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Minimal phenotyping refers to the reliance on the use of a small number of self-reported items for 

disease case identification, increasingly used in genome-wide association studies (GWAS). Here we 

report differences in genetic architecture between depression defined by minimal phenotyping and 

strictly defined major depressive disorder (MDD): the former has a lower genotype-derived 

heritability that cannot be explained by inclusion of milder cases, and a higher proportion of the 

genome contributing to this shared genetic liability with other conditions than strictly defined 

MDD. GWAS based on minimal phenotyping definitions preferentially identifies loci that are not 

specific to MDD, and though it generates highly predictive polygenic risk scores, the predictive 

power can be explained entirely by large sample sizes rather than specificity for MDD. Our results 

show that reliance on results from minimal phenotyping may bias our views of the genetic 

architecture of MDD and impede our ability to identify pathways specific to MDD. 

 

A key requisite for robust identification of genetic risk loci underlying psychiatric disease is the use of an 

appropriately large sample. However, the high cost of phenotyping limits sample collection1. One solution 

for reducing the burden of case identification is to use information from hospital registers2 or individuals’ 

self-reported symptoms, help-seeking, diagnoses or medication. We refer to the latter strategy as 

“minimal phenotyping”, as it minimizes phenotyping costs and reduces data to a single or few self-

reported answers. 

However, apart from detecting more GWAS loci3-5 (Supplementary Table 1), the consequences of 

sacrificing symptomatic information for genetic analyses have rarely been investigated. The consequences 

may be particularly important for major depressive disorder (MDD) because of its phenotypic and likely 

etiological heterogeneity6, high degree of comorbidity with other psychiatric diseases7, and substantial 

discrepancies between self-assessment using symptom scales and diagnoses made with full diagnostic 

criteria8. While a majority of the population self-identify as having one or two depressive symptoms at 

any one time, only between 9% and 20% of the population have sufficient symptoms to meet criteria for 

lifetime occurrence of MDD8-10. Furthermore, there are high rates of false positives when diagnoses are 

made without applying diagnostic criteria12, and antidepressants are prescribed for a wide range of 

conditions other than MDD13-15. As such, a cohort of MDD cases obtained either through the use of self-

report of illness or prescribed treatment may yield a sample that is not representative of the clinical 

disorder, but enriched in those with non-specific sub-clinical depressive symptoms and depression 

secondary to a comorbid disease.  

By comparing the genetic architecture of minimal phenotyping definitions of depression with 

those using full diagnostic criteria for MDD in UK Biobank16, a community-based survey of half a 

million men and women, we assess the implications of a minimal phenotyping strategy for GWAS in 
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MDD. We find that MDD defined by minimal phenotyping has a large non-specific component, and if 

GWAS loci from these definitions are chosen for follow-up molecular characterization, they may not be 

informative about biology specific to MDD.  

 
 
Results 
 

Definitions of depression in UK Biobank. We identified five ways that MDD can be defined in UK 

Biobank. First, self-reports of seeking medical attention for depression or related conditions provide 

“Help-seeking” definitions of MDD (referred to as “broad depression” in a previous GWAS3). Second, 

participants are diagnosed with “Symptom-based” MDD if, in addition to meeting help-seeking criteria, 

they report ever experiencing one or more of the two cardinal features of depression (low mood or 

anhedonia) for at least two weeks17. Third, a “Self-Report” definition of MDD is based on participants’ 

self-reports of all past and current medical conditions to trained nurses. Fourth, an electronic medical 

record (“EMR”) definition is derived from ICD10 primary and secondary illness codes in electronic 

health records. Finally, a “CIDI-based” diagnosis of lifetime MDD is available from subjects who 

answered an online “Mental Health Follow-up” questionnaire (MHQ)18 based on the Composite 

International Diagnostic Interview Short Form (CIDI-SF)19, which included DSM-5 criteria for MDD 

(Supplementary Note, Supplementary Fig. 1, and Supplementary Table 2). None of the definitions uses 

trained interviewers applying structured clinical interviews, and only the last applies operationalized 

criteria including symptoms, length of episode (more than two weeks) and impaired social, occupational 

or educational function. From hereon we refer to definitions one to three as ‘minimal’, the fourth as 

“EMR-based”, and the fifth as ‘strictly’ defined MDD (Supplementary Note). We also included a 

category of participants who met the help-seeking based definition (part of “broad depression” in Howard 

et al.3) but failed to meet the symptom-based definition (as they had neither of the two cardinal symptoms 

of depression: depressed mood or a loss of interest or pleasure in daily activities for more than two 

weeks). This group we refer to as “Non-MDD” (described in detail in the Supplementary Note and 

Supplementary Table 3). Figure 1 outlines the different diagnostic categories and the numbers of samples 

that each contains.  

All definitions are based on recall of episodes or symptoms of depression by participants in the 

UK Biobank. As priming of recall by current mood affects the reliability of such reports20-22, we 

emphasize that each definition is noisy, and can be interpreted as being enriched for individuals truly 

fulfilling its criteria. We explore the further characteristics of all definitions and considerations in their 

genome-wide association analyses (GWAS) in the Supplementary Note, Supplementary Figures 2-5, and 

Supplementary Tables 2-11.  
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Minimal phenotyping definitions of depression are epidemiologically different from strictly defined 

MDD. We assessed whether known risk factors for MDD were similar between definitions of 

depression26. Figure 2a-g shows the mean effect (odds ratio, OR) with confidence intervals of each of the 

following: sex27,28, age29, educational attainment30-32, socio-economic status33, neuroticism28,34, experience 

of stressful life events in the two years leading up to the baseline assessment, and cumulative traumatic 

life events preceding assessment35,36 (Supplementary Note and Supplementary Table 12). Estimates of the 

risk factor effect sizes differed substantially, and often highly significantly, as shown by the confidence 

intervals in Figure 2. These may reflect differences in methods of ascertainment, or underlying pathology, 

between definitions of depression. Next we asked whether differences in risk factors could be used to 

classify definitions of depression. We applied a clustering algorithm and found that all minimal 

phenotyping definitions of depression cluster separately from strictly defined MDD (Fig. 2h). 

 

Minimal definitions of depression are not just milder or noisier version of strictly defined MDD. 

