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ABSTRACT

This study aimed to investigate the differences in the 
metabolic profiles in serum of dairy cows that were nor-
mal or overconditioned when dried off for elucidating 
the pathophysiological reasons for the increased health 
disturbances commonly associated with overcondition-
ing. Fifteen weeks antepartum, 38 multiparous Holstein 
cows were allocated to either a high body condition 
(HBCS; n = 19) group or a normal body condition 
(NBCS; n = 19) group and were fed different diets until 
dry-off to amplify the difference. The groups were also 
stratified for comparable milk yields (NBCS: 10,361 
± 302 kg; HBCS: 10,315 ± 437 kg; mean ± standard 
deviation). At dry-off, the cows in the NBCS group 
(parity: 2.42 ± 1.84; body weight: 665 ± 64 kg) had a 
body condition score (BCS) <3.5 and backfat thickness 
(BFT) <1.2 cm, whereas the HBCS cows (parity: 3.37 
± 1.67; body weight: 720 ± 57 kg) had BCS >3.75 and 
BFT >1.4 cm. During the dry period and the subse-
quent lactation, both groups were fed identical diets 
but maintained the BCS and BFT differences. A tar-
geted metabolomics (AbsoluteIDQ p180 kit, Biocrates 
Life Sciences AG, Innsbruck, Austria) approach was 
performed in serum samples collected on d −49, +3, 
+21, and +84 relative to calving for identifying and 
quantifying up to 188 metabolites from 6 different 

compound classes (acylcarnitines, AA, biogenic amines, 
glycerophospholipids, sphingolipids, and hexoses). The 
concentrations of 170 metabolites were above the limit 
of detection and could thus be used in this study. We 
used various machine learning (ML) algorithms (e.g., 
sequential minimal optimization, random forest, alter-
nating decision tree, and naïve Bayes–updatable) to 
analyze the metabolome data sets. The performance of 
each algorithm was evaluated by a leave-one-out cross-
validation method. The accuracy of classification by the 
ML algorithms was lowest on d 3 compared with the 
other time points. Various ML methods (partial least 
squares discriminant analysis, random forest, informa-
tion gain ranking) were then performed to identify those 
metabolites that were contributing most significantly to 
discriminating the groups. On d 21 after parturition, 12 
metabolites (acetylcarnitine, hexadecanoyl-carnitine, 
hydroxyhexadecenoyl-carnitine, octadecanoyl-carni-
tine, octadecenoyl-carnitine, hydroxybutyryl-carnitine, 
glycine, leucine, phosphatidylcholine-diacyl-C40:3, 
trans-4-hydroxyproline, carnosine, and creatinine) were 
identified in this way. Pathway enrichment analysis 
showed that branched-chain AA degradation (before 
calving) and mitochondrial β-oxidation of long-chain 
fatty acids along with fatty acid metabolism, purine 
metabolism, and alanine metabolism (after calving) 
were significantly enriched in HBCS compared with 
NBCS cows. Our results deepen the insights into the 
phenotype related to overconditioning from the preced-
ing lactation and the pathophysiological sequelae such 
as increased lipolysis and ketogenesis and decreased 
feed intake.
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INTRODUCTION

Dairy cows undergo comprehensive metabolic and 
physiological changes during the transition from late 
pregnancy to lactation (Drackley, 1999; Ceciliani et 
al., 2018). In this critical life stage, when feed intake 
cannot meet the nutrient requirements to cope with 
the nutrient deficit postpartum, body reserves, main-
ly lipids and to some extent proteins, are mobilized (de 
Vries and Veerkamp, 2000; Roche et al., 2009; Roche 
et al., 2013). Body condition score is among the most 
important factors affecting productivity, reproduction, 
health, and longevity of dairy cattle. Overcondition-
ing around calving may predispose cows to a greater 
risk for periparturient metabolic disorders associated 
with insufficient nutrient intake and a massive mo-
bilization of body reserves (Roche et al., 2009, 2013; 
Bjerre-Harpøth et al., 2015). Thus, they are more likely 
to have difficulties at and after calving as a result of 
the suboptimal transition from pregnancy to lactation, 
leading to substantial economic losses for the dairy 
industry.

Metabolic profiling, known as metabolomics, is in-
creasingly used in dairy science and was applied for 
predicting the risk of diseases (Zhang et al., 2017a; 
Dervishi et al., 2018) and for biomarker and pathway 
discovery in some metabolic diseases in transition 
cows (Hailemariam et al., 2014; Zhang et al., 2017b; 
Zandkarimi et al., 2018). Humer et al. (2016) reported 
metabolic alterations (using a targeted metabolomics 
approach) in the serum of dairy cows with low (<0.4 
mmol/L), medium (0.4–0.7 mmol/L), and high (>0.7 
mmol/L) postpartal nonesterified fatty acid (NEFA) 
concentrations but with similar milk production, BW, 
and BCS. Thus, to the best of our knowledge, potential 
differences in the metabolic profiles of dairy cows of 
divergent body condition were not reported. Recently, 
plasma metabolomic profiling using untargeted me-
tabolomics revealed that most of the metabolites with 
increasing concentrations from late pregnancy to early 
lactation were primarily involved in lipid and energy 
metabolism, whereas most of the metabolites with de-
creasing concentrations were related to AA metabolism 
in transition cows (Luo et al., 2019).

The identification of metabolites and metabolic 
pathways associated with overconditioning around 
calving may help to elucidate the mechanisms involved 
in the pathophysiology of overconditioning in dairy 
cows. We used a targeted metabolomics approach (Ab-
soluteIDQ p180 kit; Biocrates Life Sciences AG, Inns-
bruck, Austria), which allows for the quantification of 
up to 180 metabolites from 6 compound classes [hex-
oses, AA, biogenic amines, acylcarnitines (AcylCN), 
glycerophospholipids, and sphingolipids], for metabolic 

profiling of periparturient dairy cows to get a more in-
depth view on the changes in the serum metabolites of 
overconditioned cows compared with cows with normal 
BSC.

Acylcarnitines, glycerophospholipids (lyso-, diacyl-, 
and acyl-alkyl-phosphatidylcholines; PC), and sphin-
gomyelins (SM) were of core interest in our study due 
to their pivotal role in lipid metabolism (Cole et al., 
2012). Among lipids, PC are essential for very low den-
sity lipoprotein synthesis in the liver, thus playing a 
crucial role in triglyceride export by the liver (Cole et 
al., 2012). Shifts in the serum concentrations of PC are 
linked to fatty liver disease in transition cows (Imhasly 
et al., 2015). The elevated concentrations of serum 
long-chain AcylCN result from incomplete fatty acid 
oxidation (FAO) in response to an increased load of 
fatty acids in dairy cows around calving (Rico et al., 
2018; Yang et al., 2019). In a human study, AcylCN was 
shown to have the potential to stimulate proinflamma-
tory signaling pathways through the development of in-
sulin resistance (Adams et al., 2009).

Besides body fat, labile protein reserves, mainly from 
skeletal muscle protein, are also used to provide AA for 
milk protein synthesis, direct oxidation, and gluconeo-
genesis in early lactation (Plaizier et al., 2000; Kuhla 
et al., 2011; Sadri et al., 2016). In addition, biogenic 
amines are a class of nitrogenous compounds that are 
involved in a wide variety of physiological processes 
(Ghaffari et al., 2019), although their role in transition 
cows is poorly understood.

For fully exploiting metabolomics data, conceptually 
different approaches of evaluation provide added value. 
In system biology, machine learning (ML) approaches 
are becoming of interest to provide actionable knowledge 
from large data sets and to improve metabolic profiling 
endeavors. Different supervised ML techniques such as 
support vector machine (SVM), random forest (RF), 
partial least squares discriminant analysis (PLS-DA), 
and decision tree are commonly applied to analyze me-
tabolomics data (Kell, 2006; Mahadevan et al., 2008; 
Issaq et al., 2009; Cuperlovic-Culf, 2018).

In this study, we thus aimed to create a deep pheno-
type that by means of ML would allow for differentiat-
ing NBCS and HBCS cows according to their metabolic 
profile and the pathways enriched at different stages 
of the transition period. Applying ML, we aimed at 
moving on from descriptive studies toward elucidating 
the differentially altered pathways in more detail to 
improve our understanding of the pathophysiological 
processes involved. Overconditioning is most likely to 
happen during late lactation, when decreasing milk 
yields are not adequately considered by offering less 
nutrient-dense diets; therefore, we used an experimen-
tal approach reenacting this situation.
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MATERIALS AND METHODS

The farm trial was conducted at the Educational and 
Research Centre for Animal Husbandry, Hofgut Neum-
uehle, Muenchweiler a.d. Alsenz, Germany. All animal 
experiments were carried out according to the German 
Animal Welfare Act and approved by the local author-
ity for animal welfare affairs [Landesuntersuchungsamt 
Rheinland-Pfalz (G 14-20-071)], Koblenz, Germany.

