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A B S T R A C T

Using the same ultrasound detector, hybrid optoacoustic-ultrasound (OPUS) imaging provides concurrent scans
of tissue slices or volumes and visualizes complementary sound- and light-based contrast at similar resolutions.
In addition to the benefit of hybrid contrast, spatial co-registration enables images from one modality to be
employed as prior information for improving an aspect of the performance of the other modality. We consider
herein a handheld OPUS system and utilize structural information from ultrasound images to guide regional
Laplacian regularization-based reconstruction of optoacoustic images. Using phantoms and data from OPUS
scans of human radial and carotid arteries, we show that ultrasound-driven optoacoustic inversion reduces
limited-view artefacts and improves image contrast. In phantoms, prior-integrated reconstruction leads to a 50 %
higher contrast-to-noise ratio (CNR) of the image than standard reconstruction, and a 17 % higher structural
similarity (SSIM) index. In clinical data, prior-integrated reconstruction detects deep-seated radial arteries with
higher CNR than the standard method at three different depths. In this way, the prior-integrated method offers
unique insights into atherosclerotic carotid plaques in humans (with p< 0.01 between patients and healthy
volunteers), potentially paving the way for new abilities in vascular imaging and more generally in optoacoustic
imaging.

1. Introduction

Handheld optoacoustic (photoacoustic) imaging has recently de-
monstrated potent clinical imaging abilities in cancer detection [1–4],
label-free assessment of tissue inflammation [5,6], tissue metabolism
[7] or imaging of vascularization [8–10] or lipids [11,12]. Offering
higher resolution than diffuse optical tomography [13,14], optoa-
coustic imaging is able to resolve morphological structures and to
quantify tissue biomarkers, which is not possible using diffuse photons
[15]. Moreover, fast wavelength tuning, parallel detection from up to
512 detection channels [15] and advanced spectral unmixing techni-
ques [16], lead to handheld implementations that now demonstrate
technological maturity for clinical use.

In analogy to ultrasonography clinical systems, many handheld

optoacoustic imaging systems use one-dimensional detector arrays.
Such implementations allow the combination of optoacoustic and ul-
trasound imaging in one hybrid modality. However, this implementa-
tion leads to limited-view acoustic detection geometries and the col-
lection of incomplete optoacoustic projection data from the imaged
tissue. As a consequence, the corresponding reconstruction problem is
ill-posed, possibly deteriorating imaging performance [17]. Limited-
view detection results in streak artefacts [18,19] and in a low contrast-
to-noise ratio (CNR) [19] in reconstructed optoacoustic images. Com-
bined with a signal-to-noise ratio (SNR) that decreases with increasing
imaging depth [20–23] due to light fluence attenuation, limited-view
projection optoacoustic tomography may suffer from lowered image
quality as a function of depth. Therefore, there is strong motivation to
develop methodologies to improve the optoacoustic image quality and
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facilitate interpretation of physiological and functional information at
increased depths, as required in many clinical studies.

Different methodologies have been suggested to account for the
effects of limited-projection optoacoustics. Regularization is a suitable
tool to condition ill-posed problems and achieve stable approximate
solutions, and various regularization methods have been considered in
limited-view optoacoustics, including total variation regularization
[24] or wavelet sparsity regularization [25,26]. Hard thresholding,
truncated generalized singular value decomposition or preconditioning
methods [22] have also been proposed for limited-view optoacoustic
tomography. Also, a prefiltering technique has been developed for re-
ducing streak artefacts, based on a full characterization of the artefacts
in the framework of microlocal analysis [18]. A Fast Fourier transform-
based reconstruction algorithm has been demonstrated to eliminate
limited-view artefacts by enclosing the target in a reverberant cavity to
generate a periodically repeating acoustic field [19]. However, while
regularization and filtering address limited-view acquisition problems
in a generic way, they do not use information specific to the sample
under investigation and are not sufficient to restore the information
that is lost due to incomplete data acquisition.

The relatively straightforward availability of hybrid optoacoustic-
ultrasound (OPUS) imaging systems allows for a different approach in
improving limited-view optoacoustic imaging. Ultrasound images gen-
erally provide anatomical images of tissues and can further resolve
blood flow using Doppler techniques. In this role they can be employed
post-hoc to aid the interpretation of optoacoustic images [4,27–34].
Special implementations of ultrasound imaging can also be considered,
for providing information about acoustic reflections in the sample im-
aged and for the subsequent correction of reflections from the optoa-
coustic images [35]. Nevertheless, reduction of acoustic reflections does
not address the problem of limited-view projections common in clinical
OPUS imaging. Studies involving simulations, phantoms, or ex vivo
experiments have shown that full-view ultrasound transmission data
can be used to estimate the speed of sound distribution in the sample,
which in turn can be used to improve the optoacoustic image quality
[36,37]. However, due to the requirements of full-view data acquisi-
tion, this approach is not applicable to handheld optoacoustic imaging.

Herein we propose a novel approach for utilizing ultrasonography
data co-registered with optoacoustic data, i.e. as typically collected
from clinical OPUS systems, to improve the limited-view tomographic
optoacoustic problem. We hypothesized that the ultrasound informa-
tion could substantially improve the image quality of reconstructed
images and improve medical diagnostics in an adaptive, tissue-specific
manner. In particular, we considered a regional Laplacian regulariza-
tion functional for optoacoustic tomography that incorporates struc-
tural information obtained from co-registered ultrasound images. Using
simulations and in vivo measurements, we examine whether the pro-
posed use of priors reduces limited-view artefacts and increases the
contrast of structures deep in tissue. Then, we apply the method in
clinical OPUS carotid imaging data and show the merits of the proposed
method compared to stand-alone optoacoustic imaging. We further
demonstrate that clinically important functional features of athero-
sclerotic plaques in the carotid can be observed with a clinical handheld
OPUS system.

