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Abstract
Microorganisms play an essential role in nitrogen cycling and greenhouse gas emissions in soils and sediments. The recently
discovered oxygenic denitrifiers are proposed to reduce nitrate and nitrite via nitric oxide dismutation directly to N2 and O2. So
far, the ecological role of these microbes is not well understood. The only available tool for a targeted study of oxygenic
denitrifiers is their respective maker gene, nitric oxide dismutase (nod). Here, we established the use of PacBio long-read
sequencing of nod gene amplicons to study the diversity and community structure of oxygenic denitrifiers. Two distinct sets
of environmental samples, agricultural soil and lake sediment, were investigated as examples. The circular consensus sequences
(ca 1.0 kb) obtained covered most substitution characteristic of NO dismutase and allowed for reliable classification of oxygenic
denitrifiers. Distinct nod gene pools and community structure were revealed for the different habitats, with most sequence types
affiliated to yet unidentified environmental nod lineages. The abundance of nod genes ranged 2.2 × 106–3.2 × 107 gene copies g−1

soil or sediment, accounting for up to 3% of total bacterial 16S rRNA gene counts. This study indicates that nod-gene-targeted
long-read sequencing can be a powerful tool for studying the ecology of these novel microbes, and the results also suggest that
oxygenic denitrifiers are prevalent and abundant in different terrestrial samples, where they could play an important, but yet
overlooked role in nitrogen transformations.
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Microbes play important roles in biogeochemical cycling of
nitrogen (N), which is often a limiting nutrient for agricultural
production. Fertilization shapes soil microbial diversity and
community structure, while microbes in turn affect the fate
of applied fertilizers [1]. Microorganisms have been recog-
nized as the main drivers for nitrogen loss and soil N2O emis-
sion, which constitutes the dominant N2O source, emitting
annually over 4 Tg N2O-N into the atmosphere [2]. Various
microbial groups involved in N cycling have been studied
(e.g. [3]), typically using different activity-based or marker
gene-based approaches. Well-established primer systems and
PCR assays are available for many marker genes of microbial
N cycling, and have been extensively utilized in next-
generation sequencing studies (e.g. [4]).

Oxygenic denitrification is a recently proposed N-
transforming process, where nitric oxide (NO) is directly
disproportionated into N2 and O2, thus avoiding the powerful
greenhouse gas, N2O emissions. The reaction is catalyzed by a
NO dismutase (Nod) [5]. The use of nod gene as a marker for
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Table 1 Soil samples and lake sediments analyzed in this study and their key geochemical characteristics

Sample type Designation Explanation pH Total nitrogen SOC/
DOC

Trophic status Reference

Agriculture soil CF Soil received chemical fertilizer 5.5 1.9 g/kg 17.5 g/kg [13]
CF-straw Soil received chemical fertilizer and straw 6.0 2.6 g/kg 25.5 g/kg

CF-manure Soil received chemical fertilizer and manure 5.7 2.2 g/kg 22.0 g/kg

control Soil received no extra fertilizers 5.4 1.8 g/kg 18.3 g/kg

Lake sediment* Stechlin Deep, dimictic Lake Stechlin, Germany 7.8 0.2 (mg/l) 4.3 mg/l meso-oligotrophic [14]

Dagow Lake Dagow, Germany 8.1 0.5 (mg/l) n.d eutrophic [11]

SW South-west basin of Lake Grosse Fuchskuhle 4.5 1.0 (mg/l) 3205 mg/l dystrophic [12]
NE North-east basin of Lake Grosse Fuchskuhle 5.8 1.7 (mg/l) 16.4 mg/l dystrophic

* Data are the average of the bottom water column in March–May 2016

n.d no data
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Fig. 1 a Principal component analysis (PCA) of the oxygenic denitrifier
community in all samples, based on the occurrence and relative abun-
dance of all nod OTUs. b The abundance of total bacteria and oxygenic
denitrifiers in different samples as quantified by qPCR targeting 16S

rRNA and nod genes, respectively. c nod community in different envi-
ronments. OTU was categorized based on a 90% similarity of ca. 1.0 kb
nod gene fragments. The sample designations are the same as in Table 1
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oxygenic denitrifiers was recently established [6, 7], with
which, evidence was obtained suggesting that oxygenic deni-
trifiers could be widespread and phylogenetically diverse [6,
8]. However, the high diversity inferred from nod genes pro-
vided no clue to the actual identities of these novel oxygenic
denitrifiers [6]. So far, the identification of oxygenic denitri-
fiers and analysis of their community structures solely depend
on the length and quality of obtained nod sequences. In pre-
vious studies, long nod sequences were obtained via laborious
and low-throughput Sanger sequencing, since next-generation
sequencing often generates short reads. Recently, PacBio
SMRT sequencing provides access to high-throughput long-
read environmental sequence data, but has been applied most-
ly to metagenomics and full-length 16S rRNA gene analysis
(e.g. [9, 10]). Here, we provide a first proof-of-principle for
the use of nod-targeted PacBio sequencing to study the distri-
bution and community structure of oxygenic denitrifiers in
terrestrial systems. Soils, especially under N fertilization, are
known as hotspots of microbial N cycling; thus, agricultural
soils undergoing different long-term fertilization regimes were
chosen as example environments. To demonstrate the wide
applicability of this approach, several sediment samples from
lakes with different trophic status were also queried (Table 1).

