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Abstract
Epstein-Barr virus (EBV) is a model of herpesvirus latency and epigenetic changes. The virus preferentially infects human B-
lymphocytes (and also other cell types) but does not turn them straight into virus factories. Instead, it establishes a strictly latent
infection in them and concomitantly induces the activation and proliferation of infected B cells. How the virus establishes latency
in its target cells is only partially understood, but its latent state has been studied intensively by many. During latency, several
copies of the viral genome are maintained as minichromosomes in the nucleus. In latently infected cells, most viral genes are
epigenetically repressed by cellular chromatin constituents and DNA methylation, but certain EBV genes are spared and remain
expressed to support the latent state of the virus in its host cell. Latency is not a dead end, but the virus can escape from this state
and reactivate. Reactivation is a coordinated process that requires the removal of repressive chromatin components and a gain in
accessibility for viral and cellular factors and machines to support the entire transcriptional program of EBV’s ensuing lytic
phase. We have a detailed picture of the initiating events of EBV’s lytic phase, which are orchestrated by a single viral protein –
BZLF1. Its induced expression can lead to the expression of all lytic viral proteins, but initially it fosters the non-licensed
amplification of viral DNA that is incorporated into preformed capsids. In the virions, the viral DNA is free of histones and
lacks methylated cytosine residues which are lost during lytic DNA amplification. This review provides an overview of EBV’s
dynamic epigenetic changes, which are an integral part of its ingenious lifestyle in human host cells.
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Introduction

Epstein-Barr virus (EBV) is a human herpesvirus with a DNA
genome of about 165 kbps [11]. Many known strategies of
EBV mimic cellular processes and principles as the virus has
coevolved with its human host. EBV has copied central mech-
anisms of the cell, e.g., receptor signaling, DNA replication,
and gene transcription, for its own success. Thus, the viral
model is a window to the cell, rich in biology and an excellent
source to study epigenetic principles of key importance in
metazoan cells.

EBV is also a human tumor virus [5]. It is associated with
and contributes to several human tumor entities. Among them
are different types of B cell lymphoma (Hodgkin’s disease,
Burkitt’s lymphoma, non-Hodgkin’s lymphomas), cancers
(nasopharyngeal cancer, gastric cancers), and other malignan-
cies. More than 90% of the world population is infected with
EBV for a lifetime, whereas tumor incidence is relatively low,
i.e., in the order of 200,000 annually [20, 97]. Certain cofac-
tors contribute to tumor formation, but they are mostly un-
known. In all cases, EBV establishes a latent infection in the
tumor cells, which express different sets of viral genes, termed
viral latency programs.

In vitro, EBV preferentially infects nonproliferating,
quiescent human B-lymphocytes, activates them, induces
their indefinite proliferation in vitro, and establishes a
strictly latent infection in them. In viral particles, the large
EBV DNA is epigenetically naïve, i.e., lacks associated
histones and is free of methylated CpG dinucleotides.
Upon infection, the viral DNA is delivered to EBV’s tar-
get cells and maintained as extrachromosomal plasmid
copies in the nucleus. Here, the viral DNA acquires nu-
cleosomes including histones with mostly repressive
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marks and finally a very high degree of CpG methylation.
When and how viral DNA acquires cellular chromatin and
its individual components and which cellular factors drive
this process are largely unknown.

In the so-called pre-latent phase of viral infection [53] dur-
ing the first 8 days (Fig. 1) when EBV reprograms the resting
B-lymphocytes into activated and proliferating B blasts [74],
viral transcription is pervasive, which leads to the expression
of many viral genes. In contrast, in established latently infect-
ed cells, a clearly defined minimal set of very few viral genes
is active. It is very likely that the deposition of cellular chro-
matin onto viral DNA is an essential step in controlling the
program of viral transcription of the pre-latent phase ensuring
the survival and continuous proliferation of EBV-infected
cells long term. As a result, so-called lymphoblastoid cell lines
(LCLs) emerge in which EBV establishes a stable latent
infection.

Latent infection is a paradigm of all herpesviruses, but
EBV excels at latency, its preferred lifestyle. In healthy
EBV-positive individuals, B-lymphocytes, in particular a min-
ute fraction of long-lived memory B cells (one in 104 to 106

cells), form the viral reservoir of latent infection. Viral latency
has been studied in memory B cells ex vivo, tumor cells ob-
tained from biopsies, and established tumor cell lines as well
as in LCLs. LCLs and established tumor cell lines are a rich
source to study all aspects of viral latency and have contrib-
uted much to understand the molecular mechanisms of viral
latency. Certain cell lines such as the Burkitt’s lymphoma cell
lines, Akata, Raji, and P3HR1 [48, 85, 103], have also been
instrumental to study EBV’s escape from latency ([3, 31, 69,
86, 91]; for a selection of original works) and to identify the
viral switch gene BZLF1 [21, 102] that can turn latently EBV-
infected cells into virus factories that release viral progeny.