Animal Grouping

To characterize the metabolic signature of the pe-
riparturient cows, an animal model of normal versus 
increased lipomobilization around calving based on 
a targeted divergence in body condition was used to 
identify significantly enriched metabolic pathways in 
serum (Figure 1). As reported earlier (Schuh et al., 
2019), 38 multiparous Holstein cows were allocated to 
2 groups 15 wk antepartum (ap), each consisting of 19 
cows that were fed differently to reach either normal 
body condition (NBCS; n = 19; average parity: 2.42 
± 1.84; average BW: 665.4 ± 63.7 kg; mean ± SD) 
or an overconditioned status (HBCS; n = 19; average 
parity: 3.37 ± 1.67; average BW: 720.1 ± 56.9 kg; mean 
± SD) at dry-off. The targeted BCS and backfat thick-
ness (BFT) at dry-off (HBCS: >3.75 and >1.4 cm, 
respectively; NBCS: <3.5 and <1.2 cm, respectively) 
were reached. The preselected cows were also stratified 
for comparable milk yields (NBCS: 10,361 ± 302 kg; 
HBCS: 10,315 ± 437 kg). The HBCS cows received 
a high-energy ration (NEL = 7.2 MJ/kg of DM), and 
the NBCS cows received a reduced-energy ration (NEL 
= 6.8 MJ/kg of DM; Supplemental Table S1, https: / / 
doi .org/ 10 .3168/ jds .2019 -17114). After the differential 
feeding, both groups received the same diets during the 
dry period and the subsequent lactation. The differ-
ences in body condition at 15 wk ap (Δ = 0.7 BCS 
points and 1.1 cm of BFT) were largely maintained until 
calving (Figure 2a and b). More precisely, the BCS of 
cows in both groups declined during lactation, but the 
losses were greater in HBCS cows than in NBCS cows 
(Figure 2c and d). The calculated energy balance (i.e., 
the energy intake minus the energy needed or demand 
for milk synthesis and maintenance) was more negative 
(P < 0.001) in HBCS cows than in NBCS cows, and 
positive values were reached later for HBCS cows than 
for NBCS cows (Figure 2e).

Sampling and Laboratory Analyses

Blood samples were collected from the vena cau-
dalis mediana before the morning feeding on d −49, 

+3, +21, and +84 relative to calving. After clotting 
and subsequent centrifugation (10 min, 2,000 × g at 
4°C), the sera were obtained and stored at −80°C until 
analysis. The metabolite profiles in serum were deter-
mined by liquid chromatography (LC)–electrospray 
ionization–tandem MS and flow injection electrospray 
ionization–tandem MS profiling through targeted me-
tabolomics using the AbsoluteIDQ p180 kit (Biocrates 
Life Sciences AG). Mass detection and compound iden-
tification were performed by multiple reaction monitor-
ing. The kit plates were used for the quantification of 
up to 188 metabolites belonging to 6 compound classes 
(Supplemental Table S2, https: / / doi .org/ 10 .3168/ jds 
.2019 -17114), including AcylCN (40), proteinogenic 
and modified AA (21), glycerophospholipids (76 PC, 14 
lysoPC), SM (15), biogenic amines (21), and hexoses 
(1).

This kit was validated according to the European 
Medicines Agency guidelines (EMA, 2011), which 
implies proof of reproducibility within a given error 
range. Equal volumes (10 μL) of the serum samples 
were applied directly to the assay. Analytical specifica-
tions for the limit of detection (LOD) and evaluated 
quantification ranges, further LOD for semiquantitative 
measurements, identities of quantitative and semiquan-
titative metabolites, specificity, potential interferences, 
linearity, precision and accuracy, reproducibility, and 
stability were according to the manufacturer’s manual 
AS-P180 and as described in Zukunft et al. (2013). The 
LOD was set to 3 times the values of zero samples. 
Sample preparation and LC-MS/MS measurements of 
metabolites were performed according to the manufac-
turer’s manual UM-P180 (Biocrates Life Sciences AG) 
and as previously described in Zukunft et al. (2013). 
The assay procedures of the AbsoluteIDQ p180 kit and 
the metabolite nomenclature have been described in 
detail previously (Romisch-Margl et al., 2012; Zuku-
nft et al., 2013). Sample handling was performed by 
a Hamilton Microlab STAR robot (Hamilton Bonaduz 
AG, Bonaduz, Switzerland) and an Ultravap nitrogen 
evaporator (Porvair Sciences, Leatherhead, UK) along 
with standard laboratory equipment.

Mass spectrometric analyses were performed on an 
API 4000 triple quadrupole system (Sciex Deutschland 
GmbH, Darmstadt, Germany) equipped with a 1200 Se-
ries HPLC (Agilent Technologies Deutschland GmbH, 
Böblingen, Germany) and an HTC PAL autosampler 
(CTC Analytics, Zwingen, Switzerland) controlled 
by Analyst 1.6.1 software (AB SCIEX Deutschland 
GmbH, Darmstadt, Germany). Mass detection and 
compound identification were performed by multiple 
reaction monitoring. Measurements of metabolites were 
performed according to the manufacturer’s manual.

https://doi.org/10.3168/jds.2019-17114
https://doi.org/10.3168/jds.2019-17114
https://doi.org/10.3168/jds.2019-17114
https://doi.org/10.3168/jds.2019-17114
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Figure 2. Changes in (a) BCS, (b) backfat thickness (BFT), (c) BCS loss, (d) BFT loss, and (e) energy balance of normal cows (NBCS; 
<3.5 BCS and <1.2-cm BFT at dry-off) and overconditioned cows (HBCS; >3.75 BCS and >1.4-cm BFT at dry-off) during the experimental 
period (n = 19/group). Asterisks indicate a significant difference between the groups at a given time point (*P < 0.05; **P < 0.01). Data are 
presented as means ± SEM. Data for BCS, BFT, BCS loss, BFT loss, and energy balance are from Schuh et al. (2019).
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Briefly, internal standards for the LC-MS/MS proce-
dure were pipetted onto the filter inserts of the 96-well 
plate. This plate is prespiked with internal standards 
for the FIA-MS/MS procedure by the manufacturer. 
Ten microliters of serum was placed into the cavi-
ties of the 96-well filter plate of the p180 kit. Serum 
samples were dried in a nitrogen stream for 30 min. 
Amino acids and biogenic amines in the samples were 
derivatized with an excess of 5% phenylisothiocyanate 
(Sigma-Aldrich, Steinheim, Germany) for 20 min and 
dried under a nitrogen stream. Metabolites and internal 
standards were then extracted with 300 μL of methanol 
(AppliChem, Darmstadt, Germany) containing 5 mM 
ammonium acetate (Sigma-Aldrich) by incubation for 
30 min at room temperature with continuous shaking. 
Metabolites were eluted by a centrifugation step (5 min 
at 500 × g at room temperature). One part of the 
eluate was diluted with Biocrates kit running solvent 
(1/5 vol/vol) for FIA-MS/MS analysis, and the other 
part was diluted with water (50/50 vol/vol) for LC-
MS/MS analysis. The LC run was performed using an 
XDB-C18 column (3 × 100 mm, 3.5 μm; Agilent Tech-
nologies, Waldbronn, Germany). The serum concentra-
tions of the metabolites were calculated using internal 
standards and are given as micromoles per liter. (Bio-
genic amines and AA are absolutely quantified with 
corresponding individual internal standards. For other 
chemical classes such as lipids, only 1 internal standard 
is used per class, and therefore the estimation of their 
concentrations is semiquantitative.) After considering 
the LOD, 170 metabolites were used in this study.

Data evaluation for serum metabolite concentrations 
and quality assessment was performed with the soft-
ware MultiQuant 3.0.1 (Sciex Deutschland GmbH) and 
the MetIDQ software package (Biocrates Life Sciences 
AG), which is an integral part of the AbsoluteIDQ p180 
kit. The potential associations of metabolomics data 
with classical variables [NEFA, BHB, leptin, insulin, 
glucose, IGF-1, revised quantitative insulin sensitivity 
check index (RQUICKI)] were assessed.