Depression defined by minimal phenotyping has lower SNP-based heritabilities (h2
SNP) than more strictly 

defined definitions (Fig. 3a). Self-report (SelfRepDep h2
SNP = 11%, s.e. = 0.85%) and help-seeking based 

definitions (Psypsy h2
SNP = 13%, s.e. = 1.18%; GPpsy h2

SNP = 14%, s.e. = 0.81%) have heritabilities of 

15% or less. By contrast, strictly defined MDD (LifetimeMSuDD) has a much higher h2
SNP of 26% (s.e. = 

2.15%); imposing the further criterion of recurrence brings the h2
SNP up to 32% (s.e. = 2.56%). Other 

definitions have intermediate h2
SNP. All h2

SNP estimates were estimated on the liability scale using 

PCGCs23 (Supplementary Note), and the trend holds regardless of the method used23,37-39 (Supplementary 

Note and Supplementary Table 13). We further verified that the trend cannot be explained by potential 

case prevalence misestimations (Fig. 3b, Supplementary Note, Supplementary Fig. 3, and Supplementary 

Table 13), and was not affected by regions of high linkage-disequilibrium or complexity40 

(Supplementary Note and Supplementary Fig. 3). We compared h2
SNP estimates from previous studies of 

MDD4,41,42 (Supplementary Fig. 6) with our results, and found that they fit squarely into the trend we 

observe: the less strict the criteria used to diagnose MDD, the lower the h2
SNP.  

We examined the role of a number of additional factors for the lower h2
SNP of minimal 

phenotyping definitions of MDD. First, minimal phenotyping definitions do not simply have a higher 

environmental contribution to MDD than the stricter definitions. When we assessed h2
SNP in MDD cases 

with high and low exposure to environmental risk factors44, we found that minimal phenotyping 

definitions of depression (GPpsy, SelfRepDep) show no significant difference between exposures, similar 

to or lower than strictly defined MDD (LifetimeMDD and MDDRecur) (Supplementary Note and 

Supplementary Table 14). Second, the minimal phenotyping definitions do not merely include milder 
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cases of MDD as previously hypothesized43. Inclusion of milder cases is equivalent to lowering the 

threshold for disease liability in the population above which “cases” for MDD are defined. Under the 

liability threshold model45, this does not reduce the h2
SNP (Supplementary Note and Extended Data Fig. 1). 

Instead, we show through simulations that the lower h2
SNP of minimal phenotyping definitions of 

depression may be due to misdiagnosis of controls as cases of MDD, and misclassifications of those with 

other conditions as cases of MDD (Extended Data Figs. 1 and 2).  

 

Genetic correlations between definitions of depression and other diseases. We found that the genetic 

correlation (rG) between minimal and strictly defined MDD includes a large proportion of non-specific 

liability to mental ill health. The rG between GPpsy (minimal defined MDD) and LifetimeMDD (strictly 

defined MDD) is 0.81 (s.e. = 0.03), significantly different than unity (Fig. 3c,d, Supplementary Table 15, 

Supplementary Fig. 6, and Supplementary Note). One interpretation of this finding is that the correlation 

represents shared genetic liability to MDD4,5. However, the majority of the genetic liability of 

LifetimeMDD due to GPpsy (approximately rG2 = 0.812 = 66%) is shared with the No-MDD definition, 

GPNoDep, as the genetic liability of GPNoDep explains approximately 70% of the genetic liability of 

GPpsy (rG = 0.84, s.e. = 0.05), and 34% of that of LifetimeMDD (rG = 0.58, s.e. = 0.08).  

We next examined rG between different definitions of MDD and comorbid diseases, using cross-

trait LDSC46 to estimate rG with neuroticism and smoking (Extended Data Fig. 3 and Supplementary 

Tables 16 and 17) in UK Biobank, as well as with all psychiatric conditions in the Psychiatric Genomics 

Consortium (PGC)47, including PGC1-MDD42 and depression defined in 23andMe4 (Supplementary Table 

1). Figure 4a and Supplementary Table 18 show few differences in rG estimates between other psychiatric 

disorders and the different definitions of MDD in UK Biobank, consistent with previous reports48.   

Similar rG estimates can result from different genetic architectures, indexed by the extent to 

which genetic liability is spread across the genome. We estimated local rGL and percentage genome 

contribution to total rGT using rho-HESS49 (Methods and Fig. 4b). 65.8% (s.e. = 0.6%), 37.1% (s.e. = 

4.5%) and 42.7% (s.e. = 2.3%) of the genome explains 90% of the rGT between strictly defined MDD 

(LifetimeMDD) and neuroticism, bipolar disorder, and schizophrenia, respectively. In comparison, 80.2% 

(s.e. = 0.6%), 47.3% (s.e. = 2.4%) and 46.8% (s.e. = 0.2%) of the genome is needed to explain the same 

percentage of rGT between help-seeking based GPpsy and the same conditions (Fig. 4c). In other words, 

minimal phenotyping definitions of depression share more genetic loci with other psychiatric conditions 

than strictly defined MDD does. 

Previous work4 reported that depression defined through minimal phenotyping shows enrichment 

of h2
SNP in regions of the genome encoding genes specifically and highly expressed in central nervous 

system (CNS) tissues represented in GTEx50. We assessed this in the definitions of depression in UK 
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Biobank using LDSC-SEG51. As shown in Figure 5, neither strictly defined MDD (LifetimeMDD) nor 

MDD defined based on structured clinical assessments in PGC1-MDD show significant CNS 

enrichments, even though larger and more heterogeneous cohorts do (Methods, Supplementary Note, 

Supplementary Table 1, and Extended Data Fig. 4). Notably, minimal phenotyping definition GPpsy 

shows a significant CNS enrichment, as does the non-MDD help-seeking definition GPNoDep, 

neuroticism, smoking, and other disorders in the PGC47 such as schizophrenia53 and bipolar disorder54. 

Our analysis shows that the degree of CNS enrichment does not relate to the strictness of the definition of 

MDD, and is neither sufficient nor valid evidence that any particular definition of depression better 

represents MDD, or captures the biological mechanisms behind MDD.  

