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T he fact that correlation does not imply causality was 
frequently mentioned in 2019 in the public debate 
on the effects of diesel emission exposure (1, 2). 

This truism is well known and generally acknowledged. 
A more difficult question is how causality can be unam-
biguously defined and demonstrated (Box 1). According 
to the eighteenth-century philosopher David Hume, 
causality is present when two conditions are satisfied: 1) 
B always follows A—in which case, A is called a “suffi-
cient cause” of B; 2) if A does not occur, then B does not 
occur—in which case, A is called a “necessary cause” of 
B (3). These strict logical criteria are only rarely met in 
the medical field. In the context of exposure to diesel 
emissions, they would be met only if fine-particle expo-
sure always led to lung cancer, and lung cancer never 
 occurred without prior fine-particle exposure. Of course, 
neither of these is true. So what is biological, medical, or 
epidemiological causality? In medicine, causality is gen-
erally expressed in probabilistic terms, i.e. exposure to a 
risk factor such as cigarette smoking or diesel emissions 
increases the probability of a disease, e.g., lung cancer. 
The same understanding of causality applies to the ef-
fects of treatment: for instance, a certain type of chemo-
therapy increases the likelihood of survival in patients 
with a diagnosis of cancer, but does not guarantee it. 

In many scientific disciplines, causality must be 
demonstrated by an experiment. In clinical medical 
research, this purpose is achieved with a randomized 
controlled trial (RCT) (4). An RCT, however, often 
cannot be conducted for either ethical or practical rea-
sons. If a risk factor such as exposure to diesel 
emissions is to be studied, persons cannot be ran-
domly allocated to exposure or non-exposure. Nor is 
any randomization possible if the research question is 
whether or not an accident associated with an expo-
sure, such as the Chernobyl nuclear reactor disaster, 
increased the frequency of illness or death. The same 
applies when a new law or regulation, e.g., a smoking 
ban, is introduced. 

When no experiment can be conducted, observa-
tional studies need to be performed. The object under 
study—i.e., the possible cause—cannot be varied in a 
targeted and controlled way; instead, the effect this 
factor has on a target variable, such as a particular 
 illness, is observed and documented.

Summary
Background: In clinical medical research, causality is demonstrated by randomized 
 controlled trials (RCTs). Often, however, an RCT cannot be conducted for ethical 
 reasons, and sometimes for practical reasons as well. In such cases, knowledge can be 
derived from an observational study instead. In this article, we present two methods that 
have not been widely used in medical research to date.

Methods: The methods of assessing causal inferences in observational studies are 
 described on the basis of publications retrieved by a selective literature search.

Results: Two relatively new approaches—regression-discontinuity methods and 
 interrupted time series—can be used to demonstrate a causal relationship under certain 
circumstances. The regression-discontinuity design is a quasi-experimental approach 
that can be applied if a continuous assignment variable is used with a threshold value. 
Patients are assigned to different treatment schemes on the basis of the threshold value. 
For assignment variables that are subject to random measurement error, it is 
 assumed that, in a small interval around a threshold value, e.g., cholesterol values 
of 160 mg/dL, subjects are assigned essentially at random to one of two treatment 
groups. If patients with a value above the threshold are given a certain treatment, those 
with values below the threshold can serve as control group. Interrupted time series are a 
special type of regression-discontinuity design in which time is the assignment variable, 
and the threshold is a cutoff point. This is often an external event, such as the imposition 
of a smoking ban. A before-and-after comparison can be used to determine the effect of 
the intervention (e.g., the smoking ban) on health parameters such as the frequency of 
cardiovascular disease. 

Conclusion: The approaches described here can be used to derive causal inferences 
from observational studies. They should only be applied after the prerequisites for their 
use have been carefully checked.
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Several publications in epidemiology have dealt 
with the ways in which causality can be inferred in the 
absence of an experiment, starting with the classic 
work of Bradford Hill and the nine aspects of causal-
ity (viewpoints) that he proposed (Box 2) (5) and con-
tinuing up to the present (6, 7).

Aside from the statistical uncertainty that always 
arises when only a sample of an affected population is 
studied, rather than its entirety (8), the main obstacle 
to the study of putative causal relationships comes 
from confounding variables (“confounders”). These 
are so named because they can, depending on the cir-
cumstances, either obscure a true effect or simulate an 
effect that is, in fact, not present (9). Age, for 
example, is a confounder in the study of the associ-
ation between occupational radiation exposure and 
cataract (10), because both cumulative radiation ex-
posure and the risk of cataract rise with increasing 
age.