The key to EBV’s success in infecting and persisting in its
host lies in its ingenious tripartite epigenetic life cycle (Fig. 1)
[45, 117]. We have learned that the virus cannot induce virus de
novo synthesis upon cellular infection but enters its so-called
pre-latent phase. The virus reprograms the infected B cells,
activates them to grow in size, and drives them into several
rounds of intense proliferation until proliferation decelerates
to a doubling time of about 30 h. In these cells, which are
now in the latent phase, no virus is synthesized, but a small
subset of viral genes is expressed, and several copies of the viral
genome are maintained as extrachromosomal plasmids. Upon
induction of EBV’s third and lytic phase, the full set of about 80
viral genes is expressed. The viral genomic DNA replicates
autonomously, and viral progeny is synthesized. Infectious viral
particles are released and spread horizontally to other permis-
sive cells or are transmitted to other individuals.

Epigenetic principles govern the different expression pat-
terns linked to the three phases of EBV’s life cycle (Fig. 1).
The virus has evolved to take advantage of the host cell’s

epigenetic machinery to first establish a stable latent infection
and then to use a smart principle to escape from it.

EBV’s virion DNA is epigenetically naïve

In viral particles, the large EBV DNA is epigenetically naïve,
i.e., it lacks associated histones [54] and is free of methylated
CpG dinucleotides ([60], Supplementary Fig. S3 in ref. [57]).
This is a surprising finding but fully in line with other herpes
viruses [39]. We will see later how EBV achieves this state,
which is reminiscent of epigenetic events in sperm DNA dur-
ing fertilization.

Sperm DNA is mostly free of nucleosomes, and compared
with somatic cell DNA, the levels of histone retention are 1
and 10% in mouse and man, respectively [12]. Shortly after
fertilization and prior to DNA replication or transcription in
the fertilized egg, the histone variant H3.3 is incorporated by
the histone chaperone HIRA. This step precedes the genome-
wide demethylation that takes place in the male pronucleus.
Prior to DNA replication, H3 and H4 histones in paternal
DNA, which are newly acquired from the oocyte, are acety-
lated, and H3 histones gain mono-methyl marks at K4, K9,
and K27. Only after the first round of DNA replication, pater-
nal DNA acquires tri-methylation of some of them, notably
H3K4me3, and H3K27me3 [92].

Why could this information be important for the first steps
in EBV infection? It seems plausible that certain aspects are
recapitulated by EBV upon infection of primary B-lympho-
cytes. For example, the incoming EBV DNA rapidly acquires
nucleosomes in the infected cell prior to its first round of DNA
replication and cell division. The molecular mechanisms are
unknown, but the viral model offers an attractive, perhaps
even unique, opportunity to investigate de novo chromatin
assembly and regulation in a tractable system and in mamma-
lian cells. Parallels in viral DNA in the initial phase of infec-
tion and in sperm DNA in zygotes with regard to de novo
establishment of chromatin suggest that both fundamental
processes might be mechanistically and biologically similar.

Acquisition of cellular chromatin components
upon infection

Little is known how EBV DNA acquires chromatin constitu-
ents upon de novo infection. Presumably, the earliest action is
the recruitment of histones supported by histone chaperones
such as HIRA, DAXX, CAF1, ASF1, DEK, and several
others, which can manage transport, location and deposition,
mobilization, and replacement of nucleosomes. To our knowl-
edge, close to nothing is known about the timing and dynam-
ics of this step during EBV infection. We only know from
preliminary experiments that the landscape of nucleosomes
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on EBV DNA is completed in B-lymphocytes within 48 h
post infection (Mrozek-Gorska et al., unpublished). This ob-
servation suggests that nucleosome assembly is replication
independent and occurs in activated cells during G1 phase

and long before the onset of EBV-induced cellular DNA rep-
lication [74]. Based on this assumption, it is likely that
replication-independent histone chaperones are predominant-
ly involved in this early step of chromatinization.

