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Abstract In recent years, functional genomics approaches combining genetic information with bulk

RNA-sequencing data have identified the downstream expression effects of disease-associated

genetic risk factors through so-called expression quantitative trait locus (eQTL) analysis. Single-cell

RNA-sequencing creates enormous opportunities for mapping eQTLs across different cell types and

in dynamic processes, many of which are obscured when using bulk methods. Rapid increase in

throughput and reduction in cost per cell now allow this technology to be applied to large-scale

population genetics studies. To fully leverage these emerging data resources, we have founded the

single-cell eQTLGen consortium (sc-eQTLGen), aimed at pinpointing the cellular contexts in which

disease-causing genetic variants affect gene expression. Here, we outline the goals, approach and

potential utility of the sc-eQTLGen consortium. We also provide a set of study design considerations

for future single-cell eQTL studies.
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Interindividual variation needs to
be studied at the single-cell level
Genetic variants, most commonly single nucleo-

tide polymorphisms (SNPs), can contribute to

disease in a plethora of ways. In monogenic dis-

eases, one single variant is sufficient to result in

a disease phenotype. In complex diseases, tens

to hundreds of variants each independently con-

tribute to disease risk and an accumulation of

risk alleles – often in combination with specific

environmental exposures – is required to

develop the disease phenotype. The overwhelm-

ing evidence showing enrichment of disease-

associated variants in regulatory regions sug-

gests that regulation of gene expression is likely

a dominant mediator for disease risk. Expression

quantitative trait loci (eQTL) analysis is com-

monly used for linking disease risk-SNPs to

downstream expression effects on local (cis) or

distal (trans) genes. Large-scale eQTL efforts

such as GTEx (GTEx Consortium, 2017), Psy-

chENCODE (Wang et al., 2018), ImmVar

(Ye et al., 2014), BLUEPRINT (Chen et al.,

2016), CAGE (Lloyd-Jones et al., 2017), and

eQTLGen (Võsa, 2018) have proven highly

valuable to identify downstream transcriptional

consequences. All these efforts together lead to

ever growing sample sizes that now allow us to

start identifying both cis- and trans-eQTLs.

An important next step is to precisely define

the cellular contexts in which disease risk-SNPs

affect gene expression levels. This will help to

better understand the molecular and cellular

mechanisms by which disease risk is conferred

and to inform therapeutic strategies. This needs

to be done as recent analyses have shown that

many eQTL effects are tissue

(GTEx Consortium, 2017; Fu et al., 2012) and

cell type-specific (Brown et al., 2013;

Fairfax et al., 2012). Additionally, many eQTLs

are conditional, and only revealed after specific

stimuli that, for example, change the activation

or differentiation of specific cell types (Ye et al.,

2014; Cuomo et al., 2020). Beyond the ability

to annotate individual disease associations, cell

type-specific eQTLs have been shown to be

strongly enriched for heritability across complex

traits (Hormozdiari et al., 2018). Sorting

(Fairfax et al., 2012; Ishigaki et al., 2017) and

computational deconvolution (Westra et al.,
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2015; Venet et al., 2001) of cell types from

bulk samples have been used to uncover con-

text-specificity of eQTLs. However, these meth-

ods are biased towards known cell types defined

by a limited set of marker genes

(Zhernakova et al., 2017), are of limited use for

less abundant cell types, and do not capture any

heterogeneity within a sorted population. In

contrast, single-cell RNA-sequencing (scRNA-

seq) enables the simultaneous and unbiased

estimation of cellular composition and cell type-

specific gene expression (van der Wijst et al.,

2018a), and is particularly well positioned to

investigate rare cell types (Villani et al., 2017).

As opposed to using bulk data, single-cell data

allows us to also link genetics to phenomena

such as cell-to-cell expression variability

(Cuomo et al., 2020), cell type heterogeneity

(Donovan et al., 2019), and gene regulatory

network differences (van der Wijst et al.,

2018a). As such, single-cell analyses in a popula-

tion-based setting will likely become mainstream

in the next few years. However, we envision that

most scientific value will be obtained by unifying

these efforts. Additionally, to utilize the afore-

mentioned developments in the single-cell field

most efficiently and effectively, a coordinated

effort from multiple research groups is urgently

needed.

Here we introduce the single-cell eQTLGen

consortium (sc-eQTLGen), a large-scale, interna-

tional collaborative effort that has been set up

to identify the upstream interactors and down-

stream consequences of disease-related genetic

variants in individual immune cell types (https://

eqtlgen.org/single-cell.html, Figure 1). In this

consortium we will attain a sufficiently large sam-

ple size to have the statistical power to unbias-

edly identify cell type-specific effects on both cis

and trans genes. Moreover, we aim to
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Figure 1. Set-up of the single-cell eQTLGen (sc-eQTLGen) consortium. The sc-eQTLGen consortium combines an individual’s genetic information with

single-cell RNA expression (scRNA-seq) data of peripheral blood mononuclear cells (PBMCs) in order to identify effects of genetic variation on

downstream gene expression levels (eQTLs) and to enable reconstruction of personalized gene regulatory networks. Right panel is adapted from

van der Wijst et al. (2018b).
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reconstruct context-specific gene regulatory net-

works (GRNs) by combining single-cell and bulk

RNA-seq datasets for increased resolution. We

expect the results of sc-eQTLGen to have an

impact in a number of areas including the priori-

tization of disease-risk genes, the prediction of

drug efficacy and the reconstruction of personal-

ized GRNs.

Integration of sc-eQTLGen within
the scientific landscape
Large numbers of single cell expression profiles

from many individuals are required to reach our

goals. The accessibility and clinical relevance of

peripheral blood mononuclear cells (PBMCs)

have made them the most studied cell types in

current population-based scRNA-seq datasets.

Therefore, to have such datasets from the same

tissue type readily available, we have chosen to

focus on PBMCs. It also allows for continuation

of the knowledge acquired through the eQTL-

Gen consortium, which performed the largest

eQTL meta-analysis to date using whole blood

bulk gene expression data of over 30,000 indi-

viduals to reveal the influence of genetics on

gene expression (Võsa, 2018). The sc-eQTLGen

consortium now allows us to take the next step

by systematically assessing the cell types and

contexts in which the eQTL effects manifest.

Beyond resolving the influence of genetics on

individual genes, the consortium will also take

advantage of the unique features of scRNA-seq

data to learn the directionality of GRNs and

uncover how genetics is affecting co-expression

relationships (van der Wijst et al., 2018a). We

expect that the infrastructure and best practices

developed within sc-eQTLGen can serve as a

basis for studying population genetics at the sin-

gle-cell level in solid tissues in the future.

Other large-scale efforts such as the Human

Cell Atlas (HCA) (Regev et al., 2017) or Lifetime

FET flagship consortium (https://lifetime-fetflag-

ship.eu) mainly focus on mapping all cells of the

human body or a disease context in a limited

number of individuals. The sc-eQTLGen consor-

tium will complement those efforts by putting a

unique focus on deciphering the impact of

genetic variation on gene expression and its reg-

ulation. Different to experimental designs that

aim to generate an extensive map on a low num-

ber of individuals, we require larger numbers of

individuals, whereas the number of cells per indi-

vidual can be lower. This will enable the accurate

capture of both the genetic variation and the

cell type heterogeneity. By building on the data

and harmonized cell type annotations generated

within the HCA, our results will be easily trans-

ferable to other datasets as well. We will share

best practices of the HCA consortium with

regard to data acquisition, analysis and report-

ing. We also share standards for open science

and the infrastructure and legal frameworks for

data sharing while accounting for the privacy

issues specific to genetic, health record and

demographic information.

