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C omputational models have earned broad acceptance for
assessing chemical toxicity during early stages of drug
discovery or environmental safety assessment." Some academic
groups and many companies have developed platforms for
chemical toxicity prediction. For instance, MultiCASE Inc.”
was a pioneer in developing a platform for Ames mutagenicity,
which was later expanded to many other end points. Many
academic and industrial groups have been developing methods
and models to predict chemical toxicity for products used in
agriculture, cosmetics, the chemical industry, and, of course,
the pharmaceutical industry. A recent review summarized
major types of toxicity end points and in silico tools to predict
different types of toxicity available commercially or via open
access.”

Prediction of chemical toxicity can be generally viewed as a
subset of general bioactivity prediction, but there is an
important caveat that places the challenge of toxicity prediction
into an important separate category. The issue is that chemical
safety assessment is a matter of regulatory concern by both the
FDA and EPA in the US and by respective regulatory
organizations worldwide (such as the ECHA in Europe).
Historically, animal testing has been the standard approach to
safety assessment. However, in October 2016, the European
Union’s REACH passed a regulation to make nonanimal
testing for skin sensitization the default requirement for
regulatory assessment of chemical product safety.® In
September 2019, the U.S. EPA released a memo to promote
research to reduce animal testing, with a goal to eliminate all
mammal study requests and support by 2035.° Given the
federal mandate to identify alternative approaches to animal
testing of chemical and medical agents, the Interagency
Coordinating Committee on the Validation of Alternative Methods
(ICCVAM) created a U.S. Strategic Roadmap for establishing
new methods to evaluate the chemical safety of medical
products’ and to expedite the development of NAMs, i.e.,
chemical hazard/risk assessment technologies that combine a
series of in vitro toxicity assays and computational approaches,
which do not involve animal use. These recent developments
in the regulatory space placed a new emphasis on the
importance of accurate in silico tools for chemical safety
assessment. Not surprisingly, recent market trend analysis’
suggested that the “in-vitro toxicology testing market is
expected to reach USD 12.7 billion by 2024 from an estimated
USD 8.1 billion in 2019”. The same report went on to state
that “the increasing focus of the pharmaceutical and cosmetics
industries on using in-vitro methods for product testing along
with the improvement in-silico methods for predictive
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toxicology studies are expected to offer significant growth
opportunities for players in this market”.

It should not then be surprising that both the Journal of
Chemical Information and Modeling (JCIM) and Chemical
Research in Toxicology (CRT) have experienced a growth in the
submission of studies in the area of chemical toxicity
prediction. In fact, this trend led CRT to recruit a new
Associate Editor specializing in computational toxicology.
Reflecting these trends, both journal editors felt that a joint
special virtual issue highlighting most interesting and
innovative contributions published in both JCIM and CRT
in the last three years would be in order.

The papers selected for this special virtual issue reflect recent
and developing trends in employing increasingly more
sophisticated data modeling methods such as deep learning
to toxicity databases that continue to grow in both size and
complexity. For instance, Xu et al.® have pursued acute oral
toxicity, one of the well-known and important end points.
However, by using a novel molecular graph encoding and
convolutional neural network they have achieved an improved
accuracy as compared to models built with more traditional
approaches. Jiménez et al.” have explored a large collection of
compounds selected from ChEMBL and used deep self-
normalizing neural network model for the prediction of
molecular pathway association of these chemicals to provide
mechanistic prediction of compound effects. Their models
reached accuracy as high as 81—83% for external industrial
data sets. In fact, many recent publications have reported the
use of deep neural network (DNN) methods to the task of
toxicity prediction. Perhaps the most uncommon was the study
by Fernandez et al."’ who used unconventional representation
of molecules by 2D drawings (i.e., molecular images) rather
than by any of conventional chemical descriptors. Despite the
simplicity of such representation, their models achieved
accuracy comparable to state-of the-art conventional chem-
informatics approaches and a standard Tox21 benchmark data
set. Wenzel et al'' have explored both single-task and
multitask DNN models to predict several properties including
microsomal lability in different species for a large data set of
50000 both publicly available and proprietary compounds.
Interestingly, they found that multitask DNN models provided
higher prediction accuracy for human metabolic liability data.
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Wu et al'? also used DNN along with more traditional

machine learning approaches in their study of aquatic and
acute oral toxicity. Unique to their study was the use of a novel
approach to compound characterization, element specific
persistent homology (ESPH), which employs special topo-
logical abstraction of geometric complexity of molecules. The
authors found that using their novel descriptors, multitask deep
learning models had higher accuracy than ensemble methods
such as random forest and gradient boosting decisions trees.
Another example demonstrating the power of multitask
learning over single-task approaches was presented by Sosnin
et al."”’ These authors also studied acute toxicity for a large
compound data set extracted from the Registry of Toxic Effects
of Chemical Substances (RTECS). Importantly, they made
their models publicly available via their OCHEM platform
(ochem.eu/multitox) in an effort to promote regulatory
acceptance of multitask modeling approaches.