Fig. 1 The tripartite life cycle of EBV. Infection and pre-latent phase
(light blue segment). Upon infection, a virion releases it epigenetically
naïve linear DNA (red) into its host cell. The viral DNA circularizes and
makes its way into the nucleus (light green). As the incoming DNA is not
epigenetically repressed, many viral proteins (blue triangles) are
expressed at low levels initially. During this phase, the host cell grows
in size and starts to proliferate (not shown). After a couple of days,
histones and nucleosomes are positioned, and mostly repressive
epigenetic marks are established on the viral, plasmid-like
minichromosome. Latent phase (light yellow segment). EBV expresses
only few latent EBV proteins to maintain and preserve its epigenetically
repressed DNA in latently infected cells, and EBV DNA acquires a very
high level of CpG methylation (not shown). Additionally, this strategy
avoids the detection of viral antigens by the immune system. In the
nucleus, several copies of viral repressed EBV minichromosomes

accumulate via an unknown mechanism. Latent phase and virion
production (light red segment). Upon reactivation of the virus’ lytic
phase, EBV starts to express lytic viral proteins, repressed viral
chromatin opens up, and replication compartments (turquoise ovals)
start to form. The full cascade of viral proteins is synthesized
eventually, which counteracts the immune response of the host
organism, supports lytic amplification of viral DNA, and provides
structural proteins such as capsid components, tegument proteins, and
glycoproteins. Replication compartments form, grow in dimension, and
fuse during the massive replication of viral DNA. The newly synthesized
viral DNA is packaged into viral capsid structures within the inner
replication compartment (green area within the replication
compartment). The newly replicated viral DNA is free of histones and
lacks methylated CpG dinucleotides such that assembled virions contain
epigenetically naïve viral DNA ready to infect new target cells.
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It is enigmatic what the initial steps of histone deposition
on EBV DNA are and where the histones come from in the
very early phase of infection. Canonical histones are produced
only during the DNA synthesis (S) phase of the cell cycle,
suggesting that the available histones might be noncanonical
histone variants such as H3.3 or histones that belong to the
small pool of free but chaperone-complexed, stored histones.
Alternatively, histones are recycled in this early phase of viral
infection, because the expression of two viral key activators,
EBNA2 and EBNA-LP [58, 113], within the first 48 h of
infection [74] induces global cellular gene expression (ibid.)
that likely evicts nucleosomes from cellular chromatin. They
might be available to be positioned onto the incoming naïve
EBV DNA.

Clearly, histone chaperones meet the demand of de novo
histone deposition to support diverse nuclear processes in-
cluding the masking and gap-filling of EBV’s naked genomic
DNA. Among the many potential histone chaperones [47],
HIRA, histone regulation A, a chaperone for the histone var-
iant H3.3, seems to be an interesting candidate as it is involved
in replication-independent histone deposition (together with
DAXX and its co-chaperone ATRX). The HIRA complex
has also been reported to act as gap filler strongly suggesting
that it can interact with naked DNA [90]. In addition, HIRA is
required for male pronucleus formation, which is inhibited
due to a lack of nucleosome assembly in the sperm genome
in the absence of HIRA [68]. HIRA is the only H3.3 chaper-
one that is incorporated broadly into decondensed sperm
DNA at fertilization [68], which seems to be in line with the
acquisition of a nucleosomal structure in EBV DNA.

Solid data are available for DAXX, also a chaperone for the
histone variant H3.3, and its role in EBV infection. DAXX is
bound by BNRF1, a tegument constituent and a member of a
class of related proteins found in gamma herpesviruses [109]
to promote selective viral gene expression [108, 110]. The
binding of BNRF1 displaces the interaction of DAXX with
the SWI/SNF-like chromatin remodeler ATRX [110]. ATRX
directs DAXX to heterochromatin loci as ATRX specifically
recognizes H3K9me3, a suppressive histone mark (see refer-
ences in [47]). Surprisingly, virion-contained BNRF1 protein
reduces the deposition of histone H3.3 onto viral DNA by
DAXX and enhances viral gene expression early during
EBV infection [50, 108]. This finding is interpreted to mean
that BNRF1 prevents the deposition of histones and the for-
mation of nucleosomes exclusively at promoters of EBV’s
latent genes that support B cell activation and transformation
long term. It thus appears as if DAXX acts downstream after
the initial formation of nucleosomes on EBV DNA to prevent
epigenetic repression of critical latent genes of EBV.