Single cell eQTL analysis: the new
era of population genetics
The practice of identifying eQTLs is shifting from

bulk to single-cell analyses. Considering only its

ability to identify eQTLs, scRNA-seq data has a

lower statistical power compared to bulk RNA-

seq data on the same number of donors

(Cuomo et al., 2020; Sarkar et al., 2019), likely

due to increased sparsity of the single-cell data.

Nevertheless, there are several clear benefits of

single-cell over bulk expression data for QTL

analysis. First, scRNA-seq data enables the

simultaneous estimation of the composition and

expression profiles of discrete cell populations

including cell types and their activation states

(van der Wijst et al., 2018a; Figure 2). Second,

scRNA-seq data provides a flexible, unbiased

approach that has increased resolution to define

BA C

Identify distinct cell types Trace cell type lineages Identify cell subtypes

Figure 2. scRNA-seq data offers increased flexibility in the eQTL analysis strategy over

bulk RNA-seq data. Using scRNA-seq data for eQTL mapping offers a number of

advantages over bulk RNA-seq based approaches, of which the flexibility in analysis strategy

is a major one. (A) From single cell data, individual cell types can be identified and we can

map eQTLs for each of these. (B) Alternatively, lineages based on either knowledge of cell

developmental lineages or through pseudo-time based approaches can be constructed. By

positioning cells across a trajectory dynamic changes in the allelic effects on gene

expression levels as a function of trajectory position can be integrated. (C) Finally, as the

discoveries of new cell subtypes are made or cell type definitions are being refined, the

analysis can be revisiting by re-classifying cells and determining how the genetic effects on

gene expression vary on these new annotations.
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Box 1. Guidelines for creating a population-based single-cell cohort.

Even though a single-cell eQTL dataset has less discovery power than an equal-sized bulk RNA-seq eQTL dataset (6.9 fold dif-

ference based on the lowest correlation that led to the identification of a significant eQTL from single-cell [van der Wijst et al.,

2018a] vs bulk RNA-seq data [Zhernakova et al., 2017]), it does provide insights that cannot easily be extracted from bulk

data. For example, single-cell data allows for the unbiased detection of cell type- and context-dependent eQTLs and has more

power to detect co-expression QTLs (van der Wijst et al., 2018a). This makes population-based single-cell datasets a valuable

addition to bulk-based datasets for studying the effects of genetic variation on gene expression and its regulation (van der

Wijst et al., 2018a; Kang et al., 2018). In comparison to ‘standard’ single-cell datasets, generating such population-based sin-

gle-cell datasets require some additional aspects to be taken into account.

First of all, the genetic information that is available for each of the individuals in such cohorts can be used to demultiplex pools

of multiple individuals within the same sample. This approach allows to properly randomize experiments, while also significantly

reducing cost and confounding effects (Kang et al., 2018; Bycroft et al., 2018). This genetic information can either be effi-

ciently generated using genotype arrays (Marchini and Howie, 2010) in combination with imputation-based approaches

(Xu, 2019), or extracted from the scRNA-seq data itself (Bycroft et al., 2018; McCarthy et al., 2016). Within the consortium

all reads will be aligned to the GRCh38/hg38 reference genome and genotypes will be imputed using the Haplotype Reference

Consortium reference panel (Gravel et al., 2011). The basic principle behind genetic multiplexing is that enough transcripts

harboring SNPs are expressed and detected in each single cell such that cells can be accurately assigned to the donor of origin.

Furthermore, as the number of multiplexed individuals increases, the probability that a droplet harbors multiple cells from dif-

ferent individuals increases, thus allowing the detection of multiplets using genetic information. This enables the overloading of

cells into standard droplet-based workflows and overall reduction of cost per cell up to about 10-fold (https://satijalab.org/

costpercell). As the cost of sequencing and the background multiplet rate reduce, the benefits of multiplexing increase. We

anticipate that future workflows will allow for even higher throughput.

Secondly, accounting for ethnicity variation and population stratification will be required when single-cell data of diverse popu-

lations are being analyzed. It is known that a different genetic architecture exists between different populations. Nevertheless,

practical considerations have limited the majority of eQTL studies to cohorts of European origin. As an undesirable conse-

quence of this bias in population representation, certain variants may not have been detected before (Carlson et al., 2013) or

the effect sizes and associated polygenic risk scores based on the European population may not be translatable to other popu-

lations (Martin et al., 2017; Sirugo et al., 2019). Therefore, inclusion of datasets from different ethnic populations will help

reduce long-standing disparities in genetic studies and has many analytical advantages (Wojcik et al., 2019; Hsiao et al.,

2010). For example, the increased genotype frequency diversity will enhance the range over which gene expression varies, and

thereby, will further increase statistical power. To implement multi-population sc-eQTL analysis, several challenges have to be

addressed. Handling data from populations with different levels of population genetic properties such as LD structure, related-

ness and multiple genetic origins that result in the presence of genetic covariance remains important and requires appropriate

adjustments to avoid spurious signal and to manage the bias in estimating genetic cis- and trans-effects (Zhou and Stephens,

2012; Mandric, 2019). This is particularly important when differences in cohort-specific genetic characteristics are enhanced

such as when family-based and unrelated cohorts or cohorts of different ancestries are analyzed. Failing to account for these

effects affects the accuracy of mapping and results in false positives.

Finally, studying genetic variation at the single-cell level adds some extra requirements for the number of cells per individual

and the number of individuals to be included in the study. The number of cells per individual will mainly define for which cell

types in a heterogeneous sample such as PBMCs eQTL and co-eQTL analyses can be performed. In contrast, the number of

individuals will mainly define the number of genetic variants for which effects on gene expression can be confidently assessed.

A recent analysis showed that, with a fixed budget, the optimal power for detecting cell type-specific eQTLs is obtained when

the number of reads is spread across many individuals119. Even though a lower sequencing depth per cell results in a lower

accuracy of estimating cell type-specific gene expression levels, many more individuals and cells per individual can be included

for the same budget. As a result, the optimal experimental design with a fixed budget provides up to three times more power

than a design based on the recommended sequencing depth of 50,000 reads per cell (for 10X Genomics scRNA-seq). In con-

trast, for co-eQTL analysis there is a different trade-off between sequencing depth, number of individuals and number of reads

per cell; while for eQTL analysis gene expression levels among cells of the same cell type can be averaged, for co-eQTL analysis

you cannot as this would prohibit you from calculating a gene-gene correlation per individual. Therefore, for co-eQTLs the

sequencing depth will be a major limiting factor that determines the number of genes for which you can confidently calculate

gene-gene correlations. Altogether, depending on the goal of your study, the optimal balance between sequencing depth and
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cell states along continuous dynamic processes

in which the eQTL effects manifest themselves

(Cuomo et al., 2020). Third and fourth, single-

cell data allows estimating the variability in gene

expression across individual cells

(Brennecke et al., 2013; Eling et al., 2018),

which could be used to improve mean estima-

tions for eQTL analysis. At the same time, the

single-cell nature now also enables us to look at

the effect of genetic variation on transcriptomic

traits other than average gene expression level,

such as dispersion QTLs that alter the variance

independently of the mean expression

(Sarkar et al., 2019) or cell type proportion

QTLs (Kang et al., 2018), providing a new angle

on how genetic variation may impact disease

pathogenesis. Fifth, the large number of obser-

vations per individual (i.e. cells) enable the gen-

eration of personalized co-expression networks,

which vastly reduces the number of individuals

required to identify SNPs altering co-expression

relationships (i.e. co-expression QTLs [van der

Wijst et al., 2018a]). Finally, and paradoxically,

is the potential benefit of lower experimental

costs compared to bulk experiments on sorted

cells: such experiments require a library to be

generated for each sorted population, whereas

a single scRNA-seq library of just one sample

contains all this information and can easily be

multiplexed across multiple individuals

(Kang et al., 2018).