The various statistical methods of dealing with 
known confounders in the analysis of epidemiologi-
cal data have already been presented in other articles 
in this series (9, 11, 12). In the current article, we 
discuss two new approaches that have not been 

widely applied in medical and epidemiological 
 research to date.

Methods of evaluating causal inferences in  
observational studies
The main advantage of an RCT is randomization, 
i.e., the random allocation of the units of observation 
(patients) to treatment groups. Potential con-
founders, whether known or unknown, are thereby 
distributed to the treatment groups at random as 
well, although differences between groups may arise 
through sample variance. Whenever randomization 
is not possible, the  effect of confounders must be 
taken into account in the planning of the study and in 
data analysis, as well as in the interpretation of study 
findings. 

Classic methods of dealing with confounders in 
study planning are stratification and matching (13, 
14), as well as so-called propensity score matching 
(PSM) (11).

The best-known and most commonly used method 
of data analysis is regression analysis, e.g., linear, 
 logistic, or Cox regression (15). This method is based 
on a mathematical model created in order to explain 

BOX 1

Causality in epidemiological observational studies (modified from Parascondola and Weed [34]) 
1.Causality as production: A produces B. Causality is to be distinguished from mere temporal sequence. It does not suffice to note that A is 

 always followed by B; rather, A must in some way produce, lead to, or create B. However, it remains unclear what ’producing’, ‘leading to’, or 
‘creating’ exactly means. On a practical level, the notion of production is what is illustrated in the diagrams of cause-and-effect relationships 
that are commonly seen in medical publications. 

2. Sufficient and necessary causes: A is a sufficient cause of B if B always happens when A has happened. A is a necessary cause of B if B only 
happens when A has happened. Although these relationships are logically clear and seemingly simple, this type of deterministic causality is 
hardly ever found in real-life scientific research. Thus, smoking is neither a sufficient nor a necessary cause of lung cancer. Smoking is not 
 always followed by lung cancer (not a sufficient cause), and lung cancer can occur in the absence of tobacco exposure (not a necessary 
cause, either). 

3. Sufficient component cause: This notion was developed in response to the definitions of sufficient and necessary causes. In this approach, it is 
assumed that multiple causes act together to produce an effect where no single one of them could do so alone. There can also be different 
combinations of causes that produce the same effect. 

4. Probabilistic causality: In this scenario, the cause (A) increases the probability (P) that the effect (B) will occur: in symbols, P (B | A) > (B | not 
A). Sufficient and necessary causes, as defined above in (2), are only those extreme cases in which P (B | A) = 1 and P (B | not A) = 0, 
 respectively. When these probabilities take on values that are neither 0 nor 1, causality is no longer deterministic, but rather probabilistic 
(stochastic). There is no assumption that a cause must be followed by an effect. This viewpoint corresponds to the method of proceeding in 
statistically oriented scientific disciplines. 

5. Causal inference: This is the determination that a causal relationship exists between two types of event. Causal inferences are made by 
 analyzing the changes in the effect that arise when there are changes in the cause. Causal inference goes beyond the mere assertion of an 
association and is connected to a number of specific concepts: some that have been widely discussed recently are counterfactuals, potential 
outcomes, causal diagrams, and structural equation models (36, 37). 

6. Triangulation: Not all questions can be answered with an experiment or a randomized controlled trial. Alternatively,  methodological pluralism is 
needed, or, as it is now sometimes called, triangulation: confidence in a finding increases when the same finding is arrived at from multiple 
data sets, multiple scientific disciplines, multiple theories, and/or multiple methods (35). 

7. The criterion of consequentiality: The claim that a causal relationship exists has consequences on a societal level (taking action or not taking 
action). Olsen has called for the formulation of a criterion to determine when action should be taken and when not (7).
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the probability that any particular outcome will arise 
as the combined result of the known confounders and 
the effect under study.

Regression analyses are used in the analysis of 
clinical or epidemiological data and are found in all 
commonly used statistical software packages. How-
ever, they are often used inappropriately because the 
prerequisites for their correct application have not 
been checked. They should not be used, for example, 
if the sample is too small, if the number of variables is 
too large, or if a correlation between the model vari-
ables makes the results uninterpretable (16).

Regression-discontinuity methods
Regression-discontinuity methods have been little used 
in medical research to date, but they can be helpful in 
the study of cause-and-effect relationships from obser-
vational data (17). Regression-discontinuity design is a 
quasi-experimental approach (Box 3) that was devel-
oped in educational psychology in the 1960s (18). It 
can be used when a threshold value of a continuous 
variable (the “assignment variable”) determines the 
treatment regimen to which each patient in the study is 
assigned (Box 4). 