Viral transcription appears to be pervasive early after infec-
tion in the pre-latent phase, because transcripts of lytic genes
are found expressed although mostly at low levels. Among
them is BZLF1 [57, 114] but also many others as revealed in

a global transcriptomic approach ([74], see also the web tool
http://ebv-b.helmholtz-muenchen.de/). It thus seems that the
epigenetically naïve EBV DNA, which lacks histones and
nucleosomes and is free of methylated CpG dinucleotides,
serves as a permissive template for the cellular transcription
machinery. This promiscuous state of transcription comes to
an end presumably when EBV DNA acquires cellular
nucleosomes, which restricts DNA accessibility, similar to
other members of the herpesvirus family [2].

Stable viral latency

We know much about the epigenetic state of latent EBV
infection in B cells. As a rule, several copies of EBV’s
genomic DNA are maintained as stable, extrachromosom-
al plasmids in latently infected cells ([26] for a recent
review). The genome copies adopt a genuine epigenetic
signature that is accomplished by the host cell. Viral la-
tency is ensured by a strong epigenetic repression of lytic
genes, while active latent viral genes are spared depend-
ing on the cell type. Repression is implemented and main-
tained by CpG methylation of viral DNA, by high-density
packaging of nucleosomes, and by Polycomb group pro-
teins that establish and maintain the key repressive mod-
ification H3K27me3 on EBV chromatin [116]. The re-
pressive H3K9me3 histone mark is also detectable at
low levels, but in contrast to H3K27me3, H3K9me3 is
not removed upon viral reactivation suggesting that this
mark is not central to maintaining viral repressive chro-
matin (see the chapter “Lytic reactivation” below). The
epigenetic signature of viral chromatin has been charac-
terized and documented [7, 89, 106, 116].

CpG methylation of viral DNA is another layer of EBV’s
epigenetic regulation during latency. Surprisingly, the acqui-
sition of CpG methylation is a very slow process in newly
infected B-lymphocytes. Genomic EBV DNA in virions is
virtually free of 5′-methylcytidine nucleotides, and CpG-
methylated residues are not detectable immediately after in-
fection (Fig. S3 in [57]). The viral DNA slowly acquires cy-
tidine methyl groups, a process that takes weeks to completion
[57, 60]. The slow kinetics suggest that CpG methylation of
EBV DNA is not essential to downregulate lytic viral gene
expression during the pre-latent phase of infection but might
contribute to stabilize lytic gene repression long term. Clearly,
EBV DNA reaches a very high level of CpG methylation,
eventually, with a methylation rate of close to 100% in vitro
in LCLs (Supplementary Fig. S1B and Table S1 in [116]) and
in latently infected memory B cells in vivo (Fig. 1E in [116]).
Most likely, de novomethyltransferases such as DNMT3a and
b and the key maintenance methyltransferase DNMT1 intro-
duce and maintain CpG methylation in genomic EBV DNA,
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respectively. How these enzymes are regulated during infec-
tion and how they get access to viral DNA are elusive.

Recent reports have studied the genomic organization of
latent EBV genomes. The chromatin in different EBV cell
lines and latency types differs [101], and also the three dimen-
sional architecture of the EBV genome varies in cells in which
the virus establishes different latency programs [7, 105]. The
three-dimensional adjustment of the chromatin fiber is an im-
portant mechanism of gene regulation. Looping and bending
of DNA and connecting or insulating cis-acting elements are
also main principles of enhancer regulation. The ring-shaped
cohesin complex is involved in the regulation of chromatin
architecture in mammalian cells (summarized in [112]). The
DNA-binding protein CTCF, the mediator complex, and the
protein complex cohesin are central factors involved in these
processes. Mediator and cohesin can connect enhancers to
certain promoters over a long distance leading to their tran-
scriptional activation [55]. Vice versa, CTCF and cohesion
can insulate a promoter from an enhancer element promoting
gene silencing [80, 115]. Cohesin sites have recently been
shown to be involved in the establishment of transcriptional
memory by guiding transcription factors to their binding sites
[118].Moreover, cohesin has been also reported to act as a key
structural element to regulate chromosome-wide gene expres-
sion [23].

Thus, it is not surprising that latent EBV chromatin is also
organized via CTCF and cohesin subunits. There are close to
twenty sites where CTCF and cohesin bind and were mapped
in EBV’s latent chromatin ([6, 7] and own unpublished find-
ings), and certain CTCF sites have been implicated to act as
insulators. They have been reported to prevent the spreading
of repressive marks and progressive CpG methylation of viral
DNA and keep latent viral promoters in an active state [106].
EBV’s DNA is organized in loops [105] suggesting that
higher-order chromosome conformations might be important
to regulate levels of latent viral genes [67].