So far, only a limited number of papers have

performed eQTL analysis using scRNA-seq data

(Cuomo et al., 2020; van der Wijst et al.,

2018a; Sarkar et al., 2019; Kang et al., 2018).

In the earliest single-cell eQTL studies, bulk-

based eQTL analysis approaches, such as Spear-

man rank correlation (Heap et al., 2009;

Stranger et al., 2007) and linear regression

(Michaelson et al., 2009; Stranger et al.,

2005), were applied to the average expression

level of all cells from a particular cell type per

individual. However, the underlying assumptions

of these bulk-based approaches may not be

applicable to scRNA-seq data. Therefore, these

bulk-based methods will lose statistical power

when applied to scRNA-seq data, because of

the inflation of zero values (i.e. sparsity). More

recently, single-cell-specific eQTL methods have

been developed that, for example, take into

account zero-inflated gene expression

(Sarkar et al., 2019; Hu and Zhang, 2018) or

take advantage of pseudotime (i.e. statistically

inferred time from snapshot data) to increase

the resolution by which response-/differentia-

tion-associated eQTLs (dynamic eQTLs, i.e.

eQTLs that dynamically change along pseudo-

time) can be identified (Cuomo et al., 2020).

Instead of averaging gene expression levels

across all cells from a particular cell type, some

of these approaches look at the fraction of zero

expression and the non-zero expression sepa-

rately for each gene (Hu and Zhang, 2018).

Other approaches take dynamic pseudotime-

defined instead of statically-defined cell types

into consideration for the eQTL analysis

(Cuomo et al., 2020). This latter approach was

shown to uncover hundreds of new eQTL var-

iants during iPSC differentiation that had not

been detected when static differentiation time

points would have been used (Cuomo et al.,

2020). In line with this, we expect that some of

these methodological advances, as opposed to

bulk-based approaches, will further improve the

power and resolution of single-cell eQTL analy-

sis. However, there are two initial challenges

that need to be carefully addressed for single-

cell eQTL mapping: firstly, the normalization of

data to remove technical variation in sequencing

depth per cell, while avoiding the removal of

biological variation; and secondly, the identifica-

tion or classification of a cell into a cell type or

state.

During library preparation and sequencing,

technical and stochastic factors will lead to varia-

tion in cell-to-cell sequencing depth. However,

simply normalizing to equal sequencing depth

per cell will remove important biological varia-

tion – for example a CD4+ T cell is expected to

have lower RNA contents than a plasma B cell.

Therefore, we need to employ normalization

strategies that can account for traditional batch

effects, such as sample run or sequencing lane,

while retaining biological differences

(Bacher et al., 2017; Hafemeister and Satija,

2019).

Once normalized, each cell needs to be accu-

rately annotated into a cell type and/or cell state

number of individuals and cells per individual will be different. By the end of 2020, the sc-eQTLGen consortium will provide

standardized pipelines and guidelines for single-cell population genetics studies.
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to maximize the statistical power to detect cell

type-specific eQTLs. We encourage the use of

individual cell classification approaches, rather

than cluster-labeling methods. Clustering

approaches are powerful ways of identifying a

subpopulation of cells that share similar expres-

sion levels. However, while most cells placed in a

specific cluster will likely be the same cell type,

clusters can also contain alternative cell types.

Labeling all cells in a cluster based on a high

percentage of the expression of a canonical

marker(s) will therefore lead to the incorrect

classification of some cells (Alquicira-

Hernández et al., 2018). To acquire a reliable

classification model, large scRNA-seq datasets

from various contexts are required. Such data-

sets have been collected within large-scale

efforts such as our consortium and the HCA. We

expect these will help to develop a gold stan-

dard classification model that can classify each

cell independently. This will ensure a higher

accuracy in cell labeling and thus will maximize

power to detect cell type-specific effects.

After solving these challenges, eQTLs can be

mapped by either averaging the normalized

expression levels on a per gene, per cell type,

per individual basis. Alternatively, each cell from

an individual can be taken as a repeated mea-

sure which can then be used to fit a statistical

model to all cells, while including a random

effect of the individual.

Instead of using observational studies, eQTLs

could also be identified through experimental

approaches that use single cells as individual

units of experimentation (Gasperini et al.,

2019). Sample multiplexing (see Box 1) can be

combined with experimental perturbation to

more efficiently characterize the genetic archi-

tecture of gene expression. For example, syn-

thetic genetic perturbations with CRISPR/Cas9

may allow precise control of the expression lev-

els of target gene regulators enabling the valida-

tion of detected trans-eQTLs and the

establishment of upper and lower bounds of

trans effects. Encoding environmental and

genetic perturbations across large population

cohorts also enables new designs for studying

genetic interactions, both gene-by-environment

and gene-by-gene (epistasis). Historically, char-

acterizing these effects in human cells has been

plagued by the lack of power and the suscepti-

bility to technical confounding of bulk experi-

ments. Recent work that knocked out ~150

regulators in primary human T cells of nine

donors illustrates a proof of concept of how sin-

gle-cell sequencing across individuals can be

combined with experimental perturbations to

detect these genetic interactions (Gate, 2019).
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Figure 3. Reconstruction of personalized gene regulatory networks. Individual and cell-type specific scRNA-seq

data will be used to construct personalized gene regulatory networks. Some single cell datasets allow for the

inference of trajectories, for instance in response to a stimulus. These can be used as input to dynamic models to

infer causal (directed) interactions. Steady state datasets, characterized by cell type clusters can be analyzed with

models that exploit co-expression, prior networks or cell type-specific reference scATAC-seq datasets in

combination with sequence motifs to infer directed transcription factor-target relations. Topological comparison

between personalized networks of groups of individuals can reveal coordinated differences, for instance the

change of connectivity in densely connected modules, change of connectivity of hub genes or changes of module

membership of individual genes.
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Figure 4. Overview of the sc-eQTLGen proposed federated approach. sc-eQTLGen aims to identify the

downstream consequences and upstream interactors of gene expression regulation. To increase the resolution

and power of this analysis, datasets of multiple cohorts need to be combined while taking privacy issues into

account. This will be done using a federated approach in which we will first harmonize all preprocessing and

quality control (QC) steps across cohorts. Subsequently, shared gene expression matrices will be normalized and

cell types will be classified based on a trained reference dataset (e.g. Immune Cell Atlas (ICA)). Any cells that

Figure 4 continued on next page
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Another promising avenue that has become

available in recent years to gain increased

insights in the link between genetics and dis-

ease, is through the use of spatial transcriptom-

ics technologies, including MERFISH, seqFISH+,

Slide-seq and 10x Visium (Burgess, 2019;

Maynard et al., 2020). While for PBMCs this

approach may not be applicable, in solid tissues

and organs this extra layer of spatial information

is extremely valuable. For example, it can help

to disentangle trans-eQTL interactions that are

modulated through cell-cell communication (e.g.

a SNP affects ligand expression in one cell type,

and thereby affects downstream receptor signal-

ing in a second cell type). Despite not having

this spatial information available in PBMCs,

other approaches that consider receptor-ligand

expression pairs do provide insights in potential

cell-cell interactions. These approaches have

been successfully applied before to uncover how

the ligand expression in one cell type can affect

the frequency (Smillie et al., 2019) or the down-

stream signaling (Arneson et al., 2018) of

another cell type expressing the corresponding

receptor.