A possible assignment variable could be, for 
example, the serum cholesterol level: consider a study 
in which patients with a cholesterol level of 160 mg/
dL or above are assigned to receive a therapy. Since 
the cholesterol level (the assignment variable) is sub-
ject to random measurement error, it can be assumed 
that patients whose level of cholesterol is close to the 
threshold (160 mg/dL) are randomly assigned to the 
different treatment regimens. Thus,  in a small interval 
around the threshold value, the assignment of patients 
to treatment groups can effectively be considered ran-
dom (18). This sample of patients with near-threshold 
measurements can thus be used for the analysis of 
treatment efficacy. For this line of argument to be 
valid, it must truly be the case that the value being 
measured is subject to measuring error, and that there 
is practically no difference between persons with 
measured values slightly below or slightly above 
threshold. Treatment allocation in this narrow range 
can be considered quasi-random. 

This method can be applied if the following pre-
requisites are met:

● The assignment variable is a continuous variable 
that is measured before the treatment is provided. 
If the assignment variable is totally independent of 
the outcome and has no biological, medical, or 
 epidemiological significance, the method is theo -
retically equivalent to an RCT (19).

● The treatment must not affect the assignment 
 variable (18).

● The patients in the two treatment groups with near-
threshold values of the assignment variable must 
be shown to be similar in their baseline properties, 
i.e., covariables, including possible confounders. 
This can be demonstrated either with statistical 
techniques or graphically (20).

● The range of the assignment variable in the vicin-
ity of the threshold must be optimally set: it must 
be large enough to yield samples of adequate size 
in the treatment groups, yet small enough that the 
effect of the assignment variable itself does not 
alter the outcome being studied. Methods of 
choosing this range appropriately are available in 
the literature (21, 22).

● The treatment can be decided upon solely on the 
basis of the assignment variable (deterministic 
 regression-discontinuity methods), or on the basis 
of other clinical factors (fuzzy regression-
 discontinuity methods).

Example 1: The one-year mortality of neonates as 
a function of the intensity of medical and nursing care 
was to be studied, where the intensity of care was 
 determined by a birth-weight threshold: infants with 
very low birth weight (<1500 g) (group A) were cared 
for more intensively than heavier infants (group B) 
(23). The question to be answered was whether the 
greater intensity of care in group A led to a difference 
in mortality between the two groups. It was assumed 
that children with birth weight near the threshold are 
identical in all other respects, and that their assignment 

BOX 2

The Bradford Hill criteria for causality 
(modified from [5]) 
1. Strength: the stronger the observed association be-

tween two variables, the less likely it is due to chance. 
2. Consistency: the association has been observed in 

multiple studies, populations at risk, places, and times, 
and by different researchers. 

3. Specificity: it is a strong argument for causality when a 
specific population suffers from a specific disease.

4. Temporality: the effect must be temporally subsequent 
to the cause. 

5. Biological gradient: the association displays a 
dose–response effect, e.g., the incidence of lung 
cancer is greater when more cigarettes are smoked 
per day.

6. Plausibility: a plausible mechanism linking the cause 
to the effect is helpful, but not absolutely required. 
What is biologically plausible depends upon the 
 state-of-the-art knowledge of the time. 

7. Coherence: the causal interpretation of the data 
should not conflict with biological knowledge about the 
disease.

8. Experiment: experimental evidence should be 
 adduced in support, if possible.

9. Analogy: an association speaks for causality if similar 
causes are already known to have similar effects. 
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to group A or group B is quasi-random, because the 
measured value (birth weight) is subject to a 
relatively small error. Thus, for example, one might 
compare children weighing 1450–1500 g to those 
weighing 1501–1550 g at birth to study whether, and 
how, a greater intensity of care affects mortality. 

In this example, it is assumed that the variable “birth 
weight” has a random measuring error, and thus that 
neonates whose (true) weight is near the threshold will be 

randomly allocated to one or the other category. But birth 
weight itself is an important factor affecting infant mortal-
ity, with lower birth weight associated with higher mortal-
ity (23); thus, the interval taken around the threshold for 
the purpose of this study had to be kept narrow. The study, 
in fact, showed that the children treated more intensively 
because their birth weight was just below threshold had a 
lower mortality than those treated less intensively because 
their birth weight was just above threshold. 

BOX 3

Terms used to characterize experiments 
(18) 
● Experiment/trial 

A study in which an intervention is deliberately 
 introduced in order to observe an effect.