 

GWAS hits from minimal phenotyping are not specific to MDD. We next examined the specificity of 

action of individual genetic loci found in GWAS of each definition of MDD. We found that the help-

seeking definitions gave the greatest number of genome-wide significant loci (27 from GPpsy and 

Psypsy, Supplementary Table 10) in GWAS, consistent with their larger sample sizes and statistical 

power for finding associations. We examined whether these loci could be detected in strictly defined 

MDD. Of the 27 loci from minimal phenotyping definitions, 10 showed significant effects (at P < 0.05 

after multiple testing correction for 27 loci) on LifetimeMDD, despite the latter’s much smaller sample 

size, consistent with the hypothesis that risk loci for minimal phenotyping MDD also act in strictly 

defined MDD. However, all 10 loci also showed significant effects in neuroticism, smoking, 

schizophrenia, or the no-MDD help-seeking condition (GPNoDep, Supplementary Table 19). 

Furthermore, all significant SNPs in minimal phenotyping definitions of depression have the same 

directions of effect on non-MDD phenotypes (Fig. 6).  

We found the same pattern of results when we used loci identified from a minimal phenotyping 

strategy in an independent study by 23andMe that used a minimal phenotyping definition4. Of the 17 loci, 

ten replicated in GPpsy (at P < 0.05, after multiple testing correction for 17 loci) and three replicated in 

LifetimeMDD. All significant SNPs have the same directions of effect on neuroticism, smoking or 

schizophrenia (Extended Data Fig. 5 and Supplementary Table 20) and are therefore not specific to MDD, 

consistent with our analysis of minimal phenotyping definitions in UK Biobank. In summary, GWAS of 

minimal phenotyping definitions of depression primarily enables discovery of pathways that are shared 

with other conditions. It is not currently possible to assess the specificity of GWAS loci from strictly 

defined MDD in the same way, given the sample size of strictly defined MDD remains relatively small, 

and GWAS hits relatively few.  
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Out-of-sample prediction of MDD. Finally, we explored how well the definitions of depression in UK 

Biobank predict strictly defined, CIDI-based MDD in independent cohorts, using data from 23 MDD 

cohorts in the latest data freeze from the MDD Working Group of the Psychiatric Genomics Consortium 

(PGC29-MDD5,52; Supplementary Note, Supplementary Table 21, and Supplementary Fig. 7). We 

constructed polygenic risk scores (PRS) on each definition of depression in UK Biobank (Methods) and 

examined their prediction in each of the PGC29-MDD cohorts. Of note, PRS from all definitions of 

depression in UK Biobank, whether minimally or strictly phenotyped, accounted for a small proportion of 

variation in disease status in PGC29-MDD (Supplementary Table 22). We observed the following 

features.  

First, PRS obtained using the full sample of GPpsy performed best at predicting MDD status in 

independent cohorts from PGC29-MDD (Fig. 7a, Nargelkerke’s r2 = 0.018, AUC = 0.56 at P value 

threshold of 0.1; Extended Data Fig. 6). However, when equal sample sizes were used (randomly down-

sampled to 50,000 and case prevalence of 0.15; Methods), GPpsy no longer performed best at predicting 

MDD status in PGC29-MDD cohorts (Fig. 7b). Rather, PRS from the strictly defined CIDI-based MDD 

(LifetimeMDD) best predicted MDD disease status (Nargelkerke’s r2 = 0.0027, AUC = 0.52 at P value 

threshold of 0.1; Extended Data Fig. 6).  

Second, the higher prediction accuracy of PRS obtained using the full sample of GPpsy can be 

entirely explained by its larger sample size55 (113,260 cases, 219,362 controls, effective sample size = 

298,677; Supplementary Note and Extended Data Fig. 7). We calculated the effective sample size needed 

for other definitions to have the same predictive power: for strictly defined LifetimeMDD, we would need 

an effective sample size of 129,106 (Supplementary Note and Extended Data Fig. 7), less than half of that 

of GPpsy.  

Third, PRS from strictly defined LifetimeMDD predicted MDD disease status better in the 

PGC29-MDD cohorts that have a higher percentage of cases fulfilling DSM-5 symptom criteria 

(Supplementary Table 21 and Extended Data Fig. 8; Pearson r2 between AUC and percentage cases in 

PGC29-MDD cohorts fulfilling DSM-5 symptom criteria = 0.26, P = 0.025, at PRS P value threshold = 

0.1). This is consistent with the interpretation that LifetimeMDD captures signal specific to MDD. We 

did not observe such a trend for GPpsy (Pearson r = 0.02, P = 0.57 at PRS P value = 0.1) or any other 

definition of depression (Supplementary Table 23), suggesting their lower specificity for MDD.  

 

Discussion 

Our study demonstrates that the genetic architecture of minimal phenotyping definitions of depression is 

different from that of strictly defined MDD and is enriched for non-specific effects on MDD. Using a 

range of definitions of MDD in UK Biobank, from self-reported help seeking to a full assessment of the 
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DSM-5 criteria for MDD through self-reported symptoms from the MHQ, we made five key 

observations.  

First, the heritabilities of depression defined by minimal phenotyping strategies are lower than 

MDD defined by full DSM-5 criteria using the CIDI questionnaire. Second, although there is substantial 

genetic correlation between definitions, much of the shared genetic liability is not specific to MDD, and 

there remain significant differences, indicating the presence of genetic effects unique to each definition. 

Third, a larger percentage of the genome contributes to the shared genetic liability between minimal 

phenotyping definitions of depression and other psychiatric conditions than those between CIDI-based 

MDD and other conditions, likely driven by misdiagnosis due to non-specific phenotyping. Fourth, all 

GWAS hits from minimal definition of depression GPpsy are shared with genetically correlated 

conditions such as neuroticism and smoking. Finally, while minimal phenotyping definitions enable 

greater predictive power for MDD status in independent cohorts, this is due to its large sample size rather 

than its indexing of MDD-specific effects. These results point to the non-specific nature of genetic factors 

identified in minimal phenotyping definitions of depression.  

A number of factors need to be borne in mind when interpreting the above observations. 

Importantly, none of the definitions of depression in the UK Biobank were obtained from structured 

clinical interviews with an experienced rater (the gold standard for diagnosing MDD). The closest to that 

standard in UK Biobank is the online MHQ18, based on the Composite International Diagnostic Interview 

Short Form (CIDI-SF)19. Our results suggest that self-reported diagnoses using a CIDI-SF or other 

diagnostic questionnaires with full DSM-5 criteria lie on the same genetic liability continuum as MDD.  

This would argue that MDD cases identified through self-report means using a full diagnostic 

questionnaire will be enriched for more strictly defined forms, with the consequence that results from 

genetic analysis will include loci that contribute to strictly defined MDD disease risk64,65.  