Single cell GRN reconstruction:
taking eQTLs one step further
In the case of complex diseases, it is not the dis-

ruption of a single gene that causes the disease

phenotype. In fact, hundreds of variants can con-

tribute to the disease and converge into just a

few key disrupted regulatory pathways

(Westra et al., 2013; Fagny et al., 2017).

Therefore, for a better disease understanding

and to take eQTLs one step further, one has to

look beyond the disruption of individual genes

and determine how the interaction of genes

changes based on cell type (Battle et al.,

2014; GTEx Consortium, 2017; Westra et al.,

2015; Knowles et al., 2017), environment

(Favé et al., 2018; van der Wijst et al., 2018b)

and an individual’s genetic makeup

(Zhernakova et al., 2017; van der Wijst et al.,

2018a). The sc-eQTLGen consortium will do so

by reconstructing personalized, cell type-specific

GRNs (La Manno et al., 2018; Figure 3). The

unique features of scRNA-seq data, among

which the inference of pseudotime and RNA

velocity (i.e. the ratio between spliced and

unspliced mRNA that allows prediction of the

future state of a cell) (Qiu, 2018), enable learn-

ing the directionality of network connections

(Fiers et al., 2018). We expect that such person-

alized GRNs will help explain for example differ-

ences in interindividual drug responses, and

thereby, will aid in precision medicine in the

future.

Reconstruction of GRNs from single cell data

reviewed in Raj et al. (2006) is complicated by

the sparsity of the data as a consequence of the

stochasticity underlying gene expression

(Chen and Mar, 2018) and dropouts, i.e. genes

that are not detected in some cells as a conse-

quence of technical limitations (Jackson et al.,

2019). This sparsity leads to lower correlation

estimates that obscure the identification of true

edges in the GRNs. Several solutions have been

developed to overcome this problem, including

the implementation of prior information

(Aibar et al., 2017; Andrews and Hemberg,

2018), gene expression imputation (Aibar et al.,

2017; Iacono et al., 2019) and usage of alterna-

tive measurements of correlation

(Skinnider et al., 2019; Budden et al., 2014).

Firstly, prior information encoded in the DNA

sequence can be used to overcome these com-

plications (Angermueller et al., 2017;

Angelini and Costa, 2014). Such priors on regu-

latory interactions can be derived from, for

example, ChIP-seq data (Miraldi et al., 2019),

ATAC-seq data (Qin et al., 2014), spatial infor-

mation (Burgess, 2019; Maynard et al., 2020)

or from perturbation experiments (Gate, 2019;

Aibar et al., 2017). Implementation of such pri-

ors was shown to improve bulk GRN reconstruc-

tion (Qin et al., 2014; Ghanbari et al., 2015;

Azizi et al., 2018), and similarly, it is expected

to also improve GRNs reconstructed from sin-

gle-cell data (Aibar et al., 2017; Andrews and

Figure 4 continued

cannot be classified using this trained classifier, representing new cell types or previously unknown cell states, can

then be manually annotated based on marker genes, and then be used to further train the classifier. Each cohort

will then separately perform a cis- and trans-eQTL and co-expression QTL analysis using their genotype and

expression matrix, while using appropriate statistical models to account for effects such as gender, population

structure and family-relatedness that can alter the genotype-expression relationship in a cohort-specific manner.

The summary statistics will be shared and analyzed in one centralized place. Finally, these results will be used for

reconstruction of personalized and context-specific gene regulatory networks. Bottom panel is reproduced from

Võsa (2018).
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Hemberg, 2018). However, caution is warranted

when using this information, as their effect on

GRN reconstruction depends on the quality of

these data priors (Siahpirani and Roy, 2017;

Simpson, 1951) and priors derived from bulk

data may not hold true at the single-cell level

(Buenrostro et al., 2015). Recent technological

advances enable studying chromatin accessibility

(Lareau et al., 2019; Hayashi et al., 2018) and

expression of enhancers RNAs (Kouno et al.,

2019; Lin et al., 2016) at the single cell level,

which will make it possible to implement single-

cell derived priors in GRN reconstruction in the

future, though these quantifications come with

their own limitations and challenges.

Secondly, gene expression imputation may

be used to restore the underlying correlation

structure. However, current gene expression

imputation methods become more unreliable as

the dropout rates increase (Iacono et al., 2019;

Skinnider et al., 2019). After gene expression

imputation, more network edges are identified,

but with a higher chance of detecting false posi-

tives (Aibar et al., 2017; Iacono et al., 2019).

Nevertheless, by combining prior information

with imputation, GRN reconstruction can be

improved both in the bulk (Qin et al., 2014) and

single cell setting (Aibar et al., 2017). For exam-

ple, one can replace transcription factor expres-

sion with inferred transcription factor activities

based on the collective expression patterns of

their target genes or take advantage of cross-

omics relationships (Stoeckius et al., 2017).

Finally, alternative correlation measures are

being explored to overcome the complications

associated with data sparsity, including

Monocytes

B cells

CD8+ T cells

1) Identi!cation of disease-

     associated cell types 

2) Identi!cation of key 

     disease-driving genes

New drug targets
Cell type and genotype 

speci!c treatments

3) Personalized medicine

Future clinical implications of single-cell RNA-sequencing:

Planning:

Individual 1, genotype AA

No disease 

symptoms

Disease 

symptoms

Drug

Legend:

Drug cures 

symptoms

Key driver gene

Prioritized genes Drug target

Individual 2, genotype AC

Drug does not 

cure symptoms

(CD4+ T cell speci!c)

Key driver geneCD4+ T cells 

Treg

cis-
eQTL

cis-eQTL

cis-eQTL

Disease 

SNP

Disease 

SNP

Disease 

SNP

Key driver

gene

CD4+: cis-eQTL

G
e

n
e

 
G

e
n

e
 

AA AC CC

CD8+: no eQTL

AA AC CC

scRNA-seq

Cohorts:

Dendritic 

cells

Standardized pipelines for 

single-cell population 

genetics studies across cohorts 

Automatic cell type 

classi!cation model for 

PBMCs across cohorts

Genome-wide cis- and 

trans-eQTL analysis 

across cohorts

Proof-of-concept

personalized gene 

regulatory network

Reconstruction of 

personalized regulatory 

networks across cohorts

Stage 1, 2020 Stage 2, 2021 Stage 3, 2022

A

B

Figure 5. Deliverables of the single-cell eQTLGen consortium in relation to their future clinical implications. (A) In the coming three years the sc-

eQTLGen consortium aims to deliver the following: i) standardized pipelines and guidelines for single-cell population genetics studies (2020); ii) cell

type classification models for PBMCs (2020); iii) summary statistics of cis- and trans-eQTLs, co-expression QTLs, cell count QTLs and variance QTLs

(2021); iv) reconstruction of personalized, cell type-specific gene regulatory networks (2022). (B) These efforts of the consortium will lead to the (1)

identification of disease-associated cell types and (2) key disease-driving genes, which together will aid (3) the implementation of personalized

medicine and the development of new therapeutics that take all this information into account (cell type- and genotype-specific treatments). Panel B2 is

adapted from van der Wijst et al. (2018b).
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measures of proportionality (Budden et al.,

2014) and by calculating the correlations on

measures other than the normalized expression

counts (Skinnider et al., 2019). For example,

Z-scores of the gene expression distributions of

highly similar cells have been used to calculate

the co-expression relationships. This approach

could reveal the true correlation structure that

was otherwise hidden by technical artifacts

(Skinnider et al., 2019). In addition to these

computational tools, technological advances,

such as single-cell multi-omics approaches

(Cao et al., 2018; Moignard et al., 2015) and

improved experimental protocols, are expected

to alleviate these complications. Moreover,

being able to assess multiple layers of informa-

tion within the same cell, e.g. chromatin accessi-

bility, DNA methylation, gene and protein

expression, opens unique opportunities for

developing new methodology for GRN recon-

struction and validation. Altogether, this will fur-

ther improve the accuracy of GRNs

reconstructed using single-cell data in the

future.