2. Background

For optoacoustic imaging, the propagation of the acoustic pressure
wave rp t( , ) at a spatial position r and a time instant t is described by
the wave equation [38]:

∂
∂

− = ∂
∂

r
r rp t

t
c p t Γ H t

t
( , )

Δ ( , ) ( , ) ,
2

2
2

(1)

Where c is the sound speed, Γ is the Grüneisen coefficient, which is
assumed to be constant, and rH t( , ) is the absorbed energy density.
Based on Eq. (1), for pulsed illumination the optoacoustic pressure

distribution at r and t in an acoustically homogeneous medium is given
by:
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The initial pressure distribution p0 at =t 0 satisfies
≔ =r r rp p H( ) ( , 0) Γ ( )0 with vanishing time derivative =∂

∂ rp ( , 0) 0t ,
where the time-independence of H is due to negligible duration of the
illuminating laser pulse.

Several algorithms have been suggested for the inversion of Eq. (2),
i.e., for the reconstruction of p0 or H , given the optoacoustic signal

dp t( , ) at the detector locations d [22,39–41]. Among these algorithms,
filtered backprojection methods are commonly used due to their sim-
plicity. Nevertheless, images reconstructed with backprojection algo-
rithms suffer from approximation errors, leading to less accurate
quantitative functional or molecular imaging [42]. Moreover, back-
projection cannot account for the information loss due to limited view.
Model-based inversion has been suggested as a more precise and flex-
ible alternative to backprojection [41]. In contrast to backprojection,
model-based schemes can explicitly take experimental characteristics
into account and offer superior accuracy and image fidelity.

2.1. Model-based optoacoustic reconstruction

Model-based schemes reconstruct optoacoustic images by mini-
mizing the discrepancy between the measured acoustic signals and the
signals theoretically predicted by the forward model. Rosenthal et al.
[41] developed a semi-analytical model-based scheme, termed inter-
polated-matrix-model inversion (IMMI), to achieve real-time re-
construction. Discretizing the linear forward model for acoustic wave
propagation in Eq. (2) leads to

=p Mx, (3)

Where p stands for the optoacoustic signal; x is the unknown image,
i.e., the spatial distribution of energy absorbed per unit volume of the
tissue in the imaging plane, written in a vector representation; and M is
the model matrix that computes sound propagation in the imaged
medium for the experimental acquisition geometry employed. The in-
version of Eq. (3) is achieved by minimizing the squared error

= −x p Mxarg min
x

sol det 2
2

(4)

typically using the LSQR algorithm. In Eq. (4), pdet is the detected
optoacoustic signal and ∙‖ ‖2 is the L2 -norm.

2.2. L2 regularization

As the minimization problem given in Eq. 4 is ill-posed for limited-
view geometry, regularization is required to achieve a unique and
stable reconstruction. In addition, a suitable regularization often re-
duces the noise level and artefacts [22,38]. The most common reg-
ularization method is L2 regularization, i.e. regularization with a
functional of the form ↦x Lx‖ ‖2

2:

= − +x p Mx Lxarg min λ ,
x

sol det 2
2

2
2

(5)

Where L is the regularization matrix and >λ 0 is the regularization
parameter. A suitable regularization parameter can, for example, be
selected via the L-curve. The L-curve is a plot of the penalty term ( Lx‖ ‖2)
against the norm of the residual ( −p Mx‖ ‖det 2). It is a convenient gra-
phical tool for displaying the trade-off between the regularizing func-
tional and the fit to the given data with respect to the regularization
parameter. Usually, the optimal trade-off is achieved close to the corner
of the L-shaped curve [43].
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3. Methods

OPUS systems provide complementary information in co-registered
ultrasound and optoacoustic images: ultrasound images provide
acoustic contrast to identify regions with different acoustic properties,
while optoacoustic images provide optical contrast to identify regions
with different optical properties. Since tissues with different acoustic
properties usually also differ in optical properties, we designed a reg-
ularizer based on ultrasound images that promotes smoothness within
regions of constant acoustic properties. To take into account the pos-
sibility that tissue features or types may have optical contrast, but no
acoustic contrast, the prior needs to be ‘soft’, in the sense, that it does
not sacrifice this pure optical contrast.

In the framework of L2 regularization, prior spatial knowledge about
the reconstructed object can be integrated into the reconstruction by
designing a suitable regularization matrix L. Previous studies have
shown that using the spatial priors in this fashion – as a so-called ‘soft
prior’ [44] – does not bias the image formation when the prior in-
formation is imperfect [45]. For example, knowing that the re-
constructed object is a smooth function, the matrix L can be chosen to
be a spatial high-pass filter, e.g., a discrete Laplacian operator. If, in-
stead, it is known that the reconstructed object is smooth in certain
regions and varies strongly in other regions, a regional smoothness
prior based on Laplacian method can be incorporated into L. Both of

these cases will be introduced in the following sections for the special
case of OPUS imaging, and their performance will be compared using
simulations and clinical datasets.

3.1. Spatial high-pass filter regularization (standard reconstruction)

The matrix L in Eq. 5 can be defined as a spatial derivative operator
[22,38,46]. In this case, the regularization term discriminates the high-
frequency content of the image [47]. Including such a term into the
regularization selects an image that is consistent with the data, while
having a minimal amount of high-frequency components. The reg-
ularization parameter needs to be chosen such that high-frequency
noise is suppressed, while edges are preserved. In the present study, L
was defined to be a 2D discrete Laplacian operator given as:

=
⎧

⎨
⎪

⎩⎪

=

− ∈L

if i j

if j neighbours of i

otherwise

1,
1
8

, 8

0,

.ij

(6)

Throughout this paper, least-squares reconstruction with this reg-
ularization operator is termed ‘standard reconstruction’.