Minimal definitions of MDD do not simply include cases with lower genetic liability to MDD. 

This is consistent with a recent study of three large twin cohorts, which asked if a combination of MDD, 

depressive symptoms and neuroticism is able to capture all genetic liability of MDD67, and showed that 

65% of the genetic effects contributing to MDD are specific, and minimally defined depression (inclusive 

of MDD, depressive symptoms and neuroticism) can index only around one-third of the genetic liability 

to MDD. Similarly, previously reported high degrees of genetic correlation between MDD and depressive 

symptoms (rG = 0.7, implying roughly rG2 = 49% of genetic factors contributing to liability of the former 

is attributable to that of the latter)26 need to be put in perspective of even higher degrees of sharing 

between depressive symptoms and other traits such as neuroticism (rG = 0.79-0.94, implying roughly rG2 

= 62-88% of genetic variance of the former is attributable to that of the latter, especially if both were 

assayed at a single time point66).  
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Our findings have important implications for downstream investigations. One interpretation is 

that the non-specific effects found through using minimal phenotyping approaches will still advance 

understanding of the biology of psychiatric disorders and their treatment5,56. A recent report used the 

“quasi-replication” of GWAS loci between depressive symptoms and neuroticism as validation of their 

functional significance66. An alternative view is that these loci reflect the ways in which depressive 

symptoms can develop as secondary effects, including through susceptibility to adverse life events68, 

personality types28, and use or exposure to psychoactive agents like cigarette smoking69,70—in which case, 

while useful for understanding the basis of mental ill health, they are not informative about the genetic 

etiology of MDD, and are not useful for developing disease-specific treatment.  

Our findings indicate the need for ways to integrate both strict and minimal phenotyping 

approaches to determine which loci to prioritize for follow-up functional analyses. They also indicate a 

need for means to assess symptoms for diagnosing MDD with specificity at scale, rather than reliance on 

minimal phenotyping. Fast and accurate diagnostic methods that use a limited number of questionnaire 

items are becoming available: for example, computerized adaptive diagnostic screening may be as 

effective for the diagnosis of MDD as an hour-long face-to-face clinician diagnostic interview71. There 

are ongoing attempts to convert behavioral health tracking data from phones or wearable devices into 

diagnostic information72. If successful, these attempts may lead to a dramatic expansion in our ability to 

collect data appropriate for psychiatric genetics.  

 
 
Acknowledgements  

We thank Omer Weissbrod, Andy Dahl, Huwenbo Shi and Verena Zuber for insightful discussions. N.C. 

is supported by the ESPOD Fellowship from the European Bioinformatics (EMBL-EBI) and Wellcome 

Sanger Institute. A.V. is supported by the Swedish Brain Foundation. C.M.L. and G.B. are funded by the 

National Institute for Health Research (NIHR) Maudsley Biomedical Research Centre at South London 

Maudsley Foundation Trust and King's College London. In the last three years, M.M.W. has received 

research funds from NIMH, Templeton Foundation and the Sackler Foundation and has received royalties 

for publications of books on interpersonal psychotherapy from Perseus Press, Oxford University Press, on 

other topics from the American Psychiatric Association Press and royalties on the social adjustment scale 

from Multihealth Systems. The CoLaus|PsyCoLaus study was and is supported by research grants from 

GlaxoSmithKline, the Faculty of Biology and Medicine of Lausanne, and the Swiss National Science 

Foundation (grants 3200B0–105993, 3200B0-118308, 33CSCO-122661, 33CS30-139468, 33CS30-

148401 and 33CS30_177535/1). The PGC has received major funding from the US National Institute of 

Mental Health and the US National Institute of Drug Abuse (U01 MH109528 and U01 MH1095320). 

This research was conducted using the UK Biobank Resource under application no. 28709, and with the 



12 
 

support and collaboration from all investigators who comprise the MDD Working Group of the PGC (full 

list in the Supplementary Note). We are greatly indebted to the hundreds of thousands of individuals who 

have shared their life experiences with the UK Biobank and PGC investigators. 

 
Author Contributions  

N.C. and J.F. designed the study. N.C. and J.A.R. performed the analyses. N.C. and J.F. obtained the data 

from the UK Biobank Resource. M.J.A., T.F.M.A., G.B., E.M.B., T.-K.C., A.J.F., H.J.G., S.P.H., D.F.L., 

C.M.L., G.L., N.G.M., Y.M., O.M., B.M.-M., B.W.J.H.P., R.H.P., G.P., J.B.P., M.P., J.S., J.W.S., F.S., 

H.T., R.U., S.V.d.A., A.V., M.M.W. and all investigators from the MDD Working Group of the PGC 

contributed data from the PGC. N.C., K.S.K. and J.F. interpreted the results and wrote the manuscript.  

 
Competing interests  

C.M.L. is on the scientific advisory board of Myriad Neuroscience. H.J.G. has received travel grants and 

speaker’s honoraria from Fresenius Medical Care, Neuraxpharm and Janssen Cilag as well as research 

funding from Fresenius Medical Care. B.W.J.H.P. has received (non-related) research grants from Jansen 

Research and Boehringer Ingelheim. 

 
 

 

 

References 

 

1. Lu, J. T., Campeau, P. M. & Lee, B. H. in Obstetrical and Gynecological Survey    (2014). 

2. Ripke, S. et al. Genome-wide association analysis identifies 13 new risk loci for schizophrenia. 

Nat. Genet. 45, 1150-1159 (2013). 

3. Howard, D. M. et al. Genome-wide association study of depression phenotypes in UK Biobank 

identifies variants in excitatory synaptic pathways. Nat. Commun. 9, 1470 (2018). 

4. Hyde, C. L. et al. Identification of 15 genetic loci associated with risk of major depression in 

individuals of European descent. Nat. Genet. 48, 1031-1036 (2016). 

5. Wray, N. R. et al. Genome-wide association analyses identify 44 risk variants and refine the 

genetic architecture of major depression. Nat. Genet. 50, 668-681 (2018). 

6. Flint, J. & Kendler, K. S. The genetics of major depression. Neuron 81, 484-503 (2014). 

7. Kessler, R. C. et al. The epidemiology of major depressive disorder: results from the National 

Comorbidity Survey Replication (NCS-R). JAMA 289, 3095-3105 (2003). 