Soil from the top layer (0–10 cm) of several agricultural
fields with and without long-term fertilizations in Ning-Xiang,
China [13], and sediments from a meso-oligotrophic, an eu-
trophic and a dystrophic lake in Germany [11, 12, 14], were
sampled (Table 1). The abundance of nod genes and bacterial
16S rRNA was quantified by qPCR, representing respective
measure of putative oxygenic denitrifiers and total bacteria in
these samples. In all soils, the respective counts of oxygenic
denitrifiers (1.12 × 107–1.54 × 107 copy nod g−1 soil) and total
bacteria (from 9.75 × 108 to 1.37 × 109 copies 16S rRNA g−1

soil) were similar (Fig. 1b), resulting in a rather comparable
relative abundance of nod genes at 1–1.3%. nod gene abun-
dance was in a similar range as that of nirK and nirS genes
observed in other soil ecosystems [15, 16], indicating that
oxygenic denitrifier abundance can be similar to that of con-
ventional denitrifiers. In contrast to conventional nitrifying
and denitrifying microbes [16, 17], oxygenic denitrifier abun-
dance examined here seemed not significantly influenced by
nitrogen fertilization.While nod gene abundances variedmore
widely in lake sediments, from 2.17 × 106 g−1 sediment in
Lake Grosse Fuchskuhle to 3.2 × 107 g−1 sediment in Lake
Stechlin, accounting for about 0.4–3.0% of total bacterial
number (Fig. 1b).

With PacBio SMRT sequencing, long nod amplicons
(ca. 1.0 kb) from all samples were sequenced. Details on
the procedure and data analysis are provided in the sup-
plementary information (SI). In total, 61 nod OTUs with
at least 50 sequences were classified based on 90% simi-
larity on nucleotide level [7]. Representative sequences
were used for phylogenetic analysis, revealing that almost

all OTUs detected in this study were related to previously
reported nod lineages [6], with most of them belonging to
the nod “Aquifer cluster,” 5 OTUs in the “NC10 cluster,”
and 1 OTU in the “Reactor cluster 1” (Fig. 2). All repre-
sentative sequences of these OTUs that related to nod
clusters possessed previously identified Nod-characteristic
residual substitutions (Fig. 3).

Overall nod gene pools appeared similar in the agriculture
soils subjected to different fertilization regimes (Fig. 1a, c).
However, the soil receiving both chemical fertilizer (CF) and
manure harbored the highest nod diversity across all samples
(Fig. 1c). Lake Stechlin and Lake Dagow sediments hosted a
higher nod diversity compared with Lake Grosse Fuchskuhle
(Fig. 1c), which was mostly dominated by OTU748. Possibly,
this was related to their different pH and trophic status
(Table 1). Principal component analysis (PCA) of nod com-
position clearly supported that distinct oxygenic denitrifier
communities were present in agriculture soils and lake
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Fig. 2 Bootstrapped neighbor-joining phylogeny of nod OTU represen-
tative nucleotide sequences. Bootstrap support (1000 replicates) greater
than 50% is indicated at the nodes. Nod clusters (same as proposed in [6])
containing soil and lake nodOTUs are shown in bold. OTUs only detect-
ed in soil are shown in blue, lake-specific OTUs in red, and OTUs com-
prising sequences from both soil and lake sediment are shown in green.
The scale bar represents 10% nucleotide sequence divergence. The phy-
logeny was calculated in MEGA-X
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sediments (Fig. 1a). Only a limited number of OTUs were
shared between soils and sediments, yet habitat-specific
OTUs were evident in both soil and lakes, and they tended
to be closely placed within the “Aquifer cluster” on the phy-
logenetic tree (Fig. 2), such as OUT74 was highly abundant in
all soils but was not detected in sediments, suggesting that the
environment largely determines the composition of nod gene
pools.

Nevertheless, three OTUs, OTU462, 748, and 945, clus-
tered more closely to the “unknown-qNor-related” sequences
[6] in phylogenetic analysis (Fig. 2). Although OTU462 se-
quences also showed the presumed characteristic residual sub-
stitutions for Nod (Fig. 3), the functional connotation of this
gene lineage must be interpreted with caution. This suggests
that both phylogenetic and residual substitution analysis are
necessary for identifying environmental nod sequences, a re-
sult clearly facilitated by the long sequences obtained from
PacBio SMRT sequencing.

Taken all together, the results indicated that agriculture soils
harbor diverse and abundant oxygenic denitrifiers, which have
been overlooked in the past. Low pH in LakeGrosse Fuchskuhle
seemed to disfavor oxygenic denitrifiers. Moreover, functional-
gene-targeted long-read sequencing was proven to be a powerful
tool for analyzing novelmicrobial guilds in the environment, and
it will allow us to gain better insights into the influencing envi-
ronmental factors that shape the distribution and community
structure of oxygenic denitrifiers and uncover their ecological
roles in N cycling in natural habitats.
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