The incorporation of dynamic information

extracted from time series or pseudotime

(Ocone et al., 2015; Pratapa et al., 2019) is

another promising avenue to further improve

single-cell GRN reconstruction. However, not all

datasets are equally well suited to identify tem-

poral trajectories. For example, PBMCs are usu-

ally in steady state, and only after stimulation

such trajectories would appear.

Summarized, the ideal GRN reconstruction

tool can efficiently manage large amounts of sin-

gle-cell data, incorporate prior information,

model non-linear relationships and take dynamic

information into account. Early benchmark stud-

ies, performed for a limited number of methods

on rather small datasets (Jackson et al., 2019)

or on simulated data (Lukowski et al., 2017)

show that current tools usually only work well in

specific situations. As such, there is a clear need

for the development of all-round tools that work

well in every situation.

sc-eQTLGen: a federated single-
cell eQTL meta-analysis
consortium
Combining data of numerous groups increases

the resolution and power by which downstream

analyses, such as eQTL identification and per-

sonalized GRN reconstruction, can be per-

formed. Ideally, all scRNA-seq datasets should

be jointly analyzed at one centralized location.

This is particularly helpful to align each group’s

approaches for preprocessing, quality control

(QC) and cell type classification. However, it also

eases for instance benchmarking different statis-

tical and computational methods. While this con-

cept of ‘bringing the data to the algorithm’ is

preferred from an analytical perspective, it is

usually very difficult to do so when handling pri-

vacy-sensitive scRNA-seq and genotype data

from human individuals (Lloyd-Jones et al.,

2017; Yengo et al., 2018).

To overcome this, a federated approach

could be used instead, which has the aim of

‘bringing the algorithm to the data’: each partic-

ipating cohort will run the analyses themselves

(adhering to predefined criteria for preprocess-

ing and QC), and will only share summary statis-

tics that are not privacy-sensitive. Finally, one

site takes responsibility for performing the over-

all meta-analysis using these provided summary

statistics. For genome-wide association studies

this is a common strategy (Xue et al., 2018;

Luecken and Theis, 2019), and for eQTL studies

this procedure has been shown to be effective

as well (Võsa, 2018; Westra et al., 2013). In the

following sections we will expand on all steps

that have to be taken and what considerations

should be made when conducting such a feder-

ated approach for single-cell population genet-

ics studies (Figure 4).

Preprocessing, quality control

The first challenge of federated analyses is the

need to have a standardized protocol on how

each group should perform their analyses. While

such a protocol helps to ensure reproducibility

of the data analysis, it requires that all methods

and tools used have been rigorously tested

before. For scRNA-seq data such protocols are

still under development, while in other fields

such as that of genome-wide association studies,

standardized protocols have been available for

years.

Several initiatives are now being undertaken

to define best practices in the scRNA-seq field

(Tian et al., 2019). For example, Tian et al. have

compared 3913 combinations of different

scRNA-seq data analysis pipelines to define best

practices in the field (Price et al., 2006). Such

initiatives could provide the basis for defining

the optimal preprocessing, QC and cell type

classification steps for our consortium. Addition-

ally, in population-based scRNA-seq studies spe-

cial attention is required to account for ethnic

variation and population stratification (see

Box 1; Zeng and Gibson, 2019; Zhou and
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Stephens, 2012). In the event of presence of

relatedness in a given cohort, a genetic related-

ness matrix will be included in a mixed model to

account for the effect, such as in Zhou and Ste-

phens (2012); Abdelaal et al. (2019). Adjust-

ments of cohort-level genetic differences will be

made in the framework of meta-analysis using

summary statistics of the individual cohorts.

Once all protocols are established, we can har-

monize the preprocessing steps across all

groups in the consortium, such as the genome

build to use, alignment tool and sample demulti-

plexing strategy. Due to the cohort-specific

characteristics of each dataset, the QC steps

cannot be harmonized to the same extent as the

preprocessing. Nevertheless, the parameters

used for QC can be coordinated across all

groups, such as the cutoffs for number of

detected genes per cell and mitochondrial frac-

tion. Both the preprocessing and the QC do not

require exchanges of data and can be per-

formed independently.

Cell type classification

To facilitate the eQTL meta-analysis, we need to

ensure that the cell type annotations are consis-

tent across the different cohorts. To ensure

reproducibility of annotations across the differ-

ent cohorts, we will employ a classification

scheme to identify canonical cell types in each

cohort separately. Performing cell type labeling

using classification models does not only

increase the reproducibility, but also constitutes

a privacy-safe way of annotating cell types that

does not require the sharing of raw or processed

gene expression data.

Reference datasets with labeled cells, such as

those available from the Immune Cell Atlas

(http://immunecellatlas.net/) will be used to train

a classifier for automatic cell type classification in

each cohort. Our recent comparisons of single

cell classification methods showed that simple

linear models can yield good results

(Köhler et al., 2019; Wolf et al., 2019). Despite

the wide availability of reference datasets, we

expect that some cohorts will contain novel

unknown cell types or states that cannot be

identified using the trained classifier. For this,

we will use a classification scheme with a rejec-

tion option that can flag unknown cells whenever

the confidence in cell type assignment is low

(Köhler et al., 2019). The rejected cells can then

be manually annotated based on marker gene

expression.

To capitalize on the large number of cells and

individuals to be profiled in each cohort, an

unsupervised clustering approach will be used to

analyze the count matrix of each cohort, in paral-

lel to the supervised approach described earlier.

This unsupervised approach will serve two pur-

poses: (1) it will help annotate unassigned cells

by the classifier, and (2) it will allow refining the

resolution at which cells are annotated. Varying

levels of granularity of the clustering may reveal

cell types, as well as particular cell states or sub-

types. This level of granularity required to sepa-

rate particular cell states is not known a priori.

Therefore, novel unbiased approaches such as

partition based graph abstraction (Baran, 2018)

or metacells, i.e. disjoint, homogenous and

highly compact groups of cells that each exhibit

only sampling variance (Saelens et al., 2019),

provide a framework to reconcile discrete states

at different levels of granularity with continuous

cell states. These novel annotations can feed

back into an iterative online learning approach

of supervised classification models, where we

could refine cell type prediction models on the

available datasets. Once new datasets become

available within the consortium these can be

annotated based on current models and

updated labels can be used in the next round of

training. An important consideration here is to

preserve the hierarchy of cell annotations, so

that if new annotations are added to the classi-

fier, they are subclasses of existing classes. In

this way, any downstream analysis based on

older annotations remains valid at the older level

of granularity. This would yield a coherent

approach of labeling over time as the dataset

grows. For inference of continuous cell states,

we require data integration across multiple cen-

ters, as this would ensure the usage of a similar

pseudotime scale between individuals. Cur-

rently, ordering cells along pseudotime is chal-

lenging and best practices are being evaluated

(Price et al., 2006; Roshchupkin et al., 2016).