Fig. 1. Block diagram of prior-integrated reconstruction, the related imaging setup and numerical phantom used for simulation. (a) Block diagram of prior-integrated
reconstruction. (b) Imaging set-up, with detectors shown in blue. (c) Shepp–Logan phantom without noise (ground truth). (d) Segmented prior mask with 5 labelled
ROIs (ideal prior mask).
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3.2. Regional Laplacian regularization (prior-integrated reconstruction)

Regional Laplacian regularization can be used to integrate prior
information obtained by segmenting an ultrasound image of the sample
into different tissue types. Similar to previous methods [45,48], we
construct an anisotropic non-homogeneous smoothness prior:

=
⎧
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⎪

⎩
⎪

=

−
−

≠ ∈L

if i j

N
if i j and i j ROI

otherwise

1,
1

1
, ,

0,

,ij
k

k

(7)

Where k is the index of the region of interest (ROI) and Nk is the number
of pixels in ROIk. The ROIs are obtained by segmenting an ultrasound
image into n ROIs labelled by the index ∈ …k n{1,2, 3, , }. With this de-
sign of the L matrix, each ROI is weighted equally, regardless of its area.
It is the analogue of the random walk normalized graph Laplacian.
Throughout this paper, least-squares reconstruction with this regular-
ization operator is termed ‘prior-integrated reconstruction’.

This design of L promotes a reconstructed image that is smooth
inside each ROI and highlights the difference between different ROIs,
remaining consistent with the data. This approach is based on the idea
that dominant photon-absorbers vary between different tissue types,
but are similar within one tissue type. Therefore, it is reasonable to
expect heterogeneity among different ROIs and homogeneity within
one ROI. Fig. 1a shows the workflow to integrate the ultrasound prior
into a model-based optoacoustic reconstruction. From the ultrasound
images, ROIs are segmented and labelled to form a prior mask. Then the
regularization matrix L is constructed based on Eq. (7). Finally, an
appropriate regularization parameter is chosen to reconstruct optoa-
coustic images from the acquired optoacoustic data using the model-
based scheme in Eq. (5).

3.3. Numerical simulation

A numerical Shepp-Logan phantom was used to simulate the op-
toacoustic signals based on Eq. (3), where the model matrix M was
calculated based on the probe (Fig. 1b) of the Acuity 256 imaging
system (introduced in Section 3.4). In addition, zero mean Gaussian
noise was added to achieve a certain SNR. In other words, the simulated
optoacoustic signal psim takes the form:

= +p M x ε( ),sim SL (8)

Where xSL is the Shepp-Logan phantom without noise (Fig. 1c) and ε is
zero mean Gaussian noise. The simulated optoacoustic signals psim were
filtered according to the bandwidth of the transducer and inverted
using standard and prior-integrated reconstruction, and the perfor-
mance of those two methods was assessed based on the reconstructed
image quality using the metrics described in Section 3.6. In order to
analyze the effect of various parameters on algorithm performance
(noise level, coverage angle of the transducer array, segmentation ac-
curacy, ROI labelling, and regularization parameter), we performed
multiple simulations by modifying the Shepp-Logan phantom and the
ideal prior mask in Fig. 1d, which was segmented from the ground truth
image.

The mentioned parameters were analyzed in 4 groups of simula-
tions. In the first group (SIM1), different noise levels and coverage
angles of the detector array were simulated; in the second group
(SIM2), segmentation errors (e.g. too large or small ROIs), were mi-
micked with morphological operations; in the third group (SIM3), la-
belling errors were simulated; and in the fourth group (SIM4), the si-
mulated signals were reconstructed with varying regularization
parameters.

3.3.1. Noise and coverage angle (SIM1)
In order to analyze the robustness of the algorithm with respect to

noise in the optoacoustic signal, we added different levels of white
Gaussian noise ε to degrade the ground truth image xSL, achieving an
SNR (dB) of 26, 20, 16.5, 14, 12, 10.5, 9.1, 8, 7 and 6 for the simulated
optoacoustic signal psim. The ability of the algorithm to deal with the
limited-view projections was analyzed by simulating the following
coverage angles of the transducers: 200°, 175°, 150°, 125°, 100°, 75° and
50°. Except for this group, for all other simulations the default SNR was
26 dB and coverage angle 125°.

3.3.2. Segmentation accuracy (SIM2)
Accurate image segmentation in the presence of noise is challen-

ging. Therefore, we used morphological operations (i.e. erosion and
dilation) to mimic inaccurate segmentation. For the Shepp-Logan
phantom, the exact segmented prior mask, termed the ‘ideal prior
mask’, is shown in Fig. 1d. We shrank each region in the ideal prior
mask with a disk of diameter 2, 4, 6 or 8 pixels to simulate the case that
the ROIs are segmented too small; and we expanded each region in the
ideal mask with a disk of diameter 2, 4, 6 or 8 pixels to simulate the
case that the ROIs are segmented too large. Another potential seg-
mentation error is the number of segmented regions, as for different
segmentation methods, the number of segmented ROIs may vary. In
order to analyze how this parameter affects the quality of the re-
constructed images, we derived 5 prior masks based on the ideal prior
mask. The first prior mask included only ROI 1, the second prior mask
included ROI 1 and 2, and so on.

3.3.3. ROI labelling (SIM3)
After image segmentation, labelling the segmented ROIs, is a key

step in the regional Laplacian method, since the labelling has a direct
effect on Nk in Eq. (7). In order to examine the effect of labelling a non-
existing region, which mimics the case that a region is an efficient
acoustic reflector but not a good optical absorber, we modified the
Shepp-Logan phantom by removing the lowermost structure (Fig. 4a)
and labelled an independent non-existing ROI 2 in the prior mask
(Fig. 4b). A further variant of labelling is to label multiple ROIs as the
same tissue type. To simulate this case, we labelled the non-existing ROI
2 in the ideal prior mask with the same label as ROI 1 (Fig. 4c).