13 
 

8. Boyd, J. H., Weissman, M. M., Thompson, W. D. & Myers, J. K. Screening for depression in a 

community sample. Understanding the discrepancies between depression symptom and diagnostic 

scales. Arch. Gen. Psychiatry 39, 1195-1200 (1982). 

9. Breslau, N. Depressive symptoms, major depression, and generalized anxiety: a comparison of 

self-reports on CES-D and results from diagnostic interviews. Psychiatry Res. 15, 219-229 

(1985). 

10. Weissman, M. M. & Myers, J. K. Rates and risks of depressive symptoms in a United States 

urban community. Acta Psychiatr. Scand. 57, 219-231 (1978). 

11. Berardi, D. et al. Increased recognition of depression in primary care. Comparison between 

primary-care physician and ICD-10 diagnosis of depression. Psychother. Psychosom. 74, 225-230 

(2005). 

12. Mitchell, A. J., Vaze, A. & Rao, S. Clinical diagnosis of depression in primary care: a meta-

analysis. Lancet 374, 609-619 (2009). 

13. Mojtabai, R. Clinician-identified depression in community settings: concordance with structured-

interview diagnoses. Psychother. Psychosom. 82, 161-169 (2013). 

14. Druss, B. G. et al. Understanding mental health treatment in persons without mental diagnoses: 

results from the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 64, 1196-1203 

(2007). 

15. Marcus, S. C. & Olfson, M. National trends in the treatment for depression from 1998 to 2007. 

Arch. Gen. Psychiatry 67, 1265-1273 (2010). 

16. Sudlow, C. et al. UK biobank: an open access resource for identifying the causes of a wide range 

of complex diseases of middle and old age. PLoS Med. 12, e1001779 (2015). 

17. Smith, D. J. et al. Prevalence and characteristics of probable major depression and bipolar 

disorder within UK Biobank: Cross-sectional study of 172,751 participants. PLoS ONE 8, e75362 

(2013). 

18. Davis, K. A. S. et al. Mental health in UK Biobank: development, implementation and results 

from an online questionnaire completed by 157 366 participants. BJPsych Open 4, 83-90  (2018). 

19. Kessler, R. C. & Ustun, T. B. The World Mental Health (WMH) Survey Initiative version of the 

World Health Organization (WHO) Composite International Diagnostic Interview (CIDI). Int. J. 

Meth. Psych. Res. 13, 93-121 (2004). 

20. Bromet, E. J., Dunn, L. O., Connell, M. M., Dew, M. A. & Schulberg, H. C. Long-term reliability 

of diagnosing lifetime major depression in a community sample. Arch. Gen. Psychiatry 43, 435-

440 (1986). 



14 
 

21. Kendler, K. S., Neale, M. C., Kessler, R. C., Heath, A. C. & Eaves, L. J. The lifetime history of 

major depression in women. Reliability of diagnosis and heritability. Arch. Gen. Psychiatry 50, 

863-870 (1993). 

22. Rice, J. P., Rochberg, N., Endicott, J., Lavori, P. W. & Miller, C. Stability of psychiatric 

diagnoses. An application to the affective disorders. Arch. Gen. Psychiatry 49, 824-830 (1992). 

23. Weissbrod, O., Flint, J. & Rosset, S. Estimating SNP-based heritability and genetic correlation in 

case-control studies directly and with summary statistics. Am. J. Hum. Genet. 103, 89-99 (2018). 

24. Fry, A. et al. Comparison of sociodemographic and health-related characteristics of UK Biobank 

participants with those of the general population. Am. J. Epidemiol. 186, 1026-1034 (2017). 

25. Adams, M. J. et al. Factors associated with sharing email information and mental health survey 

participation in large population cohorts. bioRxiv (2019). 

26. Foley, D. L., Neale, M. C. & Kendler, K. S. Genetic and environmental risk factors for depression 

assessed by subject-rated symptom check list versus structured clinical interview. Psychol. Med. 

31, 1413-1423 (2001). 

27. Kendler, K. S., Gardner, C. O., Neale, M. C. & Prescott, C. A. Genetic risk factors for major 

depression in men and women: Similar or different heritabilities and same or partly distinct 

genes? Psychol. Med. 31, 605-616 (2001). 

28. Kendler, K. S., Gatz, M., Gardner, C. O. & Pedersen, N. L. Personality and major depression: a 

Swedish longitudinal, population-based twin study. Arch. Gen. Psychiatry 63, 1113-1120, (2006). 

29. Alexopoulos, G. S. et al. 'Vascular depression' hypothesis. Arch. Gen. Psychiatry 54, 915-922 

(1997). 

30. Kessler, R. C. et al. Lifetime prevalence and age-of-onset distributions of DSM-IV disorders in 

the National Comorbidity Survey Replication. Arch. Gen. Psychiatry 62, 593-602 (2005). 

31. Kessler, R. C., Foster, C. L., Saunders, W. B. & Stang, P. E. Social consequences of psychiatric 

disorders, I: Educational attainment. Am. J. Psychiatry 152, 1026-1032 (1995). 

32. Lorant, V. et al. Socioeconomic inequalities in depression: a meta-analysis. Am. J. Epidemiol. 

157, 98-112 (2003). 

33. Kessler, R. C. Epidemiology of women and depression. J. Affect. Disord. 74, 5-13 (2003). 

34. Kendler, K. S., Neale, M. C., Kessler, R. C., Heath, A. C. & Eaves, L. J. A longitudinal twin 

study of personality and major depression in women. Arch. Gen. Psychiatry 50, 853-862 (1993). 

35. Kessler, R. C. The effects of stressful life events on depression. Ann. Rev. Psychol. 48, 191-214 

(1997). 

36. Mazure, C. M. Life stressors as risk factors in depression. Clinical Psychology: Science and 

Practice 5, 291-313 (1998). 



15 
 

37. Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in 

genome-wide association studies. Nat. Genet. 47, 291-295 (2015). 

38. Loh, P.-R. et al. Contrasting genetic architectures of schizophrenia and other complex diseases 

using fast variance-components analysis. Nat. Genet. 47, 1385-1392 (2015). 

39. Shi, H., Kichaev, G. & Pasaniuc, B. Contrasting the genetic architecture of 30 complex traits 

from summary association data. Am. J. Hum. Genet. 99, 139-153 (2016). 