Statistics Analysis and Bioinformatics

Different ML approaches were performed to calculate 
the posterior probability p(y|X) for each cow, where y 
is the predicting cow’s label (HBCS or NBCS) and X is 
the cow’s given feature vectors (serum metabolite data). 
The ML codes were implemented in Matlab equipped 
with Weka toolbox (Hall et al., 2009). To estimate the 
probability, ML algorithms look for a function h that 
maps the feature vector (serum metabolite data) X to 
output Y: h: X → Y. Vector X comprises 170 features x1 
. . . x170, and the output variable y ∈ Y can be a binary 

case of HBCS or NBCS. The function h initializes itself 
with some (random) parameters for mapping from X to 
Y and measures the amount of misclassification (loss 
error), and then searches repeatedly for the best combi-
nation of mapping parameters that minimizes the loss 
error the most. We let 4 distinct ML algorithms learn 
from the serum metabolite data and predict the pos-
terior probability. Namely, we made use of sequential 
minimal optimization (SMO), RF, alternating decision 
tree (ADTree), and naïve Bayes–Updatable (NB) to 
measure the probability in 4 distinctive ways.

Sequential minimal optimization is basically a flavor 
of support vector machine algorithm that is optimized 
for speed. The SMO classifier is set to use a polynomial 
kernel, normalized training data set, and the C value of 
1. Random forest is an ensemble learning method com-
prising numerous random decision trees. Each random 
decision tree samples the features with replacement and 
trains a tree classifier. Random forests search for the 
optimum decision tree among all randomly generated 
decision trees. Random forests are known to generalize 
well on training data. The RF in our work was set 
to 100 random trees and 10 maximum depth and 10 
features. Alternating decision tree is a rule-based clas-
sification algorithm to produce a decision tree of train-
ing data by applying boosting techniques. We set the 
number of boosting iteration to 10 and the search path 
to expandable. Naïve Bayes was also used because, in 
theory, it performs well on a limited number of samples. 
Naïve Bayes classifiers work based on Bayes’ theorem 
to measure the posterior probability. An updateable 
version of NB classifiers was used because it showed a 
superior classification performance, especially in medi-
cal detection systems. To be able to properly evaluate 
the performance of the ML models, a leave-one-out 
cross-validation schema was performed. In such a set-
ting, for each ML algorithm, 1 cow is chosen for the 
performance evaluation (test set) and the remaining 37 
cows are used in the learning process (train set). The 
obtained model will then be evaluated by the test data, 
and the performance will be measured. Repeating this 
procedure 38 times will give 38 performance measures. 
The average of all 38 performance values will be the 
final performance for the corresponding ML algorithm. 
The classification results across 4 classifiers indicate 
how robust the features could represent the HBCS and 
NBCS cows. The classification performance is a report 
based on different metrics. For true positive (TP) as 
the number true positives, false positive (FP) as the 
number of false positives, true negative (TN) as the 
number of true negatives, and false negative (FN) as 
the number of false negatives, we measured the follow-
ing:
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 Accuracy = (TP + TN)/(TP + TN + FP + FN) 

 Sensitivity = TP/(TP + FN) 

 Specificity = TN/(TN + FP) 

 Precision = TP/(TP + FP) 

 F-measure score = (2 × sensitivity × precision)/  

(sensitivity + precision)

The entire classification procedure was performed once 
for d −49 and once for d +21. The serum data set 
of 38 cows comprised 170 distinct measurements (fea-
tures). Next, to investigate how each individual feature 
(serum metabolite) contributes to its corresponding 
classified group (HBCS or NBCS), 2 algorithms were 
used: RF and information gain ranking (IGR). Serum 
metabolite feature importance was extracted from both 
algorithms. Common important features across 3 al-
gorithms (RF, PLS-DA, and IGR) were selected for 
further analysis (12 features). In a follow-up analysis 
only, the selected important features were used to clas-
sify the HBCS and NBCS cows. Similar to the first 
classification setting, the same 4 classifiers were used. 
The classification was accomplished again for the data 
of d −49 and +21. The results of classification with 170 
features were compared with the classification with 12 
features. The selected important features were fed to 
a random tree classifier to obtain a traceable tree for 
serum metabolite classification.

The multivariate statistical analysis of the serum 
metabolite data was performed using the web-based 
metabolomic data processing tool MetaboAnalyst 4.0 
(Chong et al., 2018; see http: / / www .metaboanalyst .ca 
for detailed methodology). Briefly, as quality control, 
variables containing more than 50% missing values 
(i.e., values lower than LOD) were not considered for 
the statistical analysis. The metabolite data were trans-
formed using the generalized log-transformation and 
then Pareto scaled to correct for heteroscedasticity, re-
duce the skewness of the data, and reduce mask effects 
(van den Berg et al., 2006). The PLS-DA and variable 
importance in projection (VIP) were performed using 
the plsr function provided by the R pls package (Mevik 
and Wehrens, 2007) to identify the differential metabo-
lites between the groups and to rank the metabolites 
according to their importance in discriminating groups. 
Permutation tests were used to assess the significance 
of the class discrimination determined by PLS-DA. The 
classification and cross-validation were performed us-
ing the corresponding wrapper function offered by the 
caret package. In each permutation, a PLS-DA model 

was built between the data (x) and the permuted class 
labels (y) using the optimal number of components 
determined by cross-validation for the model based on 
the original class assignment. The heatmap clustered 
by Euclidean distance and Ward’s minimum variance 
method (ward.D), which were calculated with Metabo-
Analyst 4.0.

For the multilevel data sets that contain multiple 
types of variation, ANOVA-simultaneous component 
analysis was used to find metabolic changes with time, 
groups, and their interaction using MetaboAnalyst 4.0. 
For metabolite set enrichment analysis, metabolite data 
were mapped according to the Human Metabolome Da-
tabase (HMDB, www .hmdb .ca), and the quantitative 
enrichment analysis was performed using the global 
test package by Metaboanalyst 4.0 (Goeman et al., 
2004) to estimate a Q-statistic for each metabolite set. 
Furthermore, network analysis was constructed using 
NetworkAnalyst online software (www .networkanalyst 
.ca) based on the Kyoto Encyclopedia of Genes and 
Genomes (https: / / www .genome .jp/ kegg/ ). This ap-
plication allowed the visualization and interpretation 
of metabolomic data in the context of identifying and 
visualizing the enriched pathways.

The data of 12 serum metabolites identified by dif-
ferent ML were analyzed with estimation methods 
and presented as mean difference estimation plots 
(Claridge-Chang and Assam, 2016). Effect size was 
measured using Hedges’ g (Greenland et al., 2016); per 
standard practice, effect sizes were referred to as trivial 
(g < 0.2), small (0.2 < g < 0.5), moderate (0.5 < g < 
0.8), or large (g > 0.8). The effect size was presented 
as a bootstrap 95% confidence interval on separate but 
aligned axes. To indicate estimate precision, 95% confi-
dence intervals for the mean differences were calculated 
using bootstrap methods (resampled 5,000 times, bias 
corrected, and accelerated) and are displayed with the 
bootstrap distribution of the mean. The Mann-Whitney 
U statistic was used to calculate P-values for pro forma 
reporting exclusively (Crichton, 2000).

A repeated-measures analysis was conducted us-
ing the MIXED procedure in SAS (version 9.4; SAS 
Institute Inc., Cary, NC) for classical metabolic vari-
ables (NEFA, BHB, leptin, glucose, insulin, IGF-1, 
RQUICKI) for group, time, and their interactions. 
Before analysis, all data were tested for normality of 
distribution by evaluating the Shapiro-Wilk statis-
tic using the UNIVARIATE procedure of SAS, and, 
where appropriate, they were transformed using a log10 
transformation. The model consisted of group, time 
(sampling date), and interaction of group and time as 
fixed effects and cow as the random effect. All means 
were compared using the PDIFF statement of SAS. 
Statistical significance was declared at P ≤ 0.05, and a 

http://www.metaboanalyst.ca
www.hmdb.ca
www.networkanalyst.ca
www.networkanalyst.ca
https://www.genome.jp/kegg/
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trend to significance was declared at 0.05 < P ≤ 0.10. 
Pearson correlations were used to evaluate associations 
between NEFA, BHB, and serum metabolomics data 
(P < 0.05; false discovery ratio ≤ 0.1).

RESULTS

Classification Models and Feature Selection

Various supervised ML-based classifiers were per-
formed to differentiate NBCS from HBCS cows based 
on the metabolomic data and to identify the important 
serum metabolites that contributed to the group sepa-
ration. An overview of the ML procedures is shown in 
Figure 3. In step A, 4 distinct ML classification algo-
rithms (i.e., SMO, RF, ADTree, and NB) were built 
and optimized. For assessing the performance of the 
classifiers, the sensitivity, specificity, positive predictive 
value, F measure, and accuracy were calculated, and 
the validation results were summarized in Table 1. The 
accuracies of SMO, RF, ADTree, and NB classifiers 
on d −49 ap were greater than 70%. Model accuracies 
obtained from SMO, RF, ADTree, and NB on d +3 
postpartum (pp) were near the random level (50%).