3.3.4. Regularization parameter (SIM4)
For regularization problems, many methods have been developed to

optimize the selection of regularization parameter λ. In this study, in
order to analyze the effect of the prior mask on the selection of the
regularization parameter, we used the L-curve [43] to find a proper λ
for each prior mask and examined the reconstructed images with dif-
ferent λ.

3.4. Experimental setup

The imaging system used to collect the clinical data in this study
was a hybrid handheld OPUS system (Acuity 256; iThera Medical
GmbH, Munich, Germany) modelled after previously developed
homemade systems using a concave array geometry and a fast wave-
length tuning illumination from 680 nm to 980 nm [49,50]. The de-
tector array of the Acuity 256 system comprised 256 cylindrically fo-
cused transducer elements of 4 MHz central frequency (-6 dB) and≥ 50
% bandwidth (-6 dB). These transducer elements are arranged on a
circle of 60 mm radius with 145° angular coverage. For the optoacoustic
imaging modality, a 25 mJ pulse (of 10 ns duration) is emitted at a 25
Hz repetition rate to excite the sample. Due to the use of the same
transducer array, the optoacoustic and ultrasound images recorded
with Acuity 256 can be accurately co-registered if no motion is in-
troduced from outside.

3.5. Tissue imaging of healthy volunteers and patients

Procedures on human subjects were performed after obtaining their
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written informed consent. As our target application is clinical vascular
imaging, we imaged the distal forearm, where, for example, a long-
itudinal measurement of radial artery dimensions allows assessment of
cardiovascular health [51], and on the carotid artery in the lateral as-
pect of the neck, which is the principal site of cerebrovascular disease
and stroke onset [52]. To image the radial artery, we scanned one
healthy volunteer over the ventral side of the distal forearm. To image
the carotid, we scanned three healthy volunteers and five patients with
diagnosed carotid atherosclerosis over the lateral cervical region of the
neck on both sides, i.e. 6 healthy volunteers’ datasets and 10 patients’
datasets in total. Signal data were not averaged for either modality, and
no motion correction was performed because the scanning was real-
time.

For prior-integrated reconstruction, a prior mask based on seg-
mented ultrasound images was created as follows. For radial artery
datasets, the prior mask was obtained by manually segmenting the ra-
dial artery in the ultrasound image. For carotid datasets, the lumen in
both patients and healthy volunteers and the plaque in patients’ data
were manually segmented in the ultrasound image. In addition, a mock
plaque region was manually drawn beneath the upper boundary of the
lumen in healthy volunteers’ datasets in order to serve as a control
group. Then the above ROIs were duplicated at the same depth in the
background region in order to serve as reference regions. The accuracy
of all segmentations was confirmed by clinicians.

For image reconstruction, the radial artery images were re-
constructed at the wavelength of 800 nm, which allows detection of
both oxygenated and deoxygenated blood since their absorption is si-
milar [53]. For the carotid artery, optoacoustic images were re-
constructed at wavelengths of 800 nm to detect both oxygenated and
deoxygenated blood, 850 nm to mainly detect oxygenated blood and
930 nm to mainly detect lipids [53].

For the quantitative analysis of the carotid dataset, the mean in-
tensity ratio between the ROI and its corresponding reference region in
the background at the same depth is used. Since depth and size of the
carotid, as well as the light fluence arriving at the carotid vary between
people, it is difficult to compare absolute intensity values across data-
sets from different people without light fluence correction. Therefore,
we considered the mean intensity to reduce the effects of carotid size,
and analyzed the mean intensity ratio to minimize the effects of depth
and light fluence. Note that the signal in the background is not expected
to vanish due to the absorption of chromophores in the tissue sur-
rounding the carotid. Thus, the mean intensity ratio is well-defined and
can quantify the difference due to absorbers inside the carotid.

3.6. Image quality evaluation

In this study, we compared standard and prior-integrated re-
construction mainly in terms of several quantitative quality indicators
of the reconstructed image, as described below.

3.6.1. CNR
As contrast is the most crucial factor to determine if a region can be

differentiated from the background or not, we used CNR to quantify the
improvement in image contrast. The CNR of an image was defined as
follows [54]:

= =
−

+
CNR contrast

noise
μ μ

σ σ

| |
,1 2

1
2

2
2 (9)

Where μ μ,1 2 and σ σ,1 2 are the means and the standard deviations of,
respectively, a given ROI and the background (defined as the whole
image except for the ROI).

3.6.2. Structural similarity index (SSIM)
Since limited-view projections introduce deformations of structures,

SSIM is an appropriate indicator to quantify the structural accuracy of

the reconstructed images. SSIM is commonly used for measuring the
similarity between two images based on an initial distortion-free image
(ground truth) as reference [55]. It can be calculated as.
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Where μx and σx
2 are, respectively, the mean and variance of x , with x

representing the reconstructed image. μy and σy
2 are, respectively, the

mean and variance of y, with y being the reference image (ground
truth). The variable σxy is the covariance of x and y, while c1 and c2
stabilize division by a weak denominator. The latter two factors are
defined as = k Lc ( )1 1

2 and = k Lc ( )2 2
2, where L stands for the dynamic

range of the image and =k 0.011 and =k 0.031 in this study. We kept
these values of k1 and k2 to be the same as in Ref. [55], facilitating
comparison across studies. Although the choice of these two values are
somewhat arbitrary, the comparison of the two reconstruction methods
based on SSIM values is not sensitive to k1 and k2, as we demonstrated in
Supplementary Information.

4. Results

To demonstrate the performance of the two regularization schemes
introduced in the Methods Section, we performed 4 groups of simula-
tions (SIM1: different noise level and coverage angle; SIM2: segmen-
tation errors; SIM3: labelling errors; and SIM4: varying regularization
parameters) and reconstructed 2 groups of clinical datasets – one for
radial artery images and one for carotid artery images. The re-
construction results for the numerical phantoms are presented in sec-
tion 4.1, and the results for the clinical datasets are shown in section
4.2.