40. Price, A. L. et al. Long-range LD can confound genome scans in admixed populations. Am. J. 

Hum. Genet. 83, 132-135 (2008). 

41. CONVERGE consortium. Sparse whole-genome sequencing identifies two loci for major 

depressive disorder. Nature 523, 588-591 (2015). 

42. Major Depressive Disorder Working Group of the Psychiatric GWAS Consortium et al. A mega-

analysis of genome-wide association studies for major depressive disorder. Mol. Psychiatry 18, 

497-511 (2013). 

43. Northern Ireland Statistics and Research Agency. 2011 Census aggregate data. UK Data Service 

(Edition: June 2016). (2011). 

44. Peterson, R. E. et al. Molecular genetic analysis subdivided by adversity exposure suggests 

etiologic heterogeneity in major depression. Am. J. Psychiatry 175, 545-554 (2018). 

45. Dempster, E. R. & Lerner, I. M. Heritability of threshold characters. Genetics 35, 212-236 

(1950). 

46. Bulik-Sullivan, B. et al. An atlas of genetic correlations across human diseases and traits. Nat. 

Genet. 47, 1236-1241 (2015). 

47. Cross-Disorder Group of the Psychiatric Genomics Consortium. Identification of risk loci with 

shared effects on five major psychiatric disorders: a genome-wide analysis. Lancet 381, 1371-

1379 (2013). 

48. Brainstorm Consortium et al. Analysis of shared heritability in common disorders of the brain. 

Science 360, eaap8757 (2018). 

49. Shi, H., Mancuso, N., Spendlove, S. & Pasaniuc, B. Local genetic correlation gives insights into 

the shared genetic architecture of complex traits. Am. J. Hum. Genet. 101, 737-751 (2017). 

50. GTEx Consortium,. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 45, 580-585 

(2013). 

51. Finucane, H. K. et al. Heritability enrichment of specifically expressed genes identifies disease-

relevant tissues and cell types. Nat. Genet. 50, 621-629 (2018). 

52. Trzaskowski, M. et al. Quantifying between-cohort and between-sex genetic heterogeneity in 

major depressive disorder. Am. J. Med. Genet. B Neuropsychiatr. Genet. 180, 439-447 (2019). 



16 
 

53. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 

108 schizophrenia-associated genetic loci. Nature 511, 421-427 (2014). 

54. Psychiatric Genomics Consortium Bipolar Disorder Working Group. Large-scale genome-wide 

association analysis of bipolar disorder identifies a new susceptibility locus near ODZ4. Nat. 

Genet. 43, 977-98, (2011). 

55. Turley, P. et al. Multi-trait analysis of genome-wide association summary statistics using MTAG. 

Nat. Genet. 50, 229-237 (2018). 

56. McIntosh, A. M., Sullivan, P. F. & Lewis, C. M. Uncovering the genetic architecture of major 

depression. Neuron 102, 91-103 (2019). 

57. Mullins, N. & Lewis, C. M. Genetics of depression: progress at last. Curr. Psychiatry Rep. 19, 43 

(2017). 

58. Sullivan, P. F. et al. Psychiatric genomics: an update and an agenda. Am. J. Psychiatry 175, 15-27 

(2018). 

59. Coyne, J. C., Schwenk, T. L. & Smolinski, M. Recognizing depression: a comparison of family 

physician ratings, self-report, and interview measures. J. Am. Board Fam. Pract. 4, 207-215 

(1991). 

60. Nevin, R. L. Low validity of self-report in identifying recent mental health diagnosis among U.S. 

service members completing Pre-Deployment Health Assessment (PreDHA) and deployed to 

Afghanistan, 2007: a retrospective cohort study. BMC Public Health 9, 376 (2009). 

61. Clarke, D. E. et al. DSM-5 field trials in the United States and Canada, Part I: study design, 

sampling strategy, implementation, and analytic approaches. Am. J. Psychiatry 170, 43-58 (2013). 

62. Spitzer, R. L., Forman, J. B. & Nee, J. DSM-III field trials: I. Initial interrater diagnostic 

reliability. Am. J. Psychiatry 136, 815-817 (1979). 

63. Keller, M. B. et al. Results of the DSM-IV mood disorders field trial. Am. J. Psychiatry 152, 843-

849 (1995). 

64. Corfield, E. C., Yang, Y., Martin, N. G. & Nyholt, D. R. A continuum of genetic liability for 

minor and major depression. Transl. Psychiatry 7, e1131 (2017). 

65. Direk, N. et al. An analysis of two genome-wide association meta-analyses identifies a new locus 

for broad depression phenotype. Biol. Psychiatry 82, 322-329 (2017). 

66. Okbay, A. et al. Genetic variants associated with subjective well-being, depressive symptoms, 

and neuroticism identified through genome-wide analyses. Nat. Genet. 48, 624-633 (2016). 

67. Kendler, K. S. et al. Shared and specific genetic risk factors for lifetime major depression, 

depressive symptoms and neuroticism in three population-based twin samples. Psychol. Med. 49, 

2745-2753 (2018). 



17 
 

68. Kendler, K. S. & Karkowski-Shuman, L. Stressful life events and genetic liability to major 

depression: genetic control of exposure to the environment? Psychol. Med. 27, 539-547 (1997). 

69. Fluharty, M., Taylor, A. E., Grabski, M. & Munafo, M. R. The association of cigarette smoking 

with depression and anxiety: a systematic review. Nicotine Tob. Res. 19, 3-13 (2017). 

70. Wootton, R. E. et al. Causal effects of lifetime smoking on risk for depression and schizophrenia: 

Evidence from a Mendelian randomisation study. bioRxiv (2018). 

71. Gibbons, R. D. et al. The computerized adaptive diagnostic test for major depressive disorder 

(CAD-MDD): a screening tool for depression. J. Clin. Psychiatry 74, 669-674 (2013). 

72. Freimer, N. B. & Mohr, D. C. Integrating behavioural health tracking in human genetics research. 

Nat. Rev. Genet. 20, 129-130 (2019). 