In step B, a feature selection step was included in 
the ML analysis using RF and IGR algorithms with 
the aim of identifying the important metabolic features 
underlying the group separation (HBCS vs. NBCS). 
Figure 4 displays the top 34 serum metabolites that 
were identified by RF selection on d −49 ap (Figure 
4a) and d +21 pp (Figure 4b) and their contributions 
(VIP and frequency of selection) to the group sepa-
ration in ascending order. The highest-ranking serum 
metabolites on d −49 ap were His, hydroxybutyryl-
carnitine (C3-DC-C4-OH), Ser, octadecenoyl-car-
nitine (C18:1), methylglutaryl-carnitine (C5-M-DC), 
and butenyl-carnitine (C4:1), and the highest-ranking 
metabolites on d +21 pp were octadecanoyl-carnitine 
(C18:0), butyryl-carnitine (C4:0), decadienyl-carnitine 
(C10:2), Asp, and acetylcarnitine (C2). As an outcome 
of the feature selection process, using the IGR algo-
rithm, 34 metabolic features were identified and ranked 
according to their information gain rank on d −49 ap 
(Figure 4c) and d +21 pp (Figure 4d). Among the top 
20 metabolites identified by IGR selection on d −49 
ap, there were 8 AA (His, Val, Lys, Leu, Ile, Met, Orn, 
and Pro), 9 phosphatidylcholine diacyls (PC aa C32:0, 
C36:0, C38:0, C38:1, C38:6, C40:1, C40:2, C40:3, 
C42:5), and 1 sphingomyelin (SM C24:0). However, the 
highest-ranking metabolites on d +21 pp were 7 dia-
cyl phosphatidylcholines (PC aa C32:0, C36:0, C42:1, 
C40:2, C40:3, C42:5, C42:6), 4 acyl-alkyl phosphatidyl-
cholines (PC ae C42:5, C38:3, C36:1, C42:3), 2 sphingo-
myelins (SM C24:0, C26:0), Gly, creatinine, carnitine, 

and some AcylCN [C2, hexadecanoyl-carnitine (C16), 
octadecanoyl-carnitine (C18), C18: 1] .

A PLS-DA was also performed to assess the signifi-
cance of class discrimination and to extract the most 
important metabolites in the group separation. The 
PLS-DA score plots based on the analysis of complete 
digital maps for HBCS and NBCS cows showed a 
complete (Figure 5a and d) and significant separa-
tion of these 2 groups on d −49 ap (P = 0.011 by 
permutation test; Supplemental Figure S1, https: / / 
doi .org/ 10 .3168/ jds .2019 -17114) and d +21 pp (P = 
0.004 by permutation test; Supplemental Figure S2, 
https: / / doi .org/ 10 .3168/ jds .2019 -17114). According 
to the VIP scores using the above PLS-DA model, 15 
variables (metabolites) with a VIP >1.5 were selected. 
On d −49 ap (Figure 5b), 6 metabolites belonging to 
AA (Orn, Lys, Leu, Val, His, Met), 2 biogenic amines 
[α-aminoadipic acid, asymmetric dimethyl-arginine 
(ADMA)], carnitine (C0), C2, propionyl-carnitine 
(C3), and butyryl-carnitine (C4) contributed most 
significantly to the separation between the HBCS and 
NBCS groups. On d +21 pp (Figure 5e), 7 metabolites 
belonging to AcylCN [C2, C3-DC-C4-OH, tetradec-
anoyl-carnitine (C14:0), C16, hydroxyhexadecenoyl-
carnitine (C16: 1 -OH), C18, and C18:1], 2 diacyl-PC 
(PC aa C38:0, C40:3), 2 acyl-alkyl-PC (PC ae C38:1, 
C42:4), 2 AA (Gly and Ile), and creatinine contrib-
uted most significantly to the separation between the 
HBCS and NBCS groups.

Further, the serum metabolites were analyzed by 
hierarchical clustering with a heat map to visualize the 
effect of overconditioning around calving. Figure 5c 
and f shows the levels of the top 70 metabolites based 
on PLS-DA VIP scores at 2 time points (d −49 ap and 
+21 pp) in HBCS and NBCS cows. The top 70 me-
tabolites that differed significantly between groups on d 
+3 and +84 pp are shown in Supplemental Figure S3a 
and b (https: / / doi .org/ 10 .3168/ jds .2019 -17114). In a 
follow-up analysis, common important features (serum 
metabolites) across the 3 algorithms (RF, IGR, and 
PLS-DA) were selected for further analysis.

Taken together, 12 metabolites, including His, Leu, 
Ile, Val, Lys, Orn, Pro, Ser, C0, ADMA, PC aa C36:0, 
and PC aa C40:2, were the common important features 
that were identified on d −49 ap by the ML algorithms 
(Figure 6a). The serum concentrations of His (effect 
size, g = 1.64, P < 0.01), Leu (g = 1.51, P < 0.01), Ile 
(g = 1.03, P < 0.01), Val (g = 1.3, P < 0.01), Lys (g 
= 1.48, P < 0.01), Orn (g = 1.26, P < 0.01), C0 (g = 
1.28, P < 0.01), and ADMA (g = 1.09, P < 0.01) were 
greater but those of PC aa C36:0 (g = −1.03, P < 0.01) 
and PC aa C40:2 (g = −1.11, P < 0.01) were lower 
in HBCS cows compared with NBCS cows with large 
effect (g > 0.8, Figure 6a). The serum concentrations of 

https://doi.org/10.3168/jds.2019-17114
https://doi.org/10.3168/jds.2019-17114
https://doi.org/10.3168/jds.2019-17114
https://doi.org/10.3168/jds.2019-17114
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Pro (g = 0.60, P = 0.05) and Ser (g = 0.66, P = 0.05) 
were greater in HBCS cows compared with NBCS cows 
with moderate effect (0.5 < g < 0.8, Figure 6a).

On d +21 pp, 12 metabolites, including C2, C16, 
C16: 1 -OH, C18:0, C18:1, C3-DC-C4-OH, Gly, Leu, 
PC aa C40:3, trans-4-hydroxyproline (t4-OH-Pro), 

Figure 3. The workflow of machine learning analysis procedures.
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carnosine, and creatinine, were the common important 
features that were identified by the algorithms (Figure 
6b). The serum concentrations of C2 (g = 1.25, P < 
0.01), C16 (g = 1.31, P < 0.01), C16: 1 -OH (g = 1.17, P 
< 0.01), C18:0 (g = 1.34, P < 0.01), C18:1 (g = 0.90, P 
= 0.01), Gly (g = 1.04, P < 0.01), and carnosine (g = 
0.82, P = 0.02) were greater in HBCS cows compared 
with NBCS cows with large effect (g > 0.8, Figure 6b). 
The serum concentrations of creatinine (g = 0.72, ten-
dency P = 0.08), C4-OH (C3-DC; g = 0.79, P = 0.02), 
and t4-OH-Pro (g = 0.65, P = 0.04) were greater in 
HBCS cows compared with NBCS cows with moderate 
effect (0.5 < g < 0.8). Serum concentrations of Leu 
were greater (g = 0.43, P = 0.02) in HBCS than in 
NBCS with small effect (0.2 < g < 0.5, Figure 6b). The 
serum concentrations of PC aa C40:3 (g = 1.12, P < 
0.01) were lower in HBCS cows compared with NBCS 
cows with large effect (g > 0.8, Figure 6b).

In step C, the 12 aforementioned metabolites were 
tested to classify between NBCS and HBCS cows for 
validating the effectiveness of these subset metabolites 
for the group classification. Similar to the first clas-
sification setting (step A), the same 4 ML classification 
algorithms (SMO, RF, ADTree, and NB) were used for 
the data of d −49 ap and d +21 pp; the validation 
results are summarized in Table 2. Model accuracies 
obtained from the ML classifiers on d −49 ap for SMO, 
RF, ADTree, and NB were 78.9, 78.9, 73.7, and 76.3%, 
respectively. The classification accuracies on d +21 pp 
for SMO, RF, ADTree, and NB were 78.9, 76.3, 60.5, 
and 78.9%, respectively. Thus, the above-mentioned 
subset features have strongly contributed to the separa-
tion of HBCS and NBCS cows.