Ultimately, integrating all expression data in a

privacy-preserving manner, i.e. as gene expres-

sion matrices, will produce a dataset with

unprecedented numbers of cells. Such a

dataset allows discovery of novel rare cell types

or states using clustering approaches as

described above. This valuable dataset will then

be shared with the community through plat-

forms like the HCA data portal.

eQTL and co-expression QTL analysis

After cell type assignment, annotated gene

expression matrices can be returned to each of

the cohorts. Each cohort will then map genome-

wide cell type-specific cis- and trans-eQTLs by
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combining the cell type-specific gene expression

matrices with the privacy-sensitive bulk-assessed

genotype information using appropriate statisti-

cal models. The resulting summary-statistics can

then be safely shared without privacy-issues.

One challenge with federated eQTL analyses

is that the amount of summary statistics that

need to be shared is substantial. For instance,

when assuming there are 10 cohorts and for

each of these cohorts cells have been assigned

to 10 major cell types, a genome-wide trans-

eQTL analysis (testing the effect of 10,000,000

common SNPs on 20,000 protein coding genes

for each of the 10 cell types), where only the cor-

relation for a SNP-gene combination is stored as

a 64 bit double value, would require each cohort

to exchange 10,000,0000 � 20,000�10 x eight

bytes = 146 terabytes of data. To overcome this

problem, several frameworks have recently been

proposed that take advantage of the fact that

these summary statistics matrices reflect the

product of a normalized genotype matrix and a

normalized gene expression matrix. For

instance, the HASE framework (Silvester et al.,

2018) recodes genotype and phenotype (i.e.

gene expression) data, along with a covariate

matrix, in such a way that privacy is ensured and

only those matrices, making up only a few giga-

bytes of data, need to be exchanged.

While protocols exist that explain how eQTL

data needs to be processed, harmonized and

QCed to perform a federated eQTL analysis

(e.g. eQTLGen used the eQTLMappingPipeline

[Võsa, 2018]), not all steps can be completed

immediately: for instance, to identify effects of

polygenic risk scores on gene expression levels

(ePRS), gene expression data first needs to be

corrected for cis-eQTL effects (Võsa, 2018).

Therefore, the full cis-eQTL meta-analysis has to

precede calculations of ePRSs. Such iterations

take considerable time and are also inconve-

nient, since it requires a lot of coordination with

each of the participating cohorts. For sc-eQTL-

Gen we will first conduct a federated, cell type-

specific cis- and trans-eQTL analysis. After this is

completed, we will proceed with a co-expression

QTL (co-eQTL) analysis. This analysis will be lim-

ited to a predefined set of genes or SNPs, such

as the SNP-gene combinations extracted from

the identified cis- and trans-eQTLs or the SNPs

located within open chromatin regions that

show high interindividual variability, as otherwise

trillions of statistical tests have to be conducted

(e.g. in van der Wijst et al., 2018a: 7975 vari-

able genes * 7975 variable genes * 4,027,501

SNPs (MAF �0.1) = 256,151,580,788,125 tests).

Finally, all these results will be combined to

reconstruct personalized, cell type-specific

GRNs. This multi-step approach will require us

to go back and forth between the different

cohorts at least twice. Therefore, easy-to-use

analysis scripts that can be run efficiently on dif-

ferent high-performance cluster infrastructures

are essential to limit the amount of hands-on

time.

Gene regulatory network reconstruction

Finally, the scRNA-seq data will be used to

reconstruct GRNs. Two strategies will be

explored in the context of sc-eQTLGen. The first

approach makes use of the large number of bulk

RNA-seq datasets for specific cell types that are

available in public RNA-seq repositories

(Leinonen et al., 2011; Langfelder and Hor-

vath, 2008). Using this publicly available bulk

RNA-seq data, reference co-expression networks

will be constructed using cell type-specific data.

Subsequently, scRNA-seq data will be used to

implement directionality and specify the connec-

tions in the network that are affected by specific

contexts (La Manno et al., 2018). The second

approach will directly use scRNA-seq data to

build cell type-specific GRNs, thereby enabling

to immediately take the context-specificity into

account. However, the number of genes that can

confidently be taken into account by this second

approach may be lower due to the sparsity of

scRNA-seq data. For both strategies, we will

make use of prior information (e.g. ATAC-seq

data [Qin et al., 2014], TF binding information),

dynamic information (e.g. information extracted

from time series data (Ocone et al., 2015),

pseudotime (Pratapa et al., 2019) in combina-

tion with RNA velocity (Qiu, 2018; Fiers et al.,

2018) and experimental validation (e.g. pertur-

bation experiments [Gate, 2019; Aibar et al.,

2017]) to go from a co-expression to a gene

regulatory network. Before implementation, the

additional benefit of using such information,

extracted from either bulk or single-cell data

(Aibar et al., 2017; Andrews and Hemberg,

2018), and using gene expression imputation

(Aibar et al., 2017; Iacono et al., 2019) will be

assessed. We expect that the optimal strategy

will depend on the amount of available bulk

data and prior information that is available for a

particular cell type. We will extract this prior

information from existing large-scale efforts,

such as ENCODE (Wang et al., 2018) and BLUE-

PRINT (Chen et al., 2016). Additionally, we will

make use of single-cell information beyond gene

expression levels that is or will be collected
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within subsets of cohorts within the consortium,

including information on chromatin accessibility

(Lareau et al., 2019; Hayashi et al., 2018) and

expression of enhancers RNAs (Kouno et al.,

2019; Lin et al., 2016).

Additionally, recent advances have made it

possible to measure multi-omics data from the

very same cell (Moignard et al., 2015;

Sverchkov and Craven, 2017). However, cur-

rent approaches are very time- and cost-con-

suming, and therefore limited to only a few

hundred cells. As such, currently, this type of sin-

gle-cell multi-omics data is of limited use for

reconstructing personalized GRNs. Nevertheless,

as single-cell multi-omics approaches mature,

this combined information of gene expression

and additional data layers has the potential to

improve GRN inference beyond correlating sep-

arate omics layers and allows for direct measure-

ments instead.

Once reconstructed, these GRNs can be used

to determine how for example, genetic differen-

ces or disease status change the architecture of

the network. These networks consist of nodes,

representing genes, that are connected through

edges, representing the relationship between

genes. The context-specific changes in the net-

work can be identified on different levels, such

as on the level of individual edges or nodes,

topological properties of individual nodes, such

as their connectivity (degree) or module mem-

bership (GTEx Consortium, 2015), subnetwork

properties, such as the existence and size of

modules, or global topological properties, such

as degree distribution (Figure 3). Comparing

topological features such as node degree to

genotypes may identify polymorphisms altering

the function of master regulators (highly con-

nected ‘hub’ genes). Interestingly, implementa-

tion of network information was shown to be

complementary to the identification of eQTLs;

using this network information, novel SNPs were

identified that could not be identified through

single- or multi-tissue eQTL analyses of GTEx

(Clark et al., 2018). This clearly shows the com-

plementarity of both eQTL and network-based

analyses for understanding the impact of genetic

variation.

Ultimately, CRISPR perturbations will be cou-

pled to scRNA-seq to validate or improve recon-

structed GRNs. To optimize the number of

perturbations required for extracting the most

useful information from such experiments, an

iterative approach will be taken that feeds back

the experimental data to the GRN. This

approach will make use of active machine

learning to select those perturbations that are

required to further improve the model (Ud-

Dean and Gunawan, 2016; Aguet, 2019).