In the nucleus of latently infected cells, several copies of
EBV’s genomic DNA are maintained as stable, extrachromo-
somal plasmids, which replicate via oriP, the viral plasmid
origin of DNA replication ([19, 26] for two recent reviews).
oriP is an important regulatory element that also acts as a viral
enhancer to coordinate latent gene expression [38, 79]. Its
function is under the control of EBNA1, a latent viral factor
that binds oriP and likely ensures prominent nucleosome-free
or poor regions within two parts of oriP, the family or repeats
and the dyad symmetry element [7, 72]. As a consequence,
neighboring nucleosomes contain histones with activating
marks such as H3K4me3, H3K27ac, and H3K4me1 (unpub-
lished data) suggesting that oriP is an island of euchromatin to
support transcription of latent genes such as the latent mem-
brane proteins and several EBNAs in an otherwise heterochro-
matic and epigenetically repressed EBV genome.
Interestingly, oriP also mediates a molecular link to host cell

chromosomes suggesting that it acts as an anchor to tether
EBV’s genomic copies to nuclear chromatin [73]. Again,
EBNA1 is the critical viral factor in trans. In latently EBV-
infected cells, it mediates tethering of viral DNA to cellular
perichromatin [28] and ensures the maintenance and
partitioning of viral genome copies in resting and proliferating
cells, respectively [19].

Lytic reactivation

In the latent phase, all lytic genes are strictly repressed, but the
ectopic expression of a single viral gene, BZLF1 (also called
EB1, ZEBRA, Z, or Zta), can induce the full lytic cycle in
certain cells in vitro [21, 102]. In latently infected B cells
in vivo, BZLF1 is expressed when memory B cells encounter
their cognate antigens and terminally differentiate into plasma
cells, a process that supports virus de novo synthesis [62,
107]. Also, in vitro activation of the B cell receptor is clearly
linked to viral reactivation in certain established cell lines
latently infected with EBV ([4, 98] for earlier reviews [111,
121] for recently published work). Viral micro RNAs counter-
regulate downstream signals of the B cell receptor and inter-
fere with lytic phase induction suggesting that B cell receptor
triggering is an important route to escape from latency [17].
The regulation of BZLF1 transcription downstream of the
activating signaling cascade is complex and involves numer-
ous cellular transcriptional activators and repressors, chroma-
tin constituents, and histone modifications to activate the re-
pressed BZLF1 gene. Regulated expression of BZLF1 has
been the subject of several recent reviews [37, 59, 76] and
recent original work [69]. Not surprisingly, repression of
BZLF1’s promoter appears similarly complex and multiface-
ted. The structure and epigenetic landscape of the BZLF1
promoter differ from the majority of EBV’s lytic promoters
of the so-called early class of viral genes as it contains only
very few CpG dinucleotides, which are even spared from cy-
tosine methylation in vitro and partially also in vivo [116]
suggesting that BZLF1’s repression is probably not controlled
by CpG methylation.

Upon induced reactivation or ectopic BZLF1 expression,
the second essential early lytic gene, BRLF1, is expressed.
Both genes are indispensable for the lytic phase [33] and en-
code transactivators that activate viral and certain cellular pro-
moters, leading to an ordered cascade of viral gene expression:
activation of early gene expression followed by the lytic cas-
cade of viral genome replication and late gene expression.

BZLF1 is EBV’s lytic switch

Much is known about BZLF1 and its molecular functions.
Briefly, BZLF1 is a member of the AP-1 family and a bZIP
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protein, binds viral and cellular DNA sequence specifically as
a homodimer and even in nucleosome-dense compacted chro-
matin, activates transcription, acts as a viral pioneer factor,
recruits chromatin remodelers that open repressed chromatin
locally where BZLF1 binds, has a peculiar preference to bind
to CpG methylated DNA sequence motifs, and is indispens-
able for lytic viral DNA replication as it recruits viral replica-
tion factors to EBV’s lytic origin of DNA replication, oriLyt.
Many of BZLF1’s molecular functions have been detailed,
recently.

The atomic structure of BZLF1 bound to DNA has been
resolved [49, 83]. It shows the binding of BZLF1 to two
different classes of related sequence motifs [8, 9, 32, 119] with
two rather different dissociation constants [8]. Paradoxically,
BZLF1 preferentially binds to methylated-binding motifs,
commonly called meZREs, such as 5’-TGAGmeCGA-3′,
which are prevalent in highly CpG methylated promoters of
viral early genes in EBV DNA. These sequence elements
contain two 5′-methylcytosines (meC) in the top and bottom
strands. BZLF1 was the first example of a sequence-specific
transcription factor that preferentially recognizes and selec-
tively binds methylated cytosine residues within a specific
sequence. This exceptional feature is essential for this herpes-
virus to escape from its latent phase of infection [56, 57].

