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Abstract

Dimensionality reduction is a key step in the analysis of single-cell RNA sequencing data. It produces a
low-dimensional embedding for visualization and as a calculation base for downstream analysis. Nonlinear
techniques are most suitable to handle the intrinsic complexity of large, heterogeneous single cell data.
However, with no linear relation between gene and embedding coordinate, there is no way to extract the
identity of genes driving any cell’s position in the low-dimensional embedding, making it more difficult to
characterize the underlying biological processes.
In this paper, we introduce the concepts of local and global gene relevance to compute an equivalent of
principal component analysis loadings for non-linear low-dimensional embeddings. Global gene relevance
identifies drivers of the overall embedding, while local gene relevance identifies those of a defined sub-
region. We apply our method to single-cell RNAseq datasets from different experimental protocols and to
different low dimensional embedding techniques. This shows our method’s versatility to identify key genes
for a variety of biological processes.
To ensure reproducibility and ease of use, our method is released as part of destiny 3.0, a popular R
package for building diffusion maps from single-cell transcriptomic data. It is readily available through
Bioconductor.

1 Introduction
Single cell RNA sequencing (scRNAseq) has massively improved the
resolution developmental trajectories Baron et al. (2016) and allowed
unprecedented insights into the heterogeneity of complex tissues Vento-
Tormo et al. (2018); Tritschler et al. (2017). On the flip side, new challenges
have arisen due to the amount of data that needs to be processed Angerer
et al. (2017), higher levels of technical and biological noise Yuan et al.

(2017), and identification and interpretation of known and novel cell types
Pliner et al. (2019). To exploit the new opportunities and deal with the new
challenges, a large number of algorithms and tools have been developed
Zappia et al. (2018).

Dimension reduction methods create a low dimensional embedding
of the high dimensional gene expression space. Those embeddings are
widely used for their two main applications: For one, they serve as a
visual overview of the data on which gene expression profiles and per-cell
or per-cluster statistics can be compared. They can also serve as inputs
for further downstream computational analysis. E.g., principal component
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Fig. 1. The gene relevance concept. (a) A gene expression matrix from a single cell RNA sequencing experiment is (b) reduced to a low-dimensional embedding spc , with each dot
representing a cell, and the color representing the expression xgc of gene g ∈ {A,B, . . . , Z} in cell c. (c) Expression changes are calculated from estimates of partial derivatives with
respect to the embedding, which results in one value per cell×gene×dimension combination. (d) We score the relevance of each gene in each cell according to the partial derivatives’
euclidean norm. This score indicates how relevant each gene is within its neighborhood. (e) For local gene relevance scores, we subdivide the embedding into bins and determine the fraction
of cells per bin for which a given gene is among the (e.g. 10) most relevant genes (indicated by “%top rank” in the figure legend). We color bins of the embedded cells according to their
local gene relevance score, and fade them according to the number of cells they contain (indicated by “#cells” in the legend). (f) For the global gene relevance score, we determine local
relevance for all cells instead of a bin. In our illustrative example, gene B has been ranked among the top 10 genes in 5.4% of all cells. (g) A gene relevance map indicates all cells where a
given gene has the largest norm of partial derivatives (with or without a smoothing step – see Methods). Such cells mark the areas where that gene has high local relevance.

analysis (PCA) is a popular technique to identify orthogonal linear combi-
nations of genes that explain variance in the data. PCA loadings quantify
the contribution of genes to each principal component and help understand
the genetic drivers of the underlying molecular processes. However, linear
methods are often not able to capture the complexity of high-dimensional
datasets Haghverdi et al. (2015), which is why nonlinear dimension redu-
ction methods have become the standard for scRNAseq data analysis (see
e.g. t-SNE Husnain et al. (2019), diffusion maps Husnain et al. (2019);
Coifman et al. (2005); Haghverdi et al. (2015), UMAP McInnes et al.
(2018); Becht et al. (2018), and graph-based methods Islam et al. (2011)).
However, no intrinsic measure of individual genes’ contribution to each
embedding dimension exists for non-linear embeddings. Without such a
measure, the identification of genes that drive the variability in the data
requires tedious manual inspection and prior knowledge about possible
target genes.

Here, we introduce gene relevance, a measure for a gene’s contribution
to variance in low dimensional embeddings, and present a method to infer
a local as well as a global gene relevance score from any kind of low-
dimensional embedding. To demonstrate the utility of the method, we
apply gene relevance to several datasets prepared with different droplet-
based and plate-based protocols (see Suppl. Table ??). Gene relevance is
available as part of the R package destiny Angerer et al. (2016).