These well validated, personalized and context-

specific GRNs will provide us with a better

understanding of disease and can be the starting

point of applying this knowledge for precision

medicine in the future.

Future clinical implications
The goal of the sc-eQTLGen consortium is to

identify how genetic and environmental factors

interact to affect gene expression in the context

of both health and disease. With ever increasing

sample sizes, eQTLs have now been detected

for almost every gene (GTEx Consortium, 2017;

Võsa, 2018). It is likely this will become even

more pronounced through our initiative in which

we will study many different cell types and con-

texts, and pose the question to what extent

extensive eQTL maps will help to better under-

stand disease. For cis-eQTLs this will not be

straightforward: although it is known that dis-

ease-associated SNPs are enriched for showing

cis-eQTL effects, this enrichment is quite modest

(Zhernakova et al., 2017; Liu et al., 2019). It is

therefore not sufficient to simply look up and

catalogue which disease-associated SNPs show

which cell type- and context-specific eQTL

effects, since this can lead to incorrect infer-

ences on the likely causal gene(s) per locus

(Giambartolomei et al., 2014). To partly over-

come this, several colocalization and Mendelian

randomization approaches have been published

that help to better infer likely causal genes

(Gusev et al., 2016; Porcu et al., 2019;

Mancuso et al., 2019; Kemp, 2019). Once

these methods are able to account for multiple

cell type- and context-dependent, causal regula-

tory variants per locus, we expect increased sta-

tistical power to prioritize causal genes.

Additionally, we envision that such methods in

conjunction with our cell type- and context-spe-

cific eQTL maps will help to determine which

genetic variants have pleiotropic effects, affect-

ing the expression levels of several genes in mul-

tiple cell types and conditions.

Nevertheless, we expect that most statistical

power to pinpoint causal genes will be gained

through the other goals of the sc-eQTLGen con-

sortium: the reconstruction of cell type-specific

gene regulatory networks (expected by the end

of 2022), the mapping of cell type-specific trans-

eQTLs and co-expression QTLs (expected by the

end of 2021). These efforts will enable us to
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ascertain how the prioritized cis-eQTL genes

(expected by the end of 2021) work together.

Moreover, it permits us to study the effect of all

disease-associated SNPs of a particular disease

in a gene network structure, which helps priori-

tizing the key disrupted genes and pathways in

that disease. In line with recent findings of the

eQTLGen consortium that applied eQTL analysis

in 31,684 bulk samples, we expect that the

(majority of) causal genes within disease-associ-

ated loci will converge onto only a few key path-

ways per disease.

One strategy to identify those key driver

genes is to consider all associated variants for a

specific disease jointly, and ascertain whether

most of these variants show (small) downstream

effects on an overlapping set of downstream

genes. We recently showed proof-of-concept in

eQTLGen that this holds for independent sys-

temic lupus erythematosus (SLE)-associated

SNPs: many of these variants show downstream

trans-eQTL effects on genes involved in the type

I interferon pathway (Võsa, 2018), indicating an

important role for this pathway in SLE develop-

ment. Recently, success has been reported of a

type I interferon-targeted therapy in SLE

patients (Astle et al., 2016), highlighting the

value of using trans-eQTLs for identifying key

genes and pathways that are amenable for phar-

maceutical intervention. We expect that our sin-

gle-cell eQTL initiative will aid such analyses

substantially: by performing large-scale eQTL

mapping in specific cell types that are in a spe-

cific cellular state or are exposed to a particular

stimulus, we will be able to more accurately

determine where and when these downstream

effects manifest. Moreover, single-cell studies

will also help to overcome the problem associ-

ated with cell type composition differences

across individuals in bulk-based eQTL studies:

many variants exist that affect the proportion of

specific cell types that for instance circulate in

blood (Vieira Braga et al., 2019). If this is not

fully accounted for, trans-eQTLs will be identi-

fied in genes that are specifically expressed in

such cell types in bulk analyses. Single-cell stud-

ies allow us to distinguish between effects of

genetic variants on cell type composition and

effects on intracellular gene expression levels.

Therefore, we expect scRNA-seq data will be

vital to gain insight into the downstream conse-

quences of disease-associated genetic variants,

and to identify the key pathways and genes that

drive disease.

Altogether, we expect these approaches will

provide us with the information required to

reveal new targets for disease prevention and

treatment (Figure 5). For example, a novel sub-

set of tissue-resident memory T cells has recently

been identified in the setting of asthma using

scRNA-seq (Schork, 2015). This study also

showed that mostly T helper 2 cells are dominat-

ing the cell-cell interactions in the asthmatic air-

way wall, whereas in healthy controls mostly

epithelial and mesenchymal cell types are com-

municating with each other. Integration of the

gene expression of this asthma-associated cell

type with asthma-associated genetic risk variants

would further increase our understanding of the

disease and such knowledge would greatly

accelerate the development of personalized/pre-

cision treatments in the future. It is this informa-

tion about how genes interact differently

between individuals as a function of their genetic

predisposition that will be obtained through the

results of our consortium (Figure 5). One of the

major benefits of such personalized treatments

is in prescribing the correct drug based on the

individual (mechanism that underlies) susceptibil-

ity to disease. Currently only between 4% and

25% of the people respond to commonly pre-

scribed drugs (Mukherjee and Topol, 2002),

showing the need to better predict drug respon-

siveness and thereby avoid unnecessary expo-

sure to side-effects.

This high interindividual variability in drug

response is a consequence of genetic and envi-

ronmental exposure differences between indi-

viduals, which can result in differences in drug

metabolism, absorption and excretion (pharma-

codynamics) (Johnson et al., 2012). For exam-

ple, a variant in the CYP2C19 gene changes the

response to the anti-blood clotting drug clopi-

dogrel. The CYP2C19 gene encodes for an

enzyme in the bioactivation of the drug.

CYP2C19 poor metabolizers were shown to

exhibit higher cardiovascular event rates after

acute coronary syndrome, or percutaneous coro-

nary intervention, as compared to patients with

normal CYP2C19 function (Tigchelaar et al.,

2015).

While previous efforts have mainly focused on

pharmacodynamic variation, recent single-cell

analyses have revealed that gene-gene interac-

tions can also be changed by genetic (van der

Wijst et al., 2018a) and environmental variation

(Cuomo et al., 2020). For example, two closely

related SNPs (linkage disequilibrium R2 = 0.92)

affected both gene-gene interactions (RPS26

and RPL21) (van der Wijst et al., 2018a) and

gene-environment interactions (RPS26 and the

respiratory status of the cell) (Cuomo et al.,
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2020). This shows that gene regulatory network

changes may underlie part of the interindividual

variation in drug responsiveness. However, such

effects have never been studied in detail before

and the extent to which such interactions affect

drug responsiveness are unknown. The sc-eQTL-

Gen consortium is able to study both how gene-

gene interactions and gene-environment interac-

tions are affected by genetic variation, giving

insight into where and when they occur. Impor-

tantly, the applied methodologies will be easily

transferable to single-cell data that is collected

in other cell types and disease context through

other large-scale efforts (Regev et al., 2017)

(https://lifetime-fetflagship.eu). Moreover, sev-

eral partners within our consortium have gener-

ated scRNA-seq data in cohorts with extensive

information on individuals’ health records and

drug usage (e.g. the Lifelines Deep cohort [Hea-

ton, 2019] and the OneK1K cohort). With such

information, we will be able to validate the link

between changes in the gene regulatory net-

work and the drug responsiveness of an individ-

ual. This allows us to determine the predictive

value of gene networks for determining respon-

siveness of specific drugs and the applicability of

such networks in precision medicine.

