LUAD patients. (A) Schematic diagram of the study design. (B) The 

correlation among immune cell populations. (C-E) Kaplan-Meier curves for the OS of 

early-stage LUAD patients showed that the patients with high mast cell abundance had a 

favourable outcome compared with the patients with low mast cell abundance in the 

TCGA, GSE31210 and GSE50081 cohorts.

Fig. 2 Mast cell-related gene signature identification. (A) WGCNA was performed to 

identify seven modules by unsupervised clustering. (B) A total of six modules (non-grey) 

were identified. The yellow module had the highest correlation (r=0.73, p=8e-53) and was 

considered the most correlated with mast cells. (C) The gene significance and module 

membership of the genes in the yellow module exhibited a high correlation. (D) A total of 

110 mast cell-related genes were identified among the hub genes extracted from the 

yellow module. (E) The expression profile of the 110 mast cell-related genes. (F) GO 

analysis was performed based on the 110 mast cell-related genes.

Fig. 3 Molecular subtype identification according to the mast cell-related gene 

signature. (A) Clustering heatmap for intuitively visualizing the effect of sample clustering. 

(B) Univariate Cox analysis and Kaplan-Meier curves were used to evaluate the survival 

difference between the two molecular subtypes. (C) Average silhouette width between the 

two molecular subtypes. (D) The DEGs between 2 molecular subtypes. (E) GO analysis. 

(F) Upregulated hallmarks in the GSEA. (G) Downregulated hallmarks in the GSEA. (H) 

The immune cell population distribution in the subtype one and subtype two. (I) The 

difference in immune cell population scores and the significances between the subtype 

one and subtype two.

Fig. 4 Neural network-based framework construction with the mast cell-related gene 

signature. (A) Schematic diagram of the neural network. (B) The loss value in each epoch 

during training process in the validation cohort. (C) The confusion matrix in the testing 

cohort validated the accuracy of the network’s prediction capacity. (D) The ROC plot in the 

testing dataset validated the accuracy of the network’s prediction capacity.  

Fig. 5 Mast cell-related signature-based risk score calculation and the potential A
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mechanism underlying the mast cells in early-stage LUAD. (A) PCA of the key mast 

cell-related genes. (B) The correlation between the prognostic signature-based risk score 

and the mast cell ssGSEA score in early-stage LUAD patients. (C) Univariate Cox 

analysis and Kaplan-Meier curves showed prolonged survival in patients with low-risk 

scores compared with patients with high-risk scores. (D) The correlation between the 

ssGSEA score of each hallmark gene and the risk score. (E) The correlation between the 

risk score and ssGSEA score in early-stage LUAD patients. (F) The risk score distribution 

in patients with wild-type or mutated TP53. P-value was calculated with Mann-Whitney U 

test. (G) A Sankey plot was used to reveal the correlation between mast cell scores, 

prognostic signature-based risk scores, immunotherapy response, and clinical outcome. 

(H&I) Patients who received adjuvant therapies, including chemo(radio)therapy and 

targeted therapy, with low-risk scores exhibited prolonged overall survival.

Fig. 6 Association of the immune signature with early-stage LUAD gene mutations. 

(A) The distribution of gene mutations correlated with the prognostic signature-based risk 

score. TP53 was the most important mutation according to the importance of ranking.

Fig. 7 Meta-analysis and external validation of the prognostic value of the mast 

cell-related signature. (A) Detailed information for the nine external validation cohorts. 

(B) A meta-analysis revealed the overall prognostic value of the mast cell-related 

signature. 
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