Finally, two interesting studies in the difficult area of
predicting drug induced liver injury (DILI) have been
published by Wu et al."* and Kotsampasakou and Ecker.'®
Reflecting the complexity of DILI, Wu et al. have introduced a
novel quantitative structure activity relationship (QSAR)
approach incorporating the drug’s mode of action (MOA) as
part of the modeling process. The authors used the MOA
knowledge to divide compounds in their data sets into
respective groups, developed QSAR models for each group,
and then combined individual models to obtain an integrated
MOA-DILI model. They showed that this approach achieves
appreciable statistical accuracy while allowing to discriminate
DILI-causing drugs by the MOA. Kotsampasakou and Ecker
approached one of the major forms of DILI, namely cholestasis
prediction, using somewhat similar hybrid modeling scheme
except besides chemical descriptors, they also used predictions
of selected hepatic transporters’ inhibition (BSEP, BCRP, P-gp,
OATPI1BI1, and OATPIB3) as additional “biological”
descriptors of drugs. They found that the inclusion of these
descriptors makes models more mechanistically relevant while
having appreciable prediction accuracy.

The computational articles in CRT covered a wide variety of
topics including classical toxicity modeling, the development of
new descriptors and generation of hypothesis that can be
confirmed experimentally in new studies. The first two selected
works deal with toxicity estimation for single end points.
Prediction of DILI is important to improve hepatotoxicity risk
assessment in drug discovery. The Bayesian model based on in
vitro assays as well as lipophilicity and exposure variables was
developed'® to classify compounds and providing a probability
of the compound to belong to the target category. One of the
most interesting contributions of this work is the developed
visualization tools to interpret the importance of variables for
each prediction. Compounds that absorb light in UV/vis
spectra can demonstrate phototoxicity. A very nice and
comprehensive photosafety assessment protocol was described
by Schmidt et al.'” It incorporates a multitude of computa-
tional approaches, such as identification of phototoxophores,
and, importantly, calculation of physically relevant descriptors,
e.g., quantum chemical, UV/vis spectral absorption descriptors,
which were used as pat of machine learning modeling efforts to
eliminate the problematic compounds. The importance of
descriptors for appropriate modeling of biochemical processes
on the surface of nanoparticles of nanoparticles was a topic of
the Boukhvalov and Yoon study.'® The authors considered ion
extraction from the surface of a specimen to aqueous media
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and water dissociation on the surface to come with new
descriptors to model toxicity of nanomaterials. The analysis of
whether bioinformatics knowledge can help to predict
synergetic toxicity of binary mixtures was investigated by
Kim et al."” The author used protein—chemical and protein—
protein interaction networks to characterize shared biological
targets and their neighborhoods for analyzed mixtures, which
were the most important features for classifying chemicals into
synergistic and nonsynergistic groups.

The methodology on how to use results of in vitro assays for
in vivo predictions is amid of the intensively developing area of
studies of the journal. The application of Tox21 HTS assays
within computational models to identify compounds with
genotoxicity potential was reported by Hsieh et al.’® The
authors noticed that, despite current quantitative high-
throughput screening (qHTS) alone have low sensitivity and
cannot replace traditional genotoxicity assays, they can be used
to prioritize chemicals for further studies. In another study the
results of HTS screening were found to contribute the more
accurate classifiers for prediction of 35 in vivo target organ
toxicity outcomes”' than the studied chemical descriptors
alone. The combination of both types of descriptors further
improved the models. These preliminary results indicate
perspectives to predict organ toxicities of untested chemicals
without a need to perform animal testing. In the last selected
study Poussin et al.””> reported crowd-source validation of
computational results of Philip Morris, which suggest that mice
exposed to MRTP (Modified Risk Tobacco Product) have
gene expression profiles more close to nonsmoke exposed
groups. While this study does not directly show that
consumption of MRTP has a decreased health impact, it
does suggest such working hypothesis to be confirmed
experimentally.

In summary, this joint JCIM/CRT virtual issue highlights
current important developments in the area of computational
toxicology that continue to be important components of
modern drug discovery and chemical safety assessment
research. Both journals continue to be committed to
publishing innovative and impactful papers in this important
research discipline. We encourage scientists working in this
field to submit their new manuscripts to either journal; more
computationally inclined methodological papers may perhaps
go to JCIM whereas manuscripts emphasizing specific
applications including regulatory science may be more suitable
for CRT.

Igor V. Tetko

Alexander Tropsha
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