2 Methods
We define gene relevance as a measure of how much a gene contributes to
the cell-to-cell variability in a low dimensional embedding of a scRNAseq
dataset (see Fig. 1). It can be interpreted as a generalization of PCA loa-
dings to non-linear dimensionality reduction techniques. Note that PCA
loadings are constant with respect to the PC space while feature importa-
nce in a non-linear embedding is naturally a non-constant function of the
embedding coordinates. A ranking of genes based on their relevance is
built for every cell of the embedding. These rankings, can be combined to

obtain a measurement of the local or global relevance of each gene (see
Fig. 1e-f), which highlight genes relevant in defined sub-regions of the
embedding and all cells, respectively. To explore and visualize the results
further, the method also provides a gene relevance map, where the locally
most relevant genes are displayed along with their corresponding neigh-
borhoods in the embedding (see Fig. 1g). Below, we describe in details
every step in the estimation of global and local gene relevance.

Neighborhoods. If a k nearest neighbor (kNN) search has been performed
as part of the embedding, it can be efficiently used for estimating the gene
relevance. To perform the kNN search, destiny offers the choice betw-
een euclidean distance, cosine distance, and spearman rank correlation
distance. The latter was used in all analyses performed for this paper.

Gene expression changes. The differential dgc of gene g in cell c describes
the change in gene expression xgc along a change in embedding coordi-
nates spc, where p ∈ {1, . . . , P} is the embedding dimension and dgc
corresponds to the partial derivatives of the gene expression with respect
to each embedding coordinate:

dgc =

(
∂xgc

∂s1c
, . . . ,

∂xgc

∂sPc

)
(1)

We estimated dgc from the cells’ neighborhood NNk(c) in gene
expression space using finite differences. To address the high dropout rate
present in scRNAseq data, we do not define dgc for xgc = 0.

(̂dgc)p =

NA, if xgc = 0

median
n∈NNk(c)∧n 6=c

xgc−xgn

spn−spc
, otherwise

(2)

Local gene relevance. The basis of local and global gene relevance is the
score of gene g ∈ {1, . . . , G} in cell c ∈ {1, . . . , C}, defined as the
euclidean norm ‖dgc‖2 of the differential dgc:
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‖dgc‖2 =

√√√√ P∑
p=1

(dgc)2
p (3)

In each cell c, genes can be ranked according to their score ‖dgc‖2,
from most to least relevant. Given the ranks rg‖dgc‖2 of gene g and a
rank cutoff rgmax, we define the local gene relevanceLRrgmax

(g,Ψ) of
a gene for a set of cells Ψ ⊆ {1, . . . , C} as:

LRrgmax
(g,Ψ) =

∑
c∈Ψ

[
rg‖dgc‖2 < rgmax

]
|Ψ|

(4)

with the iverson bracket notation

[P ] =

{
1, if P is true

0, otherwise
, for any predicate P (5)

In our analyses, we used the default rgmax = 10. The method is
robust against the cutoff used, with the most relevant genes stable even for
higher cutoffs > 100 (see Suppl. Fig. ??).

Global gene relevance. The global relevance GRrgmax
(g) can simply be

defined as the local gene relevance for the set of all cells {1, . . . , C}.

GRrgmax
(g) = LRrgmax

(g, {1, . . . , C}) (6)

Local gene relevance plots. The local gene relevance of genes can be visu-
alized by evenly dividing the embedding space into bins b ∈ {1, . . . , B}
and calculating LRrgmax

(g,Ψb) for the set of cells falling into each bin
Ψb. This visualization is shown in Fig. 1e and Fig. 2d.

Gene relevance maps. For a set of genes of interest Ω ⊆ {1, . . . , G}
(which can be chosen, e.g., among those with highest global relevance)
and each cell c, we define the locally most relevant gene lmc after a number
of smoothing steps m:

lmc = arg max
g∈Ω

‖dgc‖2, if m = 0
1
k

∑
n∈NNk(c)

[
lm−1
n = g

]
, otherwise.

(7)

During a smoothing iteration, we replace the local gene relevance score
of cell c and gene g with the fraction of neighbours that have g as the most
relevant gene.

The amount of smoothing is controlled by the smoothing parameter
m. Decreasing m will result in more locality and more genes with a high
relevance in a small region will appear on the map, while genes with a
medium relevance in more or larger regions will vanish. When determi-
ning the locally most relevant gene using the globally most relevant genes
as Ω, the aforementioned parameter rgmax can be used as a sensitivity
parameter, with higher values resulting in more genes being selected as
relevant. Finding the globally most relevant genes is robust to both para-
meters (see Suppl. Fig. ??), while locally relevant genes are affected to
a larger extent. Importantly, due to the short computation time of gene
relevance maps, one can explore several combinations of parameters. For
cell sizes in the range of few hundreds, the running time is less than one to
a few seconds with 40000 cell×gene combinations per second processed.
For cell sizes in the thousands 20000 cell×gene combinations per second
are processed, resulting in run times of a few minutes. (Run times have
been measured on a single 3.6GHz CPU core.)