4.1. Simulations

Fig. 2 shows the results of SIM1, comparing the proposed method to
a standard reconstruction method in the presence of various noise levels
and coverage angles. Fig. 2a is a degraded Shepp-Logan phantom re-
sulting in a simulated optoacoustic signal of 26 dB SNR. Fig. 2b and c
show, respectively, standard and prior-integrated reconstruction of
Fig. 2a under the default coverage angle (125°). In Fig. 2b, the struc-
tural deformation due to limited-view detection and the image intensity
fluctuation within regions due to noise can be observed. These artefacts
are reduced by incorporating priors into the reconstruction (see
Fig. 2c). In the reconstructed image using the prior-integrated re-
construction in panel 2c, the boundaries of all regions are correctly
recovered and the intensity in each region is more homogeneous than
that in panel 2b. Fig. 2d shows the CNR of the reconstructed images for
varying SNR of the simulated optoacoustic signal. For linearly de-
creasing SNR, the CNR of the reconstructed images also decreases lin-
early. However, the CNR of the prior-integrated reconstructions de-
creases more slowly than the CNR of the standard reconstructions,
while the CNR of the prior-integrated reconstruction outperforms the
ones of the standard reconstruction at all SNR levels. At all SNR levels,
prior-integrated reconstruction achieves an increase in CNR of at least
50 % relative to the standard reconstruction. Fig. 2e shows the SSIM of
the reconstructions for varying coverage angles. With standard re-
construction, the structural similarity of the reconstructed images de-
creases linearly with decreasing coverage angle. However, with prior-
integrated reconstruction, the SSIM of the reconstructed images re-
mains relatively unchanged even when the coverage angle decreases
dramatically. Thus prior-integrated reconstruction exhibits SSIM values
that are 17–57 % higher than standard reconstruction.

Fig. 3 shows the results of SIM2, which analyzes the effect of seg-
mentation accuracy on prior-integrated reconstruction with respect to
the size and number of the segmented ROIs. Fig. 3a shows an in-
accurately segmented prior mask. Fig. 3b shows the reconstruction
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result of the degraded phantom (Fig. 2a) using the prior mask in Fig. 3a.
On this image, the true boundary of each ROI remains while the prior
mask introduces false boundaries inside each ROI, which is expected to
be reflected by a lower SSIM index. Fig. 3c shows the SSIM in the
presence of various segmentation errors. When there is no segmentation
error or when the segmented ROI is slightly larger than the ground
truth, the SSIM of the reconstructed images with prior-integrated re-
construction is optimal. However, if the segmented ROI is much smaller
or larger than the ground truth (by more than 8 pixels in our simula-
tions), strong false boundaries start to appear in the reconstructed
images, reducing the SSIM values. Fig. 3d shows another type of

inaccurate prior mask that includes only two ROIs. Fig. 3e presents the
reconstruction result of Fig. 2a using the prior mask in Fig. 3d. Due to
the prior mask, the structure and intensity of ROI 1 and 2 are well
recovered, while the remainder of the image is poorly reconstructed.
Fig. 3f shows the variation in CNR for ROI 1 as the number of ROIs in
the prior mask changes: more ROIs in the prior mask translates to better
CNR. Regardless of the number of ROIs in the segmented prior mask,
CNR is always better with prior-integrated reconstruction than with
standard reconstruction.

Next, we examine the effects of ROI labelling on prior-integrated
reconstruction (SIM3). Fig. 4a is the modified Shepp-Logan phantom,

Fig. 2. Reconstruction of the Shepp-Logan
phantom using standard and prior-integrated
reconstruction for different noise levels and
coverage angles. The ground truth image is
shown in Fig. 1c; the prior mask is shown in
Fig. 1d. (a) Shepp–Logan phantom with zero-
mean Gaussian noise (26 dB SNR). (b-c) Re-
constructed image under a 125° coverage angle
with (b) standard or (c) prior-integrated re-
construction. (d) CNR of the reconstructed
images at different noise levels following
standard (dashed blue) or prior-integrated
(dash-dotted red) reconstruction. (e) Variation
of SSIM of the reconstructed images with re-
spect to the coverage angle.

Fig. 3. Effects of segmentation accuracy and
the number of ROIs on prior-integrated re-
construction. The ground truth image is shown
in Fig. 1c. (a) An inaccurately segmented prior
mask, which is generated by the erosion of the
ideal prior mask in Fig. 1d with a disk of dia-
meter 6 pixels. (b) Reconstruction of the noisy
phantom (Fig. 2a) using the prior mask in
panel (a). (c) Variation of SSIM of the re-
constructed images with respect to erosion and
dilation. (d) A prior mask with only 2 ROIs. (e)
Reconstruction of the noisy phantom in Fig. 2a
using the prior mask in panel (d). (f) Variation
of the CNR of ROI 1 with respect to the number
of ROIs. ROIs were added according to their
labels in Fig. 1d.

H. Yang, et al. Photoacoustics 19 (2020) 100172

6



which was the ground truth in this simulation. Fig. 4b shows an erro-
neous mask in which a nonexistent region is labelled as ROI 2. Fig. 4c
shows that a nonexistent region is labelled as the same tissue type as
ROI 1. Fig. 4d is the reconstructed image using standard reconstruction.
Fig. 4e is the reconstruction result of prior-integrated reconstruction
using the prior mask in Fig. 4b, which shows that the independently
labelled ROI 2 does not create a false positive result in the reconstructed
image. Fig. 4f shows the prior-integrated reconstruction result with the
prior mask on panel 4c, in which a false positive result is created. The
labelling of the same non-existing region in panels 4b (own label) and
4c (same label as region 1) gives different results in panels 4e and 4f,
illustrating that labelling unconnected regions independently as in
panel 4b leads to a correct reconstruction, based on the ground truth in
panel 4a.