Upon induction in latently infected cells, BZLF1 induces
downstream viral promoters of several early genes some of
which encode essential components of the autonomous DNA
replication machinery of EBV’s lytic phase [34, 35]. The pro-
moters typically encompass CpG dinucleotides in high densi-
ty and clusters of meZRE sites, which have to be methylated
to be bound by BZLF1 to induce these early genes [8, 56, 57,
87, 116, 119]. At low levels, BZLF1 stably binds to meZREs
in viral and cellular chromatin in contrast to non-meZREs sites
that BZLF1 only binds efficiently at high BZLF1 levels [8,
14]. For example, the promoters of the early lytic BBLF4 and
BBLF2/3 genes, which are both essential for lytic viral DNA
amplification [34, 35], contain numerous meZREs, which are
preferentially bound when methylated. Only then can BZLF1
activate these promoters efficiently [8].

BZLF1 also needs to bind certain low affinity sites in
the viral lytic origin of DNA replication, oriLyt, where
BZLF1 acts as an essential replication factor [94, 95].
This aspect suggests that BZLF1 has to reach a consider-
ably high threshold level to support EBV’s lytic phase
fully (see below). Moreover, expression of many late viral
genes depends on amplified genomic DNA templates that
result from lytic viral DNA replication only ([15, 29, 41];
reviewed in [42]). It thus seems that critical BZLF1 levels
directly and indirectly control the ordered and timely lytic
expression of all viral genes. Autoregulation of BZLF1
expression via a positive feedback loop [98] and non-
meZRE sites and meZRE sites (in the promoters of
BZLF1 and BRLF1, respectively) might be a prerequisite

to achieve sufficiently high BZLF1 levels to complete
EBV’s lytic phase [10, 36, 98].

Recently, characterizedmolecular functions of BZLF1 sug-
gest that this viral protein is a bona fide pioneer transcription
factor [120] that has direct access to epigenetically repressed
(viral) chromatin inducing its transcriptional competence.
Upon sequence-specific binding even in densely packed nu-
cleosomal EBV DNA [93], BZLF1 unfolds its potential as a
pioneer factor preferentially on meZRE sites [116]. BZLF1
recruits chromatin remodelers such as INO80 and probably
other abundant remodelers that evict local nucleosomes pro-
viding access to promoters and cis-regulatory elements in viral
chromatin [93]. As a consequence, nucleosomes at BZLF1-
binding sites are lost, and repressive chromatin marks such as
H3K27me3 on flanking histones are erased, while H3K9me3
marks are not affected [75, 89, 116]. Concomitantly, previous-
ly bound Polycomb group proteins (PCG) and the writer
EZH2 are no longer associated with viral DNA [116].
Induction of EBV’s lytic phase eliminates the repressive
H3K27me3 mark on lytic promoters relieving their tight re-
pression. The resulting open chromatin allows loading of the
RNA polymerase II (RNAP II) multiprotein complex with its
transcriptional machinery. Active histone marks such as
H3K4me3 are set especially at early lytic promoters [116]
and trigger EBV’s escape from latency. Additionally, the in-
teraction of BZLF1 with the histone acetyltransferase CBP
increases the transactivation of early EBV promoters [1, 27].
The subsequent acetylation of histones in the promoters of
BRLF1 and BZLF1 correlates with their expression [16, 52,
75] but is not necessarily sufficient to induce them [22, 40].
Unexpectedly, CpG methylation of viral DNA is maintained
throughout this early viral phase of transcriptional reactivation
and is no hindrance to active transcription of extensively CpG
methylated viral genes as thought previously [116].

In contrast to the consequences of BZLF1 binding to viral
DNA, alteration of the chromatin architecture of EBV’s geno-
mic DNA and impaired functions of the chromatin organizer
CTCF, which organizes the viral genome during latency and
regulates the viral programs of latent transcription ([82] for a
recent review), do not result in lytic reactivation [69].

Upon lytic reactivation, the EBV minichromosomes move
within the nucleus from their pericentric positions [28] with
gene-poor, AT-rich, and repressive heterochromatin to active
euchromatin [73]. EBV’s genomic DNA remains attached to
the nuclear matrix as during the latent phase of infection, but
the point of attachment changes upon lytic reactivation from
the plasmid origin of DNA replication oriP [51] to oriLyt
sequences [71]. It seems as if EBV positions its genomes in
a higher-order nuclear context reflecting its requirements for
efficient expression of its genes.