Single cell RNA sequencing data. We demonstrate our method on four
datasets (see Results and Suppl. Table ?? for details).

In the mouse gastrulation data from Scialdone et al. (2016), we used
count data from 271 cells mostly of the neural plate (embryonic day 7.5)
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Fig. 2. Gene relevance automatically detects drivers of embryonic blood development. (a)
Diffusion map of 271 single hematopoietic progenitor cells from mostly day 7.5 and 7.75
mouse embryos, profiled in Scialdone et al. (2016). (b) Global gene relevance identifies Hbb-
bh1 and Hba-x as genes that change most dramatically during hematopoietic development.
(c) A gene relevance map identifies the contribution of relevant genes in specific regions of
the process and the corresponding code to create it. The genes corresponding to each color
are shown in panel b. (d) A local gene relevance plot details the areas where the contribution
of genes is highest. Alox5ap shows a high local relevance in the top region of the diffusion
map and has been implicated with early blood development Ibarra-Soria et al. (2018).

and head fold (embryonic day 7.75) development stages of mouse embryos.
There, the libraries were constructed using the Smart-seq2 protocol, read
counts were obtained via HTseq-count. The 271 cells we used correspond
to the clusters annotated as “blood progenitor” and “primitive erythroid”
in the original publication. We selected highly variable genes using the
method of Brennecke et al. (2013) because of its stable performance Yip
et al. (2018), and embedded the log-transformed data using the diffusion
map implementation destiny Angerer et al. (2016).

For the two human cell datasets, we applied the same analysis steps,
starting from the highly variable gene selection (see Suppl. Fig. ??). The
human endocrine cell data from Veres et al. (2019) was sequenced using the
inDrops platform, while the human brain organoid data from Gray Camp
et al. (2015) used the SMARTer Ultra Low RNA Kit in combination with
an Illumina sequencer. The data from Kolodziejczyk et al. (2015) used
Nextera kits together with an Illumina sequencer. For further details about
the preprocessing of these data, please refer to the individual publications.

3 Results
We demonstrate our method on a scRNAseq dataset of blood progeni-
tors and blood cells from mouse embryos Scialdone et al. (2016) (see
Fig. 2a). In the original publication, this data was used to reconstruct a tra-
jectory representing primitive erythropoiesis, along which blood marker
expression increases and other markers (such as endothelial cells) decre-
ase. There, an ad-hoc method was devised to find important genes in the
2D diffusion map embedding of the data. Here, we show how our method
can be used “out of the box” to rank genes based on their local and global
relevance.

First, we ranked all highly variable genes according to their global gene
relevance (see Fig. 2b). As expected, the high-ranking genes are mostly
associated with blood development, including the hemoglobin genes Hba-
a1, Hba-x, Hbb-bh1, and the erythrocyte membrane genes Gypa and Cited4
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Yahata et al. (2002). The genes Cyr61 and Hapln1 are involved in extracel-
lular matrix and important for development of the cardiovascular system
Latinkić et al. (2001). The top of the list has a good overlap with the ad-
hoc method in Scialdone et al. (2016): 4 genes are shared between the top
ten of both lists, and we find a Rank-Biased Overlap of RBOp = 0.48,
where we used p = 0.9, which assigns ~86% of the weight to the first 10
genes Webber et al. (2010).

Second, we created a gene relevance map (Fig. 2c). Five out of the
six locally most relevant genes (see Fig. 2c) are among the ten most glo-
bally relevant ones. Interestingly, Alox5ap is included only in the gene
relevance map, because its contribution is confined to a small region of
the diffusion space (bottom right panel in Fig. 2d) and hard to detect at the
level of gene expression (see Suppl. Fig. ??). This gene was not discovered
by the ad-hoc method of Scialdone et al. (2016), but it has been recen-
tly found to be important in early blood development Ibarra-Soria et al.
(2018). Locally and globally relevant genes can also be inferred in other
embeddings such as t-SNE Maaten and Hinton (2008) and UMAP Becht
et al. (2018), with a stable recovery of the most relevant genes between
comparable embeddings (See Suppl. Fig. ??).