As such, the sc-eQTLGen consortium will not

only increase our basic knowledge about the

contribution of genetics in gene expression and

its regulation, but will also be a valuable

resource for drug target identification and vali-

dation. To increase the impact of this work, all

code, guidelines and summary statistics (includ-

ing all non-significant results) will become freely

available to the community through the sc-

eQTLGen website (https://eqtlgen.org/single-

cell.html). For any additional information, please

visit the contact page (https://eqtlgen.org/con-

tact.html).
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Clarke L, Cleland I, Harrison PW, Jayathilaka S, Kay S,
Keane T, Leinonen R, Liu X, Martı́nez-Villacorta J,
Menchi M, Reddy K, Pakseresht N, Rajan J, Rossello
M, Smirnov D, Toribio AL, et al. 2018. The European
Nucleotide Archive in 2017. Nucleic Acids Research
46:D36–D40. DOI: https://doi.org/10.1093/nar/
gkx1125, PMID: 29140475
Simpson EH. 1951. The interpretation of interaction in
contingency tables. Journal of the Royal Statistical
Society: Series B 13:238–241. DOI: https://doi.org/10.
1111/j.2517-6161.1951.tb00088.x
Sirugo G, Williams SM, Tishkoff SA. 2019. The missing
diversity in human genetic studies. Cell 177:26–31.
DOI: https://doi.org/10.1016/j.cell.2019.02.048,
PMID: 30901543
Skinnider MA, Squair JW, Foster LJ. 2019. Evaluating
measures of association for single-cell transcriptomics.
Nature Methods 16:381–386. DOI: https://doi.org/10.
1038/s41592-019-0372-4
Smillie CS, Biton M, Ordovas-Montanes J, Sullivan KM,
Burgin G, Graham DB, Herbst RH, Rogel N, Slyper M,
Waldman J, Sud M, Andrews E, Velonias G, Haber AL,
Jagadeesh K, Vickovic S, Yao J, Stevens C, Dionne D,
Nguyen LT, et al. 2019. Intra- and inter-cellular
rewiring of the human colon during ulcerative colitis.
Cell 178:714–730. DOI: https://doi.org/10.1016/j.cell.
2019.06.029, PMID: 31348891
Stoeckius M, Hafemeister C, Stephenson W, Houck-
Loomis B, Chattopadhyay PK, Swerdlow H, Satija R,
Smibert P. 2017. Simultaneous epitope and
transcriptome measurement in single cells. Nature

Methods 14:865–868. DOI: https://doi.org/10.1038/
nmeth.4380, PMID: 28759029
Stranger BE, Forrest MS, Clark AG, Minichiello MJ,
Deutsch S, Lyle R, Hunt S, Kahl B, Antonarakis SE,
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López C, Jonker MR, Affleck K, Palit S, Strzelecka PM,
Firth HV, Mahbubani KT, et al. 2019. A cellular census
of human lungs identifies novel cell states in health
and in asthma. Nature Medicine 25:1153–1163.
DOI: https://doi.org/10.1038/s41591-019-0468-5,
PMID: 31209336

van der Wijst et al. eLife 2020;9:e52155. DOI: https://doi.org/10.7554/eLife.52155 20 of 21

Feature Article Science Forum The single-cell eQTLGen consortium

https://doi.org/10.1371/journal.pbio.0040309
https://doi.org/10.1371/journal.pbio.0040309
http://www.ncbi.nlm.nih.gov/pubmed/17048983
https://doi.org/10.7554/eLife.27041
https://doi.org/10.7554/eLife.27041
http://www.ncbi.nlm.nih.gov/pubmed/29206104
https://doi.org/10.1038/srep36076
https://doi.org/10.1038/srep36076
http://www.ncbi.nlm.nih.gov/pubmed/27782180
https://doi.org/10.1038/s41587-019-0071-9
https://doi.org/10.1038/s41587-019-0071-9
http://www.ncbi.nlm.nih.gov/pubmed/30936559
https://doi.org/10.1371/journal.pgen.1008045
http://www.ncbi.nlm.nih.gov/pubmed/31002671
https://doi.org/10.1038/520609a
https://doi.org/10.1038/520609a
http://www.ncbi.nlm.nih.gov/pubmed/25925459
https://doi.org/10.1093/nar/gkw1160
http://www.ncbi.nlm.nih.gov/pubmed/27899626
http://www.ncbi.nlm.nih.gov/pubmed/27899626
https://doi.org/10.1093/nar/gkx1125
https://doi.org/10.1093/nar/gkx1125
http://www.ncbi.nlm.nih.gov/pubmed/29140475
https://doi.org/10.1111/j.2517-6161.1951.tb00088.x
https://doi.org/10.1111/j.2517-6161.1951.tb00088.x
https://doi.org/10.1016/j.cell.2019.02.048
http://www.ncbi.nlm.nih.gov/pubmed/30901543
https://doi.org/10.1038/s41592-019-0372-4
https://doi.org/10.1038/s41592-019-0372-4
https://doi.org/10.1016/j.cell.2019.06.029
https://doi.org/10.1016/j.cell.2019.06.029
http://www.ncbi.nlm.nih.gov/pubmed/31348891
https://doi.org/10.1038/nmeth.4380
https://doi.org/10.1038/nmeth.4380
http://www.ncbi.nlm.nih.gov/pubmed/28759029
https://doi.org/10.1371/journal.pgen.0010078
https://doi.org/10.1371/journal.pgen.0010078
http://www.ncbi.nlm.nih.gov/pubmed/16362079
https://doi.org/10.1038/ng2142
https://doi.org/10.1038/ng2142
http://www.ncbi.nlm.nih.gov/pubmed/17873874
https://doi.org/10.1371/journal.pcbi.1005466
https://doi.org/10.1371/journal.pcbi.1005466
http://www.ncbi.nlm.nih.gov/pubmed/28570593
https://doi.org/10.1038/s41592-019-0425-8
http://www.ncbi.nlm.nih.gov/pubmed/31133762
https://doi.org/10.1136/bmjopen-2014-006772
http://www.ncbi.nlm.nih.gov/pubmed/26319774
https://doi.org/10.1093/bioinformatics/btv672
http://www.ncbi.nlm.nih.gov/pubmed/26568633
https://doi.org/10.1038/s41588-018-0089-9
https://doi.org/10.1038/s41588-018-0089-9
http://www.ncbi.nlm.nih.gov/pubmed/29610479
https://doi.org/10.1186/s13073-018-0608-4
http://www.ncbi.nlm.nih.gov/pubmed/30567569
https://doi.org/10.1093/bioinformatics/17.suppl_1.S279
https://doi.org/10.1093/bioinformatics/17.suppl_1.S279
http://www.ncbi.nlm.nih.gov/pubmed/11473019
https://doi.org/10.1038/s41591-019-0468-5
http://www.ncbi.nlm.nih.gov/pubmed/31209336
https://doi.org/10.7554/eLife.52155


Villani AC, Satija R, Reynolds G, Sarkizova S, Shekhar
K, Fletcher J, Griesbeck M, Butler A, Zheng S, Lazo S,
Jardine L, Dixon D, Stephenson E, Nilsson E,
Grundberg I, McDonald D, Filby A, Li W, De Jager PL,
Rozenblatt-Rosen O, et al. 2017. Single-cell RNA-seq
reveals new types of human blood dendritic cells,
monocytes, and progenitors. Science 356:eaah4573.
DOI: https://doi.org/10.1126/science.aah4573,
PMID: 28428369
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