Since the regularization parameter is important for all regulariza-
tion methods, SIM4 was performed. Fig. 5 shows the influence of the
prior mask and different regularization parameters λ on prior-in-
tegrated reconstruction. Fig. 5a is the ideal prior mask, while Fig. 5b
shows a prior mask with only one ROI. The latter mask is used for the

reconstructions in Fig. 5d-f. Fig. 5c presents the L-curves corresponding
to the prior-integrated reconstructions with the masks in panels 5a and
5b. The different corner points of L-curves indicate that, in order to
achieve optimal trade-off, optimal regularization parameter needs to be
chosen accordingly for different prior masks. Fig. 5d–f show the re-
constructed images of Fig. 2a using the prior mask in panel 5b with a
small, appropriate or large λ. With a small regularization parameter,
the prior-integrated reconstruction is similar to the standard re-
construction. With an appropriate regularization parameter, the ROI
can be reconstructed with higher accuracy and maintain the informa-
tion on the background in prior-integrated reconstruction. With a large
regularization parameter, however, the prior dominates the re-
construction result and basically only the prior mask is reconstructed
with all other information being discarded.

4.2. Clinical datasets

Based on the simulation results, we proceeded to test the perfor-
mance of the prior-integrated method for reconstruction of clinical

Fig. 4. Effect of ROI labelling on prior-in-
tegrated reconstruction. (a) A modified Shepp-
Logan phantom with the lowermost structure
removed. (b-c) Inaccurate prior masks in
which (b) a nonexistent ROI has been added, or
(c) the nonexistent ROI has been added to ROI
1. (d-f) Reconstruction of the noisy phantom
with (d) standard reconstruction or with prior-
integrated reconstruction using (e) prior mask
no. 1 or (f) prior mask no. 2. The red ellipse in
panels (e) and (f) indicates the location of the
ROI that was assigned different labels, in-
troducing a false positive in panel (f).

Fig. 5. Effect of the prior mask and the reg-
ularization parameter on reconstructed
images. The ground truth image is shown in
Fig. 1c. (a) Ideal prior mask. (b) A prior mask
that has only ROI 1. (c) L-curves corresponding
to the prior masks in panels (a) and (b). The
inset is enlarged area from the dashed box. (d-
f) Reconstructions of the noisy phantom in
Fig. 2a with the prior mask in panel (b) using
(d) a small regularization parameter (1e5), (e)
an appropriate regularization parameter (4e5)
or (f) a large regularization parameter (1e7).
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datasets. Fig. 6 shows the reconstruction results for radial arteries at
different depths using both the standard and prior-integrated re-
construction. Fig. 6a–c show the standard reconstruction results of the
radial artery at 3.5 mm, 7.4 mm and 11.6 mm depth, respectively. The
contrast and sharpness of the boundaries of radial artery (marked with
yellow arrow in each panel) is decreasing along depth. Fig. 6d–f show
the reconstructed images of the radial artery using the prior-integrated
reconstruction at a depth of 3.5 mm, 7.4 mm and 11.6 mm, respec-
tively. In all three images, a clear boundary of the radial artery is re-
covered, and the intensity of the radial artery region is higher than that
of the surrounding tissue. In the zoomed-in images, prior-integrated
reconstruction gives better contrast and structural integrity for the ra-
dial artery than standard reconstruction at all depths. Fig. 6g-i are the
ultrasound images and the segmented prior masks for the radial arteries
at three depths. Fig. 6j–l are the line profiles of the radial arteries along
the white dashed line in the zoomed-in views corresponding to the two
reconstruction methods at different depths. With standard reconstruc-
tion, the relative intensity difference between radial artery and back-
ground decreases with depth from panel 6 j to panel 6 l, while the prior-
integrated reconstruction maintains a similar difference/sharp edges at
all depths demonstrating the improved CNR over standard reconstruc-
tion.

Fig. 7 compares the performance of prior-integrated and standard
reconstruction for reconstructing images of the carotid artery of an
atherosclerosis patient and of a healthy individual. In this figure,
gamma correction and a rolling ball background subtraction [56] have
been applied to the optoacoustic images to achieve the best visualiza-
tion of the carotid region in each image. Therefore, the displayed in-
tensity is not quantitative and cannot be compared across panels.
Fig. 7a–i are the results of patients diagnosed with carotid athero-
sclerosis. Fig. 7a is the prior mask used for reconstructing the carotid at
850 nm. Fig. 7b is the reconstructed optoacoustic image at 850 nm
using the prior mask in panel 7a. Fig. 7c is the reconstructed image at
850 nm using the standard reconstruction. Comparing Fig. 7b and c, the
carotid is difficult to distinguish from the background in the standard
reconstruction, but it is visible in the prior-integrated reconstruction.
Fig. 7d-f show the reconstructed optoacoustic images at 930 nm with
prior-integrated reconstruction and standard reconstruction, respec-
tively. With the standard reconstruction, the plaque in the carotid ar-
tery is not recognizable from the optoacoustic images, but the lesion is
detectable in Fig. 7e. Fig. 7g is the co-registered ultrasound image from
which the prior masks are segmented; the lumen of carotid artery is
highlighted using a dashed red ellipse. Fig. 7h is the overlay of US and
the optoacoustic images of panels 7b and 7e. Fig. 7i is the overlay of the