Applied to other scRNAseq data sets, we showcase versatility and
ease of application of our method. In droplet-sequenced data of human
endocrine cells Veres et al. (2019), gene relevance maps detect genes dri-
ving the separation of sub-regions of the embedding (see Suppl. Fig. ??a),
in accordance to the markers identified in the original paper. In human
brain organoid cells Gray Camp et al. (2015), we detect relevant genes
different from the markers specified in the paper because of a low density
region between mesenchymal cells and neurons/neural progenitors (see
Suppl. Fig. ??b). The genes therefore seem to to be selected for driving
the difference between progenitors and neurons: TXNRD1 plays a vital
role for neuron progenitor cells Soerensen et al. (2008), the selenoprotein
SELT protects neurons against oxidative stress in mouse models Boukhzar
et al. (2016), and CRABP1 modulates the neuronal cell cycle in mice Lin
et al. (2017).

Finally, we applied gene relevance to mouse embryonic stem cells
grown in three different pluripotency retaining media Kolodziejczyk et al.
(2015). As expected for cells in a relatively homogenous pluripotent steady
state, the relevant genes for diffusion map embedding of all three media
were enriched for housekeeping, metabolic and proliferation pathways
(see Suppl. Fig. ??).

4 Discussion
We presented a method that is able to reliably detect relevant genes from
low dimensional embeddings of scRNAseq data. More specifically, our
method computes both a local and a global gene relevance score: local gene
relevance identifies the main drivers of the cell-to-cell variability in defined
sub-regions of the embedding, while global gene relevance identifies those
of the whole embedding. In addition to a gene ranking based on global
relevance, the method also provides graphic tools to visualize the local
gene relevance (see Fig. 1e) and the changes in gene expression levels
within the embedding (see Fig. 1c and Suppl. Fig. ??). It can be used for
any single cell data set and any dimensionality reduction technique.

We applied our method to three datasets, including one from mouse
embryonic blood progenitors, where we show that it performs comparably
to a technique custom-made for the dataset. Interestingly, our method
identifies Alox5ap (Fig. 2), a gene that was recently shown to be important
for blood development in a later publication Ibarra-Soria et al. (2018). In
two other examples, we used human cells, endocrine Veres et al. (2019) and
from brain organoids Gray Camp et al. (2015), showing that the method
works robustly in varied conditions.

Compared to the classical method of looking at PCA loadings, gene
relevance provides a generalization not tied to this dimension reduction
method, as it is also suited for non-linear dimension reduction methods. It
can therefore be used to explore the differences in the embeddings obtained
by different dimension reduction methods (see Suppl. Fig. ??). Applied
to a PCA embedding, gene relevance recovers a similar list of genes to
those with the highest PC loadings (see Suppl. Fig. ??). Other methods
to identify important genes specifically from scRNAseq data exist, but
most of them aim to find marker genes that can best distinguish different
cell types Delaney et al. (2019). Conversely, the method we presented is
unsupervised and does not rely on cell type annotation.

Recently, two computational methods have been developed to iden-
tify variable genes in spatial RNAseq datasets, trendsceek and SpatialDE
Edsgärd et al. (2018); Svensson et al. (2018). While these methods were
designed to find patterns in spatial transcriptomic datasets, they can also
be used to identify relevant genes in low-dimensional embeddings of scR-
NAseq datasets (see Suppl. Fig. ?? in Edsgärd et al. (2018)). We compared
our approach to trendsceek and found similar genes (see Suppl. Fig. ??) in
a considerably shorter running time: our method took 6.5 seconds, while
trendsceek needed 1080 seconds. (Run times measured on a single 2.0GHz
CPU core.) SpatialDE returned a perfect score for too many genes, making
gene ranking impossible. This is probably related to both methods being
optimized towards identifying spatial patterns. Moreover, neither method
allows estimation of local gene relevance.

To summarize, our gene relevance method is a fast and versatile explo-
ratory tool that can help identify the biological processes and reveal the
presence and driving genes of potentially rare cell sub-populations. It is
available online, easily applicable, and faster than model fitting approa-
ches. While we focussed our discussion on scRNAseq datasets, our method
can be applied to virtually any kind of dataset where low-dimensional
embeddings are obtained, including, for instance, single-cell epigenomic
Shema et al. (2018) and mass cytometry data Spitzer and Nolan (2016).

5 Availability of data and materials
Gene relevance has been developed as part of the Bioconductor package
destiny: bioconductor.org/packages/destiny. API docu-
mentation for analysis and plotting and are available at is at https:
//theislab.github.io/destiny/

The datasets analysed within this publication are available from their
original publications as described in Suppl. Table ??.
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