EBV not only governs the cellular machinery to reverse
epigenetic repression of the viral genome but also induces a
genome-wide reorganization and alteration of the cellular
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epigenome and transcriptome. As in viral DNA, BZLF1 binds
the same two major sequence motifs in cellular chromatin [14,
88]. More than 190,000 (± 40,000) BZLF1-binding sites are
identified [14] throughout cellular DNA [81, 104]. While the
induced expression of BZLF1 in EBV-negative cells causes
only minor alterations of cellular gene expression, the expres-
sion of BZLF1 in latently infected B cells results in a massive
reduction of the cellular transcriptome and profoundly alters
the cellular epigenome within 6 to 15 h post induction [14].
Regions of previously open and accessible chromatin close
genome-wide. Concomitantly with the reduction of open
chromatin, middle- and long-distance chromatin interactions
between promoters and their interacting regulatory regions are
strongly reduced [14]. EBV’s objective of these alterations is
not understood in the moment, but already Adamson et al.
speculated in 1999 that the interaction of BZLF1 with CBP
might interfere with the availability of histone acetyltransfer-
ase CBP at transcriptionally active cellular loci [1]. Within
1 day of lytic phase induction, cellular chromatin was found
to become highly condensed, the nuclear lamina was
redistributed [63], and cellular histones appear to move to
the periphery of the cell nucleus [18].

The purpose of restructuring cellular chromatin is not ob-
vious but might have its origin in creating space for nuclear
sites where lytic amplification of viral DNA takes place. The
nuclear structures that are termed amplification or replication
factories (or compartments) [63] form in lytically induced
cells infected with EBV [104] or other viruses (reviewed in
[96]). Viral proteins known to associate with the lytic replica-
tion of viral DNA accumulate in EBV’s replication compart-
ments, which are microscopically visible structures (Fig. 1 in
[24]) where viral DNA replicates and amplifies massively
[78].

Loss of chromatin constituents and DNA
methylation upon lytic amplification of viral
DNA

The replication compartments appear within the nucleus seed-
ed by single viral genomes [78] and increase in size over time,
fuse, and finally occupy large parts of the nucleus (Fig. 1 in
[24]). When EBV’s DNA is amplified in the replication com-
partments and becomes microscopically detectable, it does not
co-localize with histone chaperones nor with canonical or
noncanonical histones such as H2B, H3.1, or H3.3 [18] indi-
cating that cellular machines that deposits histones on newly
synthesized cellular DNA are excluded from viral replication
compartments. Lack of nucleosomal structures alters the
superhelicity of DNA, and in fact, viral DNA was found to
be less supercoiled in this phase compared to DNA extracted
from latently infected cells [84] supporting this view.

Viral replication compartments are operationally
subdivided into outer [“ongoing replication foci”] and inner
[“BMRF1-cores”] domains [100], in which early and late lytic
genes are transcribed, respectively [99], while transcription of
late lytic genes is only conducted simultaneously with the
replication of and from newly synthesized viral genomes free
of nucleosomes ([29, 30, 64]; reviewed in [15]). While these
findings might give the impression that unmethylated viral
DNA is required for late lytic gene expression, demethylation
of viral DNA alone is not sufficient [64]. The molecular link
between herpesvirus lytic DNA replication and late gene tran-
scription is interesting and has been reviewed very recently
[15, 42].

Within the outer domain of replication compartments, on-
going de novo viral DNA synthesis is accompanied by cellular
homologous recombination repair proteins, while cellular
mismatch repair proteins were found in the inner domain,
where the newly synthesized DNA seems to accumulate [25,
61, 100].