Fig. 6. Reconstruction of the radial artery at different depths using standard and prior-integrated reconstruction. Standard reconstruction of the radial artery at 800
nm at depths of (a) 3.5 mm, (b) 7.4 mm and (c) 11.6 mm. Prior-integrated reconstruction of the radial artery at 800 nm at depths of (d) 3.5 mm, (e) 7.4 mm and (f)
11.6 mm. Ultrasound images of the radial artery at depths of (g) 3.5 mm, (h) 7.4 mm and (i) 11.6 mm, and the corresponding prior masks used in prior-integrated
reconstruction. The line profiles of the radial artery along the white doted lines in the zoomed views at depths of (j) 3.5 mm, (k) 7.4 mm and (l) 11.6 mm. The scale
bar is 1 cm.
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US and the optoacoustic images of panels 7c and 7f.
Fig. 7j–r are the results of a healthy volunteer as the control. Fig. 7j

is the prior mask at 850 nm. Fig. 7k – l are the reconstructed optoa-
coustic images at 850 nm using the prior mask in panel 7 j and the
standard reconstruction, respectively. In those two images, the carotid
is well recovered by the prior-integrated method, whereas only the
upper boundary is visible with standard reconstruction. Fig. 7m is a
manually drawn prior mask including a non-existing lesion and used for
the reconstruction at 930 nm to examine whether it introduces a false
positive or not. Fig. 7n and o are the reconstructed optoacoustic images
at 930 nm with prior-integrated reconstruction and standard re-
construction, respectively. The two reconstruction methods give similar
images; the prior-integrated method does not introduce false positive
results. Fig. 7p is the co-registered US image from which the prior mask
in panel 7 j is segmented. Fig. 7q is the overlay of panel 7p and the

optoacoustic images on panel 7k and 7n. Fig. 7r is the overlay of the 7p
and the optoacoustic images of panel 7 l and 7o.

Finally, Fig. 8 shows the intensity analysis of 10 datasets from pa-
tients and 6 datasets from healthy individuals. The y-axis is the mean
intensity ratio of the target ROI and the reference region (white region
and grey region in the prior masks in Fig. 7, respectively). Fig. 8a–b
show that at 800 nm, both prior-integrated and standard reconstruction
give a similar intensity ratio for patients and healthy volunteers. This is
expected since the image intensity from the target ROI (i.e. lumen) at
800 nm is due mainly to blood absorption in the carotid; hence, there
should be no significant difference between atherosclerotic patients and
healthy volunteers. In Fig. 8c, prior-integrated reconstruction shows a
significant difference (p<0.01) between the patients and healthy vo-
lunteers. This is expected, since, in contrast to healthy volunteers, pa-
tients with carotid artery disease frequently have atherosclerotic

Fig. 7. Standard and prior-integrated reconstruction of the carotid artery of an atherosclerotic patient (a-i) and of a healthy individual (j-r). (a) A prior mask for the
carotid. The grey regions in the prior masks are the reference region/control for the true ROI shown in white, the same as those in panel d, j, and m. (b-c)
Reconstructed images at 850 nm using (b) prior-integrated and (c) standard reconstruction. (d) A prior mask for the lesion inside the carotid. (e-f) Reconstructed
images at 930 nm using (e) prior-integrated and (f) standard reconstruction. (g) US image of the neck region with artery lumen highlighted with the dashed red
ellipse, the same as that in panel p. (h) Overlay of panels (b), (e) and (g). (i) Overlay of panels (c), (f) and (g). (j-r) The results of a healthy volunteer are shown in
panel. (j) A prior mask of the carotid. (k-l) Reconstructed images at 850 nm using (k) prior-integrated and (l) standard reconstruction. (m) Prior mask of a nonexistent
lesion inside the carotid. (n-o) Reconstructed images at 930 nm using (n) prior-integrated and (o) standard reconstruction. (p) US image of the neck region. (q)
Overlay of panels (k), (n) and (p). (r) Overlay of panels (l), (o) and (p). The scale bar is 1 cm.
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plaques that contain lipids, and lipids are the main absorbers at 930 nm.
In Fig. 8d, the standard reconstruction gives similar intensity ratios for
patients and healthy individuals at 930 nm. In Fig. 8c and d, a differ-
ence in the intensity ratio distribution is observed, depending on
whether the reconstruction incorporates US priors or not.

5. Discussion

In this study, we introduced a regional Laplacian method to in-
tegrate structural information from ultrasound images as soft priors into
optoacoustic reconstruction. The proposed prior-integrated method was
characterized with simulations and applied to experimental data in
comparison with a standard reconstruction method. The results in-
dicated higher CNR values from prior-integrated reconstruction than
from standard one. A higher contrast improves detectability of radial
artery with increasing depth, as well as the lumen and plaque in human
carotid datasets. Moreover, the prior-integrated reconstruction suc-
cessfully recovered boundaries subject to limited-view artefacts and
thus showed higher SSIM values compared to the standard re-
construction. Further analysis indicated that the proposed prior-in-
tegrated reconstruction method stayed robust to decreasing angles of
detection, proving an efficient way to at least partially compensate for
the information loss due to limited-view detection.

Vertical structures with acoustic contrast can only partially be re-
covered, which is known to be a major challenge for limited-view
geometry optoacoustic systems [21]. The prior-integrated method can
use structural information in ultrasound images to compensate for the
information loss due to limited-view detection in optoacoustic re-
construction. It is particularly helpful when the ultrasound image pos-
sesses good structural integrity even under limited-view detection,
which is often true for tissue imaging. Limited-view issues exist in ul-
trasound imaging, but it does not affect the integrity of structures in
ultrasound images as strongly as it does in optoacoustic images. For
example, dense scatterers in the tissue surrounding a blood vessel might
result in positive contrast in the ultrasound image, compared to the

negative contrast of the blood vessel. As a result, even the vertical edges
of the vessel boundary can be sharply reconstructed, which is not
possible in limited-view optoacoustic imaging due to a lack of optical
contrast in the surrounding tissue.