In step D, the subset of serum metabolites was used 
to construct decision trees. Figure 6 c and d shows the 
predictor metabolites and the cut-off points for each 

metabolite to discriminate between HBCS and NBCS 
cows. On d −49 ap, the classifier selected Leu as the 
starting point, and 53% of cows (10/19) with serum 
Leu levels <0.26 μmol/L were identified as NBCS. The 
decision tree algorithm identified 84% of cows (16/19) 
as HBCS, with serum concentrations ≥0.26 μmol/L for 
Leu, ≥0.52 μmol/L for His, and <0.63 μmol/L for PC 
aa C40:2. On d +21 pp, the classifier selected PC aa 
C40:3 as the starting point, and 53% of cows (10/19) 
with serum PC aa C40:3 levels ≥0.08 μmol/L were 
identified as NBCS. The decision tree algorithm identi-
fied 68% of cows (13/19) as HBCS, with serum levels 
<0.08 μmol/L for PC aa C40:3, ≥0.32 μmol/L for Leu, 
and ≥0.21 μmol/L for C2.

Classical Metabolic Variables

The data of classical variables (metabolites and hor-
mones) assessed weekly from 7 wk ap to 12 wk pp in 
blood serum were recently described by Schuh et al. 
(2019). In this study, the data of classical variables were 
reported on d −49, +3, +21, and +84 relative to calv-
ing. The serum NEFA concentrations were higher (P 
< 0.05) in HBCS compared with NBCS cows in early 
lactation (Supplemental Figure S4a, https: / / doi .org/ 10 
.3168/ jds .2019 -17114). The serum BHB concentrations 
increased after parturition (P < 0.001, d +21) and were 
higher (P < 0.01) in HBCS cows compared with NBCS 
cows on d +21 pp (Supplemental Figure S4b). The 
serum leptin concentrations decreased during lactation 
and were higher (P < 0.05) in HBCS compared with 
NBCS cows before and after calving (d −49 ap, +3 pp, 
and +21 pp; Supplemental Figure S4c). The serum con-
centrations of glucose were not different between the 
groups but fluctuated around calving (Supplemental 
Figure S4d). The serum concentrations of insulin and 

Table 1. Diagnostic performance of each machine learning classification model using 170 serum metabolites

Model  
Day relative 
to calving

Sensitivity, 
%

Specificity, 
%

Positive 
predictive value F-measure

Accuracy, 
%

Sequential minimal optimization d −49 68 73 72 70 71
d +3 68 63 65 66 65
d +21 52 68 62 57 60
d +84 73 78 77 75 76

Random forest d −49 73 73 73 73 73
d +3 52 68 62 57 60
d +21 68 73 72 70 71
d +84 68 57 61 65 63

Alternating decision tree d −49 68 84 81 74 76
d +3 57 47 52 55 52
d +21 52 57 55 54 55
d +84 68 68 68 68 68

Naïve Bayes d −49 68 73 72 70 71
d +3 57 63 61 59 60
d +21 57 73 68 62 65
d +84 63 63 63 63 63

https://doi.org/10.3168/jds.2019-17114
https://doi.org/10.3168/jds.2019-17114
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Figure 4. Important serum metabolites identified by random forest and information gain ranking on (a, c) d −49 antepartum and (b, d) 
d +21 postpartum. The x-axis indicates the variable importance in projection (VIP) scores corresponding to each variable on the y-axis. C4-
OH (C3-DC) = hydroxybutyryl-carnitine; C18:1 = octadecenoyl-carnitine; C5-M-DC = methylglutaryl-carnitine; C4:1 = butenyl-carnitine; C6 
= hexenoyl-carnitine; C5 = valeryl-carnitine; C14 = tetradecanoyl-carnitine; PC aa = di-acyl phosphatidylcholine; C8 = octanoyl-carnitine; 
SDMA = symmetric dimethyl-arginine; C6 (C4: 1 -DC) = hexanoylcarnitineumaryl-carnitine; PC ae = acyl alkyl phosphatidylcholine; Ac-Orn = 
acetylornithine; SM (OH) = hydroxysphingomyeline; C10 = decanoyl-carnitine; LysoPC a = lysophosphatidylcholine acyl; t4-OH-Pro = trans-
4-hydroxyproline; C18 = octadecanoyl-carnitine; C4 = butyryl-carnitine/isobutyryl-carnitine; C10:2 = decadienyl-carnitine; C2 = acetyl-carni-
tine; C5-OH (C3-DC-M) = hydroxyvaleryl-/-isovaleryl-/-methylbutyryl-carnitine (methylmalonyl-carnitine); C18:2 = octadecadienyl-carnitine; 
C3 = propionyl-carnitine; C5-DC (C6-OH) = glutaryl-carnitine (hydroxyhexanoyl-carnitine); C5:1 = tiglyl-carnitine/methylcrotonyl-carnitine; 
C14: 2 -OH = hydroxytetradecadienyl-carnitine; Met-SO = methionine sulfoxide; ADMA = asymmetric dimethyl-arginine; C16: 1 -OH = hydroxy-
hexadecenoyl-carnitine; SM = sphingomyeline; C0 = carnitine; Orn = ornithine; C16 = hexadecanoyl-carnitine.
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Figure 5. Partial least squares discriminant analysis showing 2 clusters for normal cows [NBCS; <3.5 BCS and <1.2-cm backfat thickness 
(BFT) at dry-off] and overconditioned cows (HBCS; >3.75 BCS and >1.4-cm BFT at dry-off) on (a) d −49 antepartum (ap) and (d) d +21 
postpartum (pp), ranked by variable importance in projection (VIP) on (b) d −49 ap and (e) d +21 pp. The numbers in the score plots represent 
the code numbers of the individual animals. The heatmap of serum metabolites illustrates statistically significant serum metabolite differences in 
NBCS and HBCS cows on (c) d −49 ap and (f) d +21 pp. The colors in the heatmap reflect the serum metabolite abundance (mean cantered and 
divided by the range of each variable). Orn = ornithine; C0 = carnitine; C3 = propionyl-carnitine; C4 = butyryl-carnitine/isobutyryl-carnitine; 
ADMA = asymmetric dimethyl-arginine; C2 = acetylcarnitine; alpha-AAA = alpha-aminoadipic acid; PC aa = di-acyl phosphatidylcholine; 
PC ae = acyl alkyl phosphatidylcholine; SM = sphingomyeline; LysoPC a = lysophosphatidylcholine acyl; SM (OH) = hydroxysphingomyeline; 
C18:1 = octadecenoyl-carnitine; C18 = octadecanoyl-carnitine; C16 = hexadecanoyl-carnitine; C16: 1 -OH = hydroxyhexadecenoyl-carnitine; C14 
= tetradecanoyl-carnitine; t4-OH-Pro = trans-4-hydroxyproline; C14: 2 -OH = hydroxytetradecadienyl-carnitine; C3:1 = propenoyl-carnitine; C3-
OH = hydroxypropionyl-carnitine; C5 = valeryl-carnitine.
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Figure 6. (a, b) The serum concentrations of 12 metabolites identified by different machine learning algorithms on (a) d −49 antepartum and 
(b) d +21 postpartum. The effect size (Hedges’ g) between normal cows (NBCS; <3.5 BCS and <1.2-cm backfat thickness at dry-off) and over-
conditioned cows (HBCS; >3.75 BCS and >1.4-cm backfat thickness at dry-off) is shown in the Gardner-Altman estimation plot. Both groups 
were plotted on the left axes; the mean difference was plotted on a floating axis on the right as a bootstrap sampling distribution. A Hedges’ g 
of 1 shows that the 2 groups differ by 1 SD. The mean difference was depicted as a dot; the 95% CI is indicated by the ends of the vertical error 
bar and reported above as effect size [CI width lower bound; upper bound]. The P-value reported is the likelihood of observing the effect size. 
(c, d) Random forest decision model based on 12 serum metabolites identified by different machine learning techniques on cows’ data on (c) d 
−49 antepartum and (d) d +21 postpartum. PC aa = di-acyl phosphatidylcholine; ADMA = asymmetric dimethyl-arginine; C0 = carnitine; C2 
= acetylcarnitine; C16 = hexadecanoyl-carnitine; C16: 1 -OH = hydroxyhexadecenoyl-carnitine; t4-OH-Pro = trans-4-hydroxyproline.
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Figure 6 (Continued). (a, b) The serum concentrations of 12 metabolites identified by different machine learning algorithms on (a) d −49 
antepartum and (b) d +21 postpartum. The effect size (Hedges’ g) between normal cows (NBCS; <3.5 BCS and <1.2-cm backfat thickness 
at dry-off) and overconditioned cows (HBCS; >3.75 BCS and >1.4-cm backfat thickness at dry-off) is shown in the Gardner-Altman estima-
tion plot. Both groups were plotted on the left axes; the mean difference was plotted on a floating axis on the right as a bootstrap sampling 
distribution. A Hedges’ g of 1 shows that the 2 groups differ by 1 SD. The mean difference was depicted as a dot; the 95% CI is indicated by 
the ends of the vertical error bar and reported above as effect size [CI width lower bound; upper bound]. The P-value reported is the likeli-
hood of observing the effect size. (c, d) Random forest decision model based on 12 serum metabolites identified by different machine learning 
techniques on cows’ data on (c) d −49 antepartum and (d) d +21 postpartum. PC aa = di-acyl phosphatidylcholine; ADMA = asymmetric 
dimethyl-arginine; C0 = carnitine; C2 = acetylcarnitine; C16 = hexadecanoyl-carnitine; C16: 1 -OH = hydroxyhexadecenoyl-carnitine; t4-OH-Pro 
= trans-4-hydroxyproline.
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IGF-1 were lower in lactation than in the dry period in 
both groups (Supplemental Figure S5a and b, https: / / 
doi .org/ 10 .3168/ jds .2019 -17114). When considering all 
time points, HBCS cows had greater insulin concentra-
tions than NBCS cows, but differences could not be 