● Randomized experiment/trial 
An experiment in which persons, patients, or other units 
of observation are randomly assigned to one of two or 
more treatment groups (or intervention groups). 

● Quasi-experiment 
An experiment in which the units of observation are not 
randomly assigned to the treatment/intervention groups.

● Natural experiment 
A study in which a natural event (e.g., an earthquake) is 
compared with a comparison scenario.

● Non-experimental observational study 
A study in which the size and direction of the 
 association between two variables is determined.

BOX 4

Regression-discontinuity methods
In the simplest case, that of a linear regression, the 
 parameters in the following model are to be estimated: 

yi = β 0 + β 1 z i + β 2 (x i − x c) + e i ,

where:
i from 1 to N represents the statistical units
y is the outcome
β 0 is the y-intercept
z is a dichotomous variable (0, 1) indicating whether 

the patient was treated (1) or not treated (0) 
x is the assignment variable
x c is the threshold 
β 1 is the effect of treatment 
β 2 is the regression coefficient of the assignment 

 variable 
e is the random error

BOX 5

Interrupted time series 
In the simplest case of a study involving an interrupted time series, the temporal sequence is analyzed with a piecewise 
 regression. The following model is used to study both a shift in slope and a shift in the level of an outcome before and after 
an intervention, e.g., the introduction of a law banning smoking (Figure 2):

y = β 0 + β 1 × time + β 2 × intervention + β 3 × time × intervention + e ,
where:
y is the outcome, e.g., cardiovascular diseases
intervention 
 is a dummy variable for the time before (0) and after (1) the intervention (e.g., smoking ban) 
time  is the time since the beginning of the study
β 0 is the baseline incidence of cardiovascular diseases 
β 1  is the slope in the incidence of cardiovascular diseases over time before the introduction of the smoking ban 
β 2 is the change in the incidence level of cardiovascular diseases after the introduction of the smoking ban  (level effect)
β 3 is the change in the slope over time (cf. β 1) after the introduction of the smoking ban (slope effect)
 e is the random error
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Example 2: A regression-discontinuity design was 

used to evaluate the effect of a measure taken by the

Canadian government: the introduction of a minimum 

age of 19 years for alcohol consumption. The re-

searchers compared the number of alcohol-related dis-

orders and of violent attacks, accidents, and suicides 

under the influence of alcohol in the months leading up 

to (group A) and subsequent to (group B) the 19th birth-

day of the persons involved. It was found that persons in 

group B had a greater number of alcohol-related in -

patient treatments and emergency hospitalizations than 

persons in group A. With the aid of this quasi-

experimental approach, the researchers were able to 

demonstrate the success of the measure (24). It may be 

assumed that the two groups differed only with respect 

to age, and not with respect to any other property 

affecting alcohol consumption.

Interrupted time series
Interrupted time series are a special type of regression-

discontinuity design in which time is the assignment 

variable. The cutoff point is often an external event that 

is unambiguously identifiable as having occurred at a 

certain point in time, e.g., an industrial accident or a 

change in the law. A before-and-after comparison is 

made in which the analysis must still take adequate 

account of any relevant secular trends and seasonal fluc-

tuations (Box 5). 
The prerequisites for the use of this method must be

met (18, 25):

● Interrupted time series are valid only if a single 

intervention took place in the period of the study.

● The time before the intervention must be clearly 

distinguishable from the time after the intervention.

● There is no required minimum number of data 

points, but studies with only a small number of data 

points or small effect sizes must be interpreted with 

caution. The power of a study is greatest when the 

number of data points before the intervention equals 

the number after the intervention (26).

● Although the equation in Box 5 has a linear specifi-

cation, polynomial and other nonlinear regression 

models can be used as well. Meticulous study of the 

temporal sequence is very important when a non -

linear model is used.

● If an observation at time t—e.g., the monthly inci-tt
dence of cardiovascular diseases—is correlated 

with previous observations (autoregression), then 

the appropriate statistical techniques must be used 

(autoregressive integrated moving average 

[ARIMA] models).

Example 1: In one study, the rates of acute hospi-

talization for cardiovascular diseases before and after 

the temporary closure of Heathrow Airport because of 

volcanic ash were determined to investigate the pu-

tative effect of aircraft noise (27). The intervention 

(airport closure) took place from 15 to 20 April 2010. 

The hospitalization rate was found to have decreased 

among persons living in the urban area with the most 

aircraft noise. The number of observation points was 

too low, however, to show a causal link conclusively.