Our quantitative analysis of the carotid datasets in Fig. 8 revealed a
significant difference in the mean optoacoustic image intensity ratio at
930 nm in the upper part of the carotid lumen of patients and volun-
teers when using the proposed prior-integrated reconstruction, while
the standard reconstruction did not give a significant difference. This
illustrates the potential of the proposed method to increase the cap-
ability of functional information extraction, and thus clinical value, of
optoacoustic images. This analysis is based on the assumption that si-
milar light energy arrives at similar depths. This assumption might not
always be satisfied. For example, if large, heterogeneous absorbers exist
along the propagation path of light, the light energy arriving at the
lumen may be much less than in the reference region. In such cases,
light fluence correction is necessary. Light fluence correction is essen-
tial when one aims to unmix lipid in carotid plaque using spectral de-
composition, because the proposed prior-integrated method cannot
compensate light fluence or the spectral coloring effect. Therefore,
without light fluence correction, the proposed prior-integrated method
is not expected to outperform the standard reconstruction in spectral
decomposition.

Similar regional Laplacian methods have been applied to integrate
prior information in multi-modal imaging in other fields, such as in
positron emission tomography (PET)-computed tomography [57], PET-
magnetic resonance imaging (MRI) [58], fluorescence molecular to-
mography-x-ray computed tomography [59,60], or diffuse optical to-
mography (DOT)-MRI [61]. While in these cases, priors are taken from
a higher resolution modality and integrated into a lower resolution
modality, we demonstrate for the first time that priors from one mod-
ality can improve the reconstruction in a second modality when the two
modalities offer similar resolution, as is the case for OPUS systems.

Previous studies integrating prior information did not examine how
their methods performed with respect to specific isolated factors that

Fig. 8. Statistical analysis of carotid images
from atherosclerosis patients and healthy vo-
lunteers, using mean intensity ratio of the
target ROI and the reference region. (a-b)
Intensity ratio of the reconstructed images at
800 nm using (a) prior-integrated or (b) stan-
dard reconstruction. (c-d) Intensity ratio of the
reconstructed images at 930 nm using (c)
prior-integrated reconstruction and (d) stan-
dard reconstruction. ns: difference between
two groups is not significant, p> 0.05; **:
difference between two groups is very sig-
nificant, p<0.01.
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can affect reconstruction quality. Here, we analyzed the influence of
three important variables on the reconstruction quality, namely, seg-
mentation accuracy, labelling, and the regularization parameter. False
boundaries are observed due to improper segmentation, which implies
the necessity of high-quality segmentation to benefit from the proposed
method. In case of high segmentation uncertainty, errors can be
avoided by only sparsely segmenting target regions and treating the
remaining image as background. We demonstrated that the proposed
method is sensitive to labelling: adding a non-existing region can in-
troduce false positive features in the reconstructed image, depending on
how the region is labelled. In order to avoid such false positives, the
labelling of the prior mask is recommended to follow the connectivity
of the regions, i.e. two unconnected regions should not be labelled as
the same tissue type. The L-curves shown in Fig. 5 demonstrated that
different prior masks require different regularization parameters. Since
the optoacoustic signals are the key data, the regularization parameter
needs to be properly chosen to optimize the trade-off between data fi-
delity and prior information.

For further improvement of the proposed method, the morphologic
mismatch for the same target in ultrasound and optoacoustic images
due to the different effective slice thickness should be considered. The
difference of the slice thickness could be compensated in two ways. The
first way is to increase ultrasound effective slice thickness. One can pre-
define the thickness of optoacoustic slice by experiments, then scan
multiple ultrasound images within the pre-defined thickness. The ul-
trasound image that is of the same slice thickness as optoacoustic image
can then be obtained by summing up all the ultrasound images in that
volume. To generate the prior mask, the segmentation is applied to the
summed-up ultrasound image. A second way could be to reduce the
effective slice thickness of optoacoustic image. By incorporating a 3D
sensitivity field of the transducer into the optoacoustic reconstruction
model, one can simulate the round-way focusing effect which happens
in reflection-mode ultrasound imaging. In such ways, the difference of
optoacoustic and ultrasound slice thickness might be minimized and the
prior-inaccuracy induced artefacts in optoacoustic images could be re-
duced. In addition, automatic segmentation of the prior mask could be
considered. For example, superpixel segmentation might be an appro-
priate way to automatically segment the priors. Even though super-
pixels might over-segment the image, it is expected to find the relevant
edges in the ultrasound image [62]. In general, automatic segmentation
should avoid the bias introduced by manual segmentation. Also, auto-
matic selection of the regularization parameter should be considered,
since using the L-curve is a time-consuming method [63]. Concerning a
regularizer that promotes smoothness (instead of uniformity) in the
regions directly, we note that, while it is easy to, for example, simply
restrict the Laplacian to the inner part of a region, the boundary is
problematic. Since the boundary is the central source of information
that we input, non-smoothness needs to be properly penalized until the
boundary, but not across it. For that purpose, one would need to extract
the tangential directions at the whole boundary and engineer suitable
directional high-pass filters along it. Such an approach would sub-
stantially reduce the computational speed of the method, compromising
our idea of a simple and efficient ultrasound prior.

6. Conclusion

In summary, this paper proposes a novel perspective to further en-
hance the capabilities of handheld OPUS imaging systems.
Simultaneous recording of co-registered ultrasound and optoacoustic
images using a hybrid handheld system offers not only a comprehensive
anatomical ultrasound-based validation of optoacoustic images, but
also prior information valuable for improving optoacoustic re-
constructions. Ultrasound priors can be efficiently incorporated into
optoacoustic model-based reconstruction by a regional Laplacian reg-
ularization method based on segmented ultrasound images. This prior-
integrated reconstruction is shown to enhance the contrast (as

quantified by CNR), reduce limited-view artefacts (as quantified by
SSIM) and increase the detectability of structures in deep tissue in
clinical optoacoustic images. The demonstrated improvements will
allow more accurate image analysis in applications requiring high
contrast deep in tissue, such as vascular imaging, and vascularity ana-
lysis of soft-tissue tumors. Moreover, by achieving higher contrast in the
target ROIs, our method shows great potential for increasing the diag-
nostic information available to clinicians to support diagnosis, char-
acterization and monitoring of disease and response to therapy.
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