assigned to individual time points when doing Bon-
ferroni-corrected multiple comparisons (Supplemental 
Figure S5a and b). Insulin sensitivity was estimated 
by calculating the RQUICKI from the data of blood 
glucose, insulin, and NEFA (Holtenius and Holtenius, 

Figure 6 (Continued). (a, b) The serum concentrations of 12 metabolites identified by different machine learning algorithms on (a) d −49 
antepartum and (b) d +21 postpartum. The effect size (Hedges’ g) between normal cows (NBCS; <3.5 BCS and <1.2-cm backfat thickness 
at dry-off) and overconditioned cows (HBCS; >3.75 BCS and >1.4-cm backfat thickness at dry-off) is shown in the Gardner-Altman estima-
tion plot. Both groups were plotted on the left axes; the mean difference was plotted on a floating axis on the right as a bootstrap sampling 
distribution. A Hedges’ g of 1 shows that the 2 groups differ by 1 SD. The mean difference was depicted as a dot; the 95% CI is indicated by 
the ends of the vertical error bar and reported above as effect size [CI width lower bound; upper bound]. The P-value reported is the likeli-
hood of observing the effect size. (c, d) Random forest decision model based on 12 serum metabolites identified by different machine learning 
techniques on cows’ data on (c) d −49 antepartum and (d) d +21 postpartum. PC aa = di-acyl phosphatidylcholine; ADMA = asymmetric 
dimethyl-arginine; C0 = carnitine; C2 = acetylcarnitine; C16 = hexadecanoyl-carnitine; C16: 1 -OH = hydroxyhexadecenoyl-carnitine; t4-OH-Pro 
= trans-4-hydroxyproline.

https://doi.org/10.3168/jds.2019-17114
https://doi.org/10.3168/jds.2019-17114
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2007). Greater insulin but also glucose concentrations 
in HBCS cows indicate reduced insulin sensitivity. We 
performed a Spearman correlation analysis to identify 
significant correlations between individual metabolites 
and NEFA or BHB values. The serum NEFA value was 
positively correlated with C16:0- and C18: 0 -AcylCN 
and negatively correlated with multiple long-chain PC 
species (i.e., PC ae 44:3, PC ae 44:2, PC aa 34:4, PC ae 
42:5, PC ae 42:3, PC ae 36:0; Supplemental Figure S6a, 
https: / / doi .org/ 10 .3168/ jds .2019 -17114). Serum BHB 
was positively correlated with C2 and negatively cor-
related with multiple long-chain PC species (i.e., PC ae 
38:2, PC aa 42:1, PC ae 38:4, PC ae 42:0, PC ae 38:2, 
lysoPC a 20:3; Supplemental Figure S6b).

Time-Resolved Analysis of Metabolomics Data

For the time-series metabolomics, ANOVA-simulta-
neous component analysis was performed to identify 
the major patterns associated with each factor and to 
describe the variation between animals (HBCS and 
NBCS), the variation in time (d −49, +3, +21, and 
+84 relative to calving) and their interaction. This is 
based on Manly’s unrestricted permutation of observa-
tion, which calculates the permuted variation associ-
ated with each factor. A permutation approach was 
used to validate the model as demonstrated by signifi-
cance levels of P < 0.01 for the groups and the time 
(Supplemental Figure S7, https: / / doi .org/ 10 .3168/ jds 
.2019 -17114). The significant variables were identified 
based on the leverage and the squared prediction er-
rors (SPE) associated with each variable (Figure 7a). 
The leverage and the SPE were used to evaluate the 
importance of the metabolite to the model and the 
fitness of the model for the particular metabolite, re-
spectively. Variables with low SPE and higher leverage 
were modeled well after the major patterns. Based on 
the leverage and SPE plots, the significant variables 
associated with a specific factor were identified (Fig-
ure 7a). Figure 7b shows those features that were well 
modeled by group, time, and their interaction. Four 

metabolites (C2, PC ae C38:1, PC aa C40:3, PC aa 
C36:0) were most affected by group (HBCS vs. NCBS), 
and 3 metabolites (PC aa C40:3, PC ae C38:1, PC ae 
C38:3) were most altered during the transition period. 
The time-course profiles of representative metabolites 
with high rankings by the multivariate empirical Bayes 
approach (MEBA) are shown in Figure 7c. Hotelling’s 
T2 was used to rank the serum metabolites by their dif-
ference in temporal profiles across different biological 
conditions (HBCS vs. NBCS) over the transition period. 
Among the top metabolites, 11 phosphatidylcholine di-
acyls (C36:0, C38:0, C38:1, C40:2, C40:3, C40:4, C42:0, 
C42:1, C42:4, C42:5, C42:6), 13 phosphatidylcholine 
acyl-alkyls (C30:0, C34:0, C36:0, C36:2, C38:0, C38:2, 
C38:3, C40:1, C40:2, C42:2, C42:3, C44:3, C44:6), 3 
sphingomyelins (C24:0, C26:0, C24:1), 2 AA (Lys, His), 
and 4 AcylCN (C2, C16, C18, C18:2) were identified 
by MEBA. Acetylcarnitine had the highest statistical 
value (Figure 7c).

Pathway Mapping

Following ML classification analysis, quantitative 
enrichment analysis was performed to identify the 
metabolic pathways that were most affected by over-
conditioning around calving. Enrichment tests were 
performed using metabolite set enrichment analysis 
software (www .metaboanalyst .ca). Mapping the serum 
metabolites on d −49 ap identified branched-chain 
AA (BCAA) degradation, propanoate metabolism, 
methyl-histidine metabolism, betaine metabolism, His 
metabolism, Gly, and Ser metabolism as the most af-
fected metabolic pathways in HBCS compared with 
NBCS cows (Figure 8a). Mitochondrial β-oxidation of 
long-chain fatty acids along with fatty acid metabolism, 
purine metabolism, and Ala metabolism were the main 
metabolic pathways affected by overconditioning on d 
+ 21 pp (Figure 8b). Furthermore, network analysis 
was constructed using NetworkAnalyst online software 
to visualize the enriched metabolic pathways as shown 
in Figure 8c and d.

Table 2. Diagnostic performance of each machine learning classification model using a subset (n = 12 metabolites) of serum metabolites

Model  
Day relative 
to calving

Sensitivity, 
%

Specificity, 
%

Positive 
predictive value F-measure

Accuracy, 
%

Sequential minimal optimization d −49 0.84 0.74 0.76 0.80 78.9
d +21 0.82 0.74 0.76 0.80 78.9

Random forest d −49 0.84 0.74 0.76 0.80 78.9
d +21 0.74 0.79 0.78 0.76 76.3

Alternating decision tree d −49 0.68 0.79 0.76 0.72 73.7
d +21 0.53 0.68 0.63 0.57 60.5