 

 

Figure legends  

 

Figure 1 | Definitions of depression in UK Biobank. This figure shows the different definitions of 

MDD in UK Biobank and the color codings used consistently in this paper. For the minimal phenotyping 

definitions of depression presented in this paper: red for help-seeking based definitions derived from 

Touchscreen Questionnaire; blue for symptom-based definitions derived from Touchscreen 

Questionnaire; green for self-report based definition derived from Verbal Interview. For the EMR 

definition of depression: orange for definitions based on ICD10 codes. For strictly defined MDD: purple 

for CIDI-based definitions derived from Online Mental Health Followup. For the no-MDD definition: 

brown for GPNoDep, containing those cases in help-seeking definitions that do not have cardinal 

symptoms for MDD. The data fields in UK Biobank relevant for defining each phenotype are shown in 

“Data field in UK Biobank”; number of individuals with non-missing entries for each definition are 

shown in “N entries”; the qualifying answers for cases and controls respectively are shown in “Answers”; 

the case prevalences in each definition are shown in “Case Prevalence”; the study and definitions of 

depression most similar to our definitions are shown in “Most similar to”. The similarities and differences 

between help-seeking, EMR, and symptom-based definitions with definitions of depression previously 

reported can be found in the Supplementary Note.  

 

Figure 2 | Relationship between definitions of depression and environmental risk factors. a-g, These 

figures show forest plots of odds ratios (OR) and -log10 P values (LogP) between known environmental 

risk factors and different types (Category) of definitions of depression in UK Biobank (Definition) from 

logistic regression, using UK Biobank assessment center, age, sex and years of education as covariates to 
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control for potential geographical and demographic differences between environmental risk factors, 

except when they are being tested. Lifetime trauma measure was derived from Online Mental Health 

Followup (Supplementary Note and Supplementary Table 7); Townsend deprivation index, years of 

education, sex, age, recent stress and neuroticism were derived from Touchscreen Questionnaire 

(Supplementary Note). h, This figure shows a hierarchical clustering of definitions of depression in UK 

Biobank using ORs with environmental risk factors performed using the hclust function in R, “Height” 

refers to the Euclidean distance between MDD definitions at the ORs of all six risk factors. MDDRecur is 

not included in this clustering analysis as it is a subset of the LifetimeMDD definition. The statistics used 

to generate these plots are presented as Source Data. 

 

Figure 3 | SNP-heritability and genetic correlation estimates among definitions of MDD in UK 

Biobank. a, This figure shows the h2
SNP estimates from PCGCs19 on each of the definitions of MDD in 

UK Biobank (Methods). h2
SNP “h2(liab)” as shown on the figure has been converted to liability scale44,73 

using the observed prevalence of each definition of depression in UK Biobank as both population and 

sample prevalences (Supplementary Table 4). Error bars show the standard errors of the estimates. b, This 

figure shows the h2
SNP estimates of definitions of MDD in UK Biobank from LDSC using logistic 

regression summary statistics on all SNPs > 5% MAF (Methods), transformed to the liability scale 

assuming a range of population case prevalence, from 0 to 0.5. We do not show results for case 

prevalence from 0.5 to 1, as they will be mirroring those from 0 to 0.5. In the figure, we indicate with a 

black vertical dotted line the population prevalence of 0.15, used in PGC1-MDD, and a colored vertical 

dotted line for the population prevalence of each definition of depression in UK Biobank. We also 

indicate with a black horizontal dotted line the arbitrary liability scale h2
SNP of 0.2, previously estimated 

for MDD in PGC1-MDD. Using this, we show that at no prevalence would minimal phenotyping defined 

depression like GPpsy (Help-seeking definition) reach this estimate. c, This figure shows the genetic 

correlation “rG” between CIDI-based LifetimeMDD and all other definitions of MDD in UK Biobank, 

estimated using PCGCs. Error bars show the standard errors of the estimates. d, This figure shows 

pairwise rG between all definitions of depression in UK Biobank, also detailed in Supplementary Table 

15.  

 

Figure 4 | Genetic correlation between definitions of MDD and other psychiatric conditions. a, This 

figure shows the genetic correlation “rG” estimated by cross-trait LDSC46 on the liability scale between 

definitions of MDD in UK Biobank with other psychiatric conditions in both UK Biobank (smoking and 

neuroticism) and PGC47 (Supplementary Table 1), including schizophrenia53 (SCZ) and bipolar disorder54 

(BIP) (Supplementary Table 1). Error bars show the standard errors of the estimates. b, This figure shows 
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the cumulative fraction of regional genetic correlation “rG” (out of sum of regional genetic correlation 

across all loci) between definitions of MDD in UK Biobank with SCZ in 1,703 independent loci in the 

genome79 estimated using rho-HESS49, plotted against percentage of independent loci. CIDI-based 

LifetimeMDD is shown in purple while help-seeking based GPpsy is shown in red. The steeper the curve, 

the smaller the number of loci explaining the total genetic correlation. The dotted colored curves around 

each solid line represent the standard errors of the estimate computed using a jackknife approach as 

described in Shi et al.39. The dotted black line represents 100% of the sum of genetic correlation between 

each definition of MDD in UK Biobank with SCZ. The cumulative sums of positive regional genetic 

correlations (right of y axis) go beyond 100% – this is mirrored by the negative regional genetic 

correlation (left of y axis) that go below 0%. c, We rank all 1,703 loci by their magnitude of genetic 

correlation, and ask what fraction of loci sums up to 90% of total genetic correlation. This figure shows 

the percentage of loci summing up to 90% of total genetic correlation “rG” between either LifetimeMDD 

(in purple) or GPpsy (in red) with all psychiatric conditions tested, with standard errors estimated using 

the same jackknife approach. The higher the percentage, the higher the number of genetic loci 

contributing to 90% of total genetic correlation. Error bars show the standard errors of the estimates. 

 

Figure 5 | Tissue-specific gene expression enrichment in definitions of MDD. This figure shows the -

log10(P) of enrichment in h2
SNP in genes specifically expressed in 44 GTEx tissues, estimated using 

partitioned h2
SNP in LDSC; help-seeking based definitions of MDD GPpsy, as well as its constituent no-

MDD phenotype GPNoDep, show enrichment of h2
SNP in genes specifically expressed in CNS tissues, 

similar to an independent cohort of help-seeking based MDD (23andMe4) and other psychiatric 

conditions such as bipolar disorder (BIP)54, schizophrenia (SCZ)53, autism (AUT), personality dimension 

neuroticism, and behavioural trait smoking. We indicate the sample size (N) for each definition of 

depression and psychiatric condition.  