Also excluded from lytically replicating herpesviral DNA
in replication compartments is proliferating cell nuclear anti-
gen (PCNA) [77]. PCNA is essential for eukaryotic licensed
DNA replication (andDNA repair) and acts as a trimeric DNA
sliding clamp and processivity factor for DNA polymerase δ
in eukaryotic cells and as a scaffold to recruit proteins in-
volved in DNA replication, DNA repair, chromatin remodel-
ing, and epigenetics. Among the recruited proteins is the cel-
lular DNA methyltransferase 1, DNMT1, that together with
UHFR1 couple semiconservative cellular DNA replication
and DNA methylation such that newly replicated daughter
strands inherit the pattern of CpG methylation of parental
DNA. In cells that support EBV’s lytic phase, PCNA localizes
to the amplification factories, but PCNA is not detected at the
sites of viral DNA synthesis [18]. This is no problem for the
virus because it encodes its own autonomous viral factors that
mediate lytic herpesviral DNA replication independent of the
host cell [34, 35]. The function of PCNA in lytic DNA repli-
cation of EBV is replaced by the structural homolog BMRF1
[46]. In the absence of PCNA, DNMT1 is not recruited to the
replication forks of herpesviral DNA, and methylation marks
at cytosine residues are lost on both newly synthesized DNA
strands, removing this epigenetic modification from EBV’s
genomic DNA. To our knowledge, this scenario has not been
formally proven yet, but it is highly plausible ([18, 57] and
references therein). As a consequence, the isolated packaging
of the amplified viral DNA into capsids ensures that EBV’s
genomic DNAwithin virions is free of methylated CpG dinu-
cleotides ([60], Supplementary Fig. S3 in ref. [57]).

In summary, EBV prevents the loading of cellular histones
on its newly synthesized DNA [54] and uncouples viral DNA
replication from the activity of DNMT1 that maintains the
methylation pattern in the newly synthesized strand in cellular
DNA [56]. Both strategies ensure that EBV’s DNA in virions
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is epigenetically naïve when the virus launches its next epige-
netic life cycle in a newly infected cell. Surprisingly, BZLF1
will be detectably expressed in the newly infected cell within
hours [44, 57, 114], presumably because the epigenetically
naked viral DNA does not prevent an initial, promiscuous,
and genome-wide transcription [53]. Nevertheless, BZLF1’s
transient expression fails to initiate EBV’s lytic phase in these
newly infected cells. The lack of CpG methylation of EBV’s
virion DNA seems to be an important reason because
unmethylated meZRE sequence motifs will not allow an effi-
cient BZLF1 binding preventing the onset of the cascade of
lytic viral genes from the start [117]. The abundance of cellu-
lar BZLF1-binding sites might be a second fail-safe mode to
mitigate the accidental induction of EBV’s lytic phase in
freshly infected cells [14] indicating that latency is definitely
EBV’s preferred lifestyle.

Open questions

Chromatin acquisition when, how, and by whom

It is unknown what drives the very rapid nucleosome forma-
tion on the incoming EBV DNA very early after infection of
primary human B-lymphocytes. There are assumed players
such as histone chaperones, but this area is rather speculative.
It might be rewarding to invest here, because this viral model
offers an attractive, perhaps even unique, opportunity to in-
vestigate de novo chromatin assembly and regulation in a
tractable system and in mammalian cells. The epigenetic
mechanisms of developmental programming during fertiliza-
tion in the zygotic state and in the early embryo are technically
difficult to study [13], but the EBV infection model is bio-
chemically and genetically accessible, which seems to be
attractive.

Polycomb recruitment and timing of H3K27me3
histone marks

It remains elusive how EBV DNA acquires nucleosomes and
when they turn into repressed chromatin as indicated by char-
acteristic H3K27me3 histone marks (among others). Similar
to EBV, its closest relative, Kaposi sarcoma-associated her-
pesvirus (KSHV), can also establish latent infections in certain
cell types. Recently, in a collaborative work, AdamGrundhoff
has studied the kinetics of Polycomb repressive complexes
(PRC) on KSHV DNA in infected cells and found a correla-
tion between the recruitment of the noncanonical PRC1.1
component KDM2B, CpG islands, and H3K27me3 marks
suggesting that high local concentrations of unmethylated
CpG clusters attract Polycomb complexes to implement chro-
matin repression on viral DNA [43]. KSHV differs from EBV
as KSVH chromatin adopts a bivalent mode in its latent phase.

Therefore, it remains to be investigated how and when EBV’s
DNA acquires typical repressive marks indicative of
Polycomb functions.

Epigenetics and EBV-associated malignancies

EBV is associated with or even causes very different types of
malignancies in man. Latent viral gene products are likely
contributors to oncogenic processes in these tumor cells, but
also lytic EBV genes have been blamed to be involved in
carcinogenesis. Even in tumors that are predominantly latently
infected such as nasopharyngeal carcinoma, for example, frac-
tions of cells enter the lytic phase perhaps playing a contrib-
uting role to tumor formation [66, 70]. Immune responses to
both latent and lytic viral gene products are manifold, broad,
and rather diverse, but the optional induction of the lytic phase
in tumors cells likely turns them into better targets for cellular
immunity [66]. It is intriguing to think that the manipulation of
the epigenetic program in EBV tumors in vivo might provide
a therapeutic window as discussed recently [65].
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