Naïve Bayes d −49 0.79 0.74 0.75 0.77 76.3
d +21 0.84 0.74 0.76 0.80 78.9

https://doi.org/10.3168/jds.2019-17114
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Figure 7. (a) Leverage and squared prediction error (SPE) scatter plots of the ANOVA-simultaneous component analysis (ASCA) variables 
submodels for normal (NBCS; <3.5 BCS and <1.2-cm backfat thickness at dry-off) and overconditioned (HBCS; >3.75 BCS and >1.4-cm 
backfat thickness at dry-off) cows, time, and their interactions. Vertical and horizontal lines indicate cut-off leverage and SPE values, respec-
tively. The leverage evaluates the importance of the metabolite to the model, and SPE tests the fitness of the model for particular metabolites. 
Metabolites with a high leverage value and a low SPE value were considered to be differential metabolites (the well-modeled group). Metabolites 
in blue have patterns that are different from the major patterns. (b) Details of compounds in the leverage–SPE scatter plots of the ASCA vari-
ables submodels for group (HBCS vs. NBCS cows), time (d −49, +3, +21, and +84 relative to calving), and their interactions. (c) Hotelling’s T2 
distribution is a generalization of Student’s t-statistic that is used in multivariate hypothesis testing. Hotelling’s T2 was used to rank the serum 
metabolites by their difference in temporal profiles across different biological conditions (HBCS vs. NBCS cows) over the transition period. 
Metabolites with higher Hotelling’s T2 values include those whose profiles are more different across the time series. PC aa = di-acyl phosphati-
dylcholine; PC ae = acyl alkyl phosphatidylcholine; SM = sphingomyeline.
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Figure 8. (a, b) Summary plot of meaningful metabolic pathways in serum from the metabolite sets enrichment analysis (MSEA) that are 
ranked by Holm P-value on (a) d −49 antepartum (ap) and (b) d +21 postpartum (pp). (c, d) A total of 170 serum metabolites were imported 
to MSEA to identify the most enriched pathways. Network analysis was constructed to visualize the enriched metabolic pathways. The nodes 
in blue are the metabolic pathways that are enriched across normal cows (NBCS; <3.5 BCS and <1.2-cm backfat thickness at dry-off) and 
overconditioned cows (HBCS; >3.75 BCS and >1.4-cm backfat thickness at dry-off) on (c) d −49 ap and (d) d +21 pp.
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DISCUSSION

A deeper understanding of transition cow biology 
can help reduce the incidence of metabolic diseases in 
early lactation (Drackley, 1999; Grummer et al., 2004). 
Overconditioning is related to an increased risk for pro-
duction diseases and often results from energy intakes 

exceeding the actual needs in late lactation. We herein 
used an experimental model for overcondition devel-
oping in late lactation. In contrast to other previous 
studies comparing cows of different BCS by applying 
different feeding regimens during the dry period, we 
did this during the last 8 wk before dry-off, similar to 
the approach taken by Roche et al. (2013, 2015), who 

Figure 8 (Continued). (a, b) Summary plot of meaningful metabolic pathways in serum from the metabolite sets enrichment analysis 
(MSEA) that are ranked by Holm P-value on (a) d −49 antepartum (ap) and (b) d +21 postpartum (pp). (c, d) A total of 170 serum metabolites 
were imported to MSEA to identify the most enriched pathways. Network analysis was constructed to visualize the enriched metabolic pathways. 
The nodes in blue are the metabolic pathways that are enriched across normal cows (NBCS; <3.5 BCS and <1.2-cm backfat thickness at dry-off) 
and overconditioned cows (HBCS; >3.75 BCS and >1.4-cm backfat thickness at dry-off) on (c) d −49 ap and (d) d +21 pp.
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Figure 8 (Continued). (a, b) Summary plot of meaningful metabolic pathways in serum from the metabolite sets enrichment analysis 
(MSEA) that are ranked by Holm P-value on (a) d −49 antepartum (ap) and (b) d +21 postpartum (pp). (c, d) A total of 170 serum metabolites 
were imported to MSEA to identify the most enriched pathways. Network analysis was constructed to visualize the enriched metabolic pathways. 
The nodes in blue are the metabolic pathways that are enriched across normal cows (NBCS; <3.5 BCS and <1.2-cm backfat thickness at dry-off) 
and overconditioned cows (HBCS; >3.75 BCS and >1.4-cm backfat thickness at dry-off) on (c) d −49 ap and (d) d +21 pp.



Journal of Dairy Science Vol. 102 No. 12, 2019

SERUM METABOLIC PROFILING OF OVERCONDITIONED COWS 11581

assessed classical metabolites via individual analyses. 
Moreover, we combined the differential feeding with a 
preselection of the cows aiming to amplify the variation 
in BCS that was already in existence in the herd. As 
shown in detail earlier (Schuh et al., 2019) and sum-
marized in Figure 2, the phenotypes in the HBCS and 
NBCS groups obtained maintained these differences 
throughout the entire study period (i.e., until wk 15 
of lactation; Schuh et al., 2019). We used an innova-
tive approach to enhance the current understanding 
of metabolic profiling in the serum of overconditioned 
dairy cows. We used a targeted metabolomics approach 
and different ML algorithms to identify important me-
tabolite differentiators between HBCS and NBCS cows 
and to identify the key metabolic pathways that are 
affected by overconditioning around calving.

Using the ML approach, we found that serum me-
tabolite profiles could successfully separate the 2 
groups with high accuracy on d −49 and +21 relative 
to calving. Using ML, we herein report a panel of serum 
metabolites (12/170) that distinguished HBCS from 
NBCS cows before calving, including His, Ile, Leu, Val, 
Lys, Orn, Pro, Ser, C0, PC aa C36:0, PC aa C40:2, 
and ADMA (Figure 6a). However, due to the different 
diets used in these cows from wk 15 to 7 before calving, 
the changes observed in the serum metabolites on d 
−49 were subject to influences from both body condi-
tion and the diets. The changes observed in the serum 
AA concentrations of HBCS and NBCS cows on d −49 
might be due, at least in part, to the greater microbial 
protein yield and MP supply for the higher-energy diet 
because the observed differences largely disappeared on 
d +3 (i.e., after receiving the identical diets). We found 
greater serum BCAA concentrations in HBCS cows 
than in NBCS cows before calving.

In this study, the above-mentioned subset of serum 
metabolites (n = 12) strongly contributed to the sepa-
ration of HBCS and NBCS cows with higher accuracy 
compared with all 170 metabolites. Appending more 
predictors improves classification performance if and 
only if the predictors carry relevant information. Oth-
erwise, they undermine the classification performance 
by adding more variance and noise to the data, making 
it harder for the classifier to converge to a generalized 
model. The other point to consider is the number of 
animals (n = 38) compared with the number of features 
and predictors (serum metabolites = 170). For most 
of the classical ML algorithms to obtain a model, the 
number of features should be lower than the sample 
size.

Interestingly, the single metabolite with the most 
significant association with overconditioning before 
calving was Leu, which was greater in HBCS cows than 
in NBCS cows (Figure 6a). In addition, by mapping the 

serum metabolites to their respective metabolic path-
ways, some metabolic pathways such as BCAA deg-
radation, propanoate metabolism, biotin metabolism, 
and methyl-histidine metabolism were differentially 
enriched before calving. However, the changes in the 
serum concentrations of BCAA and the enrichment of 
the BCAA degradation pathway associated with over-
conditioning tended to be reduced after calving (Figure 
8b; Supplemental Figure S8a and b, https: / / doi .org/ 10 
.3168/ jds .2019 -17114). Thus, as stated above, we can-
not determine whether these observations were inde-
pendent of differential feeding that cows received from 
wk 15 to 7 before calving. However, elevation in the 
blood concentrations of BCAA, including Leu, has been 
reported in obese individuals (She et al., 2007; New-
gard, 2017) and may contribute to the development of 
insulin resistance and type 2 diabetes. Based on human 
and laboratory animal studies, it is more likely that 
increased circulating BCAA is due to decreased expres-
sion and activity of BCAA catabolic enzyme in obesity 
(She et al., 2007; Pietiläinen et al., 2008; Leskinen et 
al., 2010), and thus, the elevated circulating levels of 
BCAA are probably a consequence rather than a cause 
of insulin resistance (Muniandy et al., 2019). Whether 
greater serum BCAA concentrations act in the same 
manner in dairy cows is currently unknown and war-
rants further investigation.

Propanoate metabolism was also found to be another 
metabolic pathway that was affected in response to 
overconditioning before calving in the current study. 
The propanoate metabolism begins with the conversion 
of propionic acid to propionyl coenzyme A (propionyl-
CoA), which is the usual first step in the metabolism of 
carboxylic acids (Frayn, 2010). In a study by Chen et 
al. (2015), the propanoate metabolism pathway was en-
riched in abnormal obesity in humans and was reported 
to be linked with mitochondrial dysfunction.