  

Figure 6 | GWAS hits from minimal phenotyping definition of MDD in UK Biobank are not specific 

to MDD. This figure shows the odds ratios (ORs) for the risk alleles at 27 loci significantly associated 

with help-seeking based definitions of MDD in UK Biobank (GPpsy and Psypsy), in logistic regression 

GWAS conducted on CIDI (LifetimeMDD, in purple), help-seeking (GPpsy in red) and no-MDD 

(GPNoDep, in brown) based definitions of MDD. For comparison, we show the same in conditions other 

than MDD: neuroticism, smoking and SCZ (all in pink). SNPs missing in each panel are not tested in the 

respective GWAS. For clarity of display, scales on different panels vary to accommodate the different 

magnitudes of ORs of SNPs in different conditions. ORs at all 27 loci are highly consistent across 

phenotypes, being completely aligned in direction of effect, regardless of whether it is a definition or 
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MDD or a risk factor or condition other than MDD. All results are shown in Supplementary Table 14. 

Error bars show the standard errors of the estimates.   

 

Figure 7 | Out-of-sample prediction of MDD in PGC cohorts. a, This figure shows the area under the 

curve (AUC) of polygenic risk scores (PRS) calculated for each definition of depression in UK Biobank 

and MDD status indicated in 19 PGC29-MDD cohorts5, while controlling for cohort-specific effects. PRS 

were calculated using effect sizes at independent (LD r2 < 0.1) SNPs passing P value thresholds 10-4, 

0.001, 0.01, 0.05, 0.01, 0.2, 0.5 and 1, respectively, in GWAS performed on all definitions of depression 

in UK Biobank. b, This figure shows the same analysis performed on down-sampled data (7,500 cases, 

42,500 controls) for each definition of depression.  
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Online Methods 
 

Genome-wide associations. To obtain and access the difference between odds ratios of associations in 

different definitions of depression in UK Biobank, as well as smoking (data field 20160) and neuroticism 

(data field 20127), we performed logistic regression (or linear regression with --standard-beta for 

neuroticism) on all 5,276,842 common SNPs (MAF > 5% in all 337,198 White-British, unrelated 

samples) in PLINK76 (version 1.9) with 20 PCs and genotyping array as covariates.  

 

Estimation of SNP-heritability and genetic correlation among definitions of MDD. All estimates of 

h2
SNP are computed with the phenotype-correlation-genotype-correlation (PCGC)77 approach implemented 

with PCGCs23, using 5,276,842 common SNPs (MAF > 5% in all 337,198 White-British, unrelated 

samples). LD scores at SNPs were computed with LDSC37 in 10,000 random samples drawn from the 

White-British samples in UK Biobank as LD reference, and MAF at all 5,276,842 common SNPs in all 

337,198 White-British samples as MAF reference. Covariates were genotyping array and 20 PCs 

computed using samples in each definition of MDD with flashPCA74. Where we stratified each definition 

of MDD in UK Biobank into two strata by risk factors such as sex (Supplementary Note), we computed 

specific PCs for each definition and strata (see also Supplementary Note and Supplementary Table 13). 

 

Estimation of genetic correlation between definitions of MDD and other conditions. Summary 

statistics for other psychiatric conditions from previous GWAS studies were obtained as described in 

Supplementary Table 1. Association summary statistics for smoking and neuroticism in UK Biobank 

were generated by GWAS (Supplementary Table 15-16 and Extended Data Fig. 3). We estimated the 

genetic correlation between definitions of MDD in UK Biobank with each of these conditions with 

LDSC46, with a LD reference panel generated with EUR individuals from 1000 Genomes78. To obtain 

regional rG, we partitioned the genome into 1,703 independent loci79 and estimated regional rG with rho-

HESS49, using a LD reference panel generated with EUR individuals from 1000 Genomes78. We 

estimated standard errors for each regional rG and the total rG across the genome using a jackknife 

approach implemented in HESS39. To assess percentage of genome contributing to total rG, we ranked all 

independent loci by their absolute value of regional rG, and asked how many loci would contribute 90% 

of the total rG. 
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Enrichment of SNP-heritability in genes specifically expressed in tissues. We estimated the 

enrichment of h2
SNP in genes specifically expressed in 44 tissues in the Genotype–Tissue Expression 

(GTEx)50 project using the partitioned h2
SNP framework in LDSC-SEG49, and a LD reference panel 

generated with EUR individuals from 1000 Genomes78. We obtained tissue specific gene expression 

annotations in GTEx tissues from LDSC-SEG, then estimated the enrichment of h2
SNP in annotations that 

corresponded to each of the tissues together with 52 annotations in the baseline model80. We report the P 

value of the one-sided test of enrichment of h2
SNP in genes specifically expressed in each tissue against the 

baseline.  

 

Out of sample predictions of MDD. We carried out out-of-sample prediction using individual level 

genotype and phenotype data from the PGC29 MDD cohorts5. We obtained permissions from 20 cohorts 

with sample sizes greater than 500, among which 17 recorded endorsement of DSM-5 criteria A for MDD 

(Supplementary Note and Supplementary Table 21). We obtained PRS from GWAS for each definition of 

depression in UK Biobank, using LD-clumped (LD r2 < 0.1) independent SNPs with P values of 

associations below 8 thresholds (P < 10-4, 0.001, 0.01, 0.05, 0.1, 0.2, 0.5 and 1), and predicted MDD 

status in the 20 PGC cohorts using the Ricopili pipeline82. We obtained Nagelkerke’s r2 between the PRS 

and MDD status, AUC of the prediction, and variance of MDD status explained by the PRS for each 

cohort. We also obtained the same measures for MDD status pulling data from all cohorts, controlling for 

cohort differences by including it as a covariate.  

 

Ethical approval. This research was conducted under the ethical approval from the UKBiobank Resource 

under application no. 28709.  

 

Reporting Summary. Additional information on the study design is provided in the Life Sciences 

Reporting Summary. 

 

Data availability  

Genotype and phenotype data used in this study are from the full release (imputation version 2) of the UK 

Biobank Resource obtained under application no. 28709. We used publicly available summary statistics 

from other studies downloadable from the website of Psychiatric Genomics Consortium 

(https://www.med.unc.edu/pgc/results-and-downloads), the references for which can be found in 

Supplementary Table 1. We also referenced the 2011 Census aggregate data from the UK Data Service 

(http://dx.doi.org/10.5257/census/aggregate-2011-2).  
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