Example 2: In another study, the rates of hospitali -

zation before and after the implementation of a smoking 

ban (the intervention) in public areas in Italy were deter-

mined (28). The intervention occurred in January 2004 

(the cutoff time). The number of hospitalizations for 

acute coronary events was measured from January 2002 

to November 2006 (Figure 1). The analysis took 

 account of seasonal dependence, and an effect modifica-

tion for two age groups—persons under age 70 and 

FIGURE 1

Age-standardized hospitalization rates for acute coronary events (ACE) in persons under age 70 before and after the implementation of a 
smoking ban in public places in Italy, studied with the corresponding methods (30). The observed and predicted rates are shown (circles and
solid lines, respectively). The dashed lines show the seasonally adjusted trend in ACE before and after the introduction of the nationwide
smoking ban.
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 persons aged 70 and up—was determined as well. The 

hospitalization rate declined in the former group, but 

not the latter.

Discussion
The necessary distinction between causality and corre-

lation is often emphasized in scientific discussions, yet it 

is often not applied strictly enough. Furthermore, causal-

ity in medicine and epidemiology is mostly probabilistic

in nature, i.e., an intervention alters the probability that 

the event under study will take place. A good illustration 

of this principle is offered by research on the effects of d

radiation, in which a strict distinction is maintained be-

tween deterministic radiation damage on the one hand,

and probabilistic (stochastic) radiation damage on the 

other (29). Deterministic radiation damage—radiation-

induced burns or death—arises with certainty whenever a 

subject receives a certain radiation dose (usually a high 

one). On the other hand, the risk of cancer- related mor-

tality after radiation exposure is a stochastic matter. Epi-

demiological observations and biological experiments 

should be evaluated in tandem to strengthen conclusions

about probabilistic causality (Box 1).
While RCTs still retain their importance as the gold 

standard of clinical research, they cannot always be 

carried out. Some indispensable knowledge can only be

obtained from observational studies. Confounding fac-

tors must be eliminated, or at least accounted for, early 

on when such studies are planned. Moreover, the data 

that are obtained must be carefully analyzed. And, 

finally, a single observational study hardly ever suffices

to establish a causal relationship.

In this article, we have presented two newer methods 

that are relatively simple and which, therefore, could 

easily be used more widely in medical and epidemiologi-

cal research (30). Either one should be used only after the 

prerequisites for its applicability have been meticulously 

checked. In regression-discontinuity methods, the as-

sumption of continuity must be verified: in other words, 

it must be checked whether other properties of the treat-

ment and control groups are the same, or at least equally 

balanced. The rules of group assignment and the rolet

played by the continuous assignment variable must be 

known as well. Regression-discontinuity methods can 

generate causal conclusions, but any such conclusion 

will not be generalizable if the treatment effects are 

heterogeneous over the range of the assignment vari-

able. The estimate of effect size is applicable only in a

small, predefined interval around the threshold value. It d

must also be checked whether the outcome and the as-

signment variable are in a linear relationship, and 

whether there is any interaction between the treatment 

and assignment variables that needs to be considered. 

In the analysis of interrupted time series, the assump-

tion of continuity must be tested as well. Furthermore,

the method is valid only if the occurrence of any other 

 intervention at the same time point as the one under study 

can be ruled out (20). Finally, the type of temporal se-

quence must be considered, and more complex statistical 

methods must be applied, as needed, to take such phe-

nomena as autoregression into account.

Observational studies often suggest causal relation-

ships that will then be either supported or rejected after 

further studies and experiments. Knowledge of the 

 effects of radiation exposure was derived, at first, mainly 

from observations on victims of the Hiroshima and 

 Nagasaki atomic bomb explosions (31). These findings 

were reinforced by further epidemiological studies on tt

other populations exposed to radiation (e.g., through

medical procedures or as an occupational hazard), by 

physical considerations, and by biological experiments 

(32). A classic example from the mid-19th century is the 

observational study by Snow (33): until then, the biologi-

cal cause of cholera was unknown. Snow found that there 

had to be a causal relationship between the contami-

nation of a well and a subsequent outbreak of cholera. 

This new understanding led to improved hygienic 

measures, which did, indeed, prevent infection with the 

cholera pathogen. Cases such as these prove that it is 

sometimes reasonable to take action on the basis of an 

observational study alone (6). They also demonstrate, 

however, that further studies are necessary for the defini-

tive establishment of a causal relationship.
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Key messages
● Causal inferences can be drawn from observational studies, as long as 

certain conditions are met. 
● Confounding variables are a major impediment to the demonstration of 
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