Acetylcarnitine, C16:0- and C18: 0 -AcylCN, SM 
C24:0, and long-chain PC were the metabolites 
ranked highest based on Hotelling’s T2 in MEBA in 
both negative and positive modes and were found to 
change significantly over the entire time course based 
on ANOVA. We also identified a subset of serum me-
tabolites (12/170 metabolites) that contributed most 
significantly to discriminating the groups after calving 
on d 21 pp. These metabolites that differentiated be-
tween HBCS and NBCS cows were AcylCN (C2, C3-
DC-C4-OH, C16, C16: 1 -OH, C18:0, and C18:1), AA 
(Gly, Leu), and biogenic amines (t4-OH-Pro, carnosine, 
and creatinine). Acylcarnitines are intermediate fatty 
acid esters that are formed from their respective acyl-
CoA by both mitochondrial and peroxisomal enzymes 
for FAO (Rinaldo and Matern, 2002). We found higher 
levels of C2 and long-chain AcylCN in HBCS cows 
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than in NBCS cows after calving. Accordingly, similar 
changes in serum concentrations of C2 and long-chain 
AcylCN were observed in high-mobilizing cows com-
pared with low-mobilizing cows (Humer et al., 2016). 
It is likely that fatty acid oxidation should be in excess 
relative to oxidation in tricarboxylic acid (TCA) and 
the respiratory chain to guarantee a continuous sup-
ply of energy. In support of this, our data showed an 
increase of long-chain fatty acyl-CoA entry into mito-
chondria, but this did not seem to be paralleled by an 
upregulation of the downstream metabolic pathways, 
such as the TCA cycle and respiratory chain. Thus, 
perturbations of the TCA cycle such as the depletion of 
several TCA cycle intermediates could be one explana-
tion for the incomplete oxidation of the long-chain fatty 
acyl-CoA through β-oxidation in tissues of HBCS cows. 
By mapping the serum metabolites, some pathways 
were found to be closely related to overconditioning 
on d 21 pp. These included mitochondrial β-oxidation 
of fatty acids and fatty acid metabolism. Elevated 
lipolysis, indicated by increasing serum NEFA concen-
trations in early lactation, was observed in this study 
(Supplemental Figure S4a, https: / / doi .org/ 10 .3168/ jds 
.2019 -17114). We speculate that this increase in long-
chain AcylCN might mirror the increase in lipolysis and 
the concomitant increase in FAO rates. The observed 
greater accumulation of long-chain AcylCN in the se-
rum of HBCS cows is consistent with previous findings 
that mitochondrial stress induced by lipid overload is 
associated with incomplete FAO and spillover of Ac-
ylCN into the circulation (Sigauke et al., 2003; Mihalik 
et al., 2010).

The 3 biogenic amines (t4-OH-Pro, carnosine, and 
creatinine) identified by ML algorithms are worth 
further discussion for their associations with overcon-
ditioning after calving. Carnosine, creatinine, and t4-
OH-Pro were increased in the HBCS cows. Carnosine 
is an endogenous dipeptide (β-alanine and l-His) with 
many functions, such as pH buffering, metal ion chela-
tion, and antioxidant properties; the latter is mediated 
both directly and indirectly by different mechanisms, 
including metal ion chelation and scavenging reactive 
oxygen species and peroxyl radicals (Boldyrev et al., 
2013) with systemic rather than local effects (Stegen et 
al., 2015). As reported previously from this experiment, 
HBCS cows were metabolically challenged during early 
lactation due to more severe negative energy balance 
and intense mobilization of body fat, associated with 
reduced DMI and compromised antioxidative capacity 
as reflected by reduced total ferric reducing antioxidant 
power (Schuh et al., 2019). Therefore, in view of results 
obtained in humans and laboratory animals (Boldyrev 
et al., 2013; Stegen et al., 2015; Regazzoni et al., 2016) 
and our present observations, the greater serum car-

nosine concentrations might have a potential to sup-
port antioxidant defenses in HBCS cows. Similarly, el-
evated serum carnosine concentrations in cows in early 
lactation were also reported in previous studies (Huber 
et al., 2016; Zhang et al., 2017c). We also found higher 
levels of creatinine and t4-OH-Pro in HBCS cows than 
in NBCS cows. In the current study, the group dif-
ferences in serum creatinine indicated that creatinine 
could discern the greater mobilization of body reserves 
(body protein in particular) in HBCS cows after calv-
ing. Increased serum creatinine was shown to result 
from deficits in dietary protein in sheep (Sahoo et al., 
2009) and may reflect increased muscle protein degra-
dation.

The metabolic profiling used herein also identified a 
strong phospholipid-sphingomyelin metabolism-related 
signature associated with overconditioning in peripar-
turient cows. Sphingomyelins are formed of a ceramide 
core linked to 1 fatty acid and phosphatidylethanol-
amine or PC (Floegel et al., 2013). Notably, overcondi-
tioning and insulin resistance have been associated with 
altered sphingolipid metabolism and elevated circulat-
ing concentrations of ceramide in overweight cows (Rico 
et al., 2015, 2018). In periparturient cows, circulating 
ceramide concentrations (C18:0, C18:1, C20:0, C22:0, 
C22:1, and C24:1) were higher in overweight (BCS 
>4.0) compared with lean (BCS <3.0) cows, suggesting 
impaired sphingolipid metabolism (Rico et al., 2015). In 
the current study, the serum concentrations of glycero-
phospholipids were inversely associated with overcon-
ditioning around calving. Glycerophospholipids (lyso-, 
diacyl-, and acyl-alkyl-PC) are primarily synthesized 
in the liver either by the cytidine diphosphate–choline 
pathway or via sequential methylation of PE and se-
creted into the circulation as part of blood lipoproteins 
(Cole et al., 2011, 2012). As reported previously from 
this experiment (Schuh et al., 2019), the circulating 
NEFA concentrations in the HBCS group increased 
earlier and to greater levels than those in the NBCS 
group, pointing to an increased risk for high lipid mobi-
lization in the HBCS cows. This is further supported by 
several changes observed in the serum PC. Diacyl-PC 
have long been of interest to scientists in view of their 
critical involvement in the secretion of hepatic triacylg-
lycerides as very low density lipoprotein particles (Cole 
et al., 2012). The liver triglyceride contents of animals 
have not been assessed in the current study, but the 
accumulation of hepatic triglycerides is directly related 
to blood NEFA concentrations (Yuan et al., 2012). It 
is thus likely that a large influx of NEFA into the liver 
accompanied by a reduced level of PC may lead to a 
greater accumulation of triacylglycerides in the liver of 
HBCS cows. Similar to our findings, others have found 
decreasing circulating PC levels in obese humans (Pi-
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etiläinen et al., 2007) and dairy cows affected by fatty 
liver disease during the transition period (Imhasly et 
al., 2014). A further study showed that cows with ex-
cessive lipid mobilization (serum NEFA concentrations 
>0.7 mmol/L) had lower circulating concentrations of 
long-chain PC (C40:3, C42:5, C42:6) compared with a 
low-lipolysis group (serum NEFA concentrations <0.4 
mmol/L; Humer et al., 2016). Thus, the abnormal de-
cline of certain specific PC and SM could serve as a 
potential biomarker indicative of fatty liver disease in 
dairy cows (Imhasly et al., 2014, 2015).

Nutritional management of dairy cows to reach a de-
sired level of BCS at calving should be considered well 
before the start of the dry period. Thus, late lactation 
is an important yet often overlooked part of the lacta-
tion cycle for controlling body condition efficiently. In 
this study, we thus aimed to create a deep phenotype 
that by means of ML would allow for differentiating 
NBCS and HBCS cows according to their metabolic 
profile and identify the important metabolites associ-
ated with overconditioning. Applying ML, we aimed 
to move on from descriptive studies toward elucidat-
ing the metabolic changes in more detail to improve 
our understanding of the pathophysiological processes 
involved. Our results support a working model for 
cows already differing in BCS at dry-off, which most 
resembles the farm situation in which cows are not as-
signed to diets according to their stage of lactation. 
Our data showed mismatched acetyl-CoA generation 
versus entry into the TCA cycle, or mitochondrial fatty 
acid overload, as well as perturbations in blood PC 
in overconditioned cows that were reflected in higher 
circulating levels of AcylCN of short- and long-chain 
length and lower circulating levels of PC. Thus, it is 
not the rate of β-oxidation per se that is important but 
rather the way the resultant metabolite acetyl-CoA is 
further metabolized in the tissues. The implications of 
these findings are important given the therapeutic po-
tential of targeting mitochondrial metabolism. Target-
ing mitochondrial metabolism might be associated with 
concomitant enhancement of hepatic ketone bodies, 
CO2, and ATP production as previously documented 
in human studies. Besides aiming to avoid overcondi-
tion in late lactation, targeting these metabolic assets 
might provide tools for protecting against the meta-
bolic abnormalities associated with overconditioning 
and consequently leading to a successful transition of 
overconditioned cows from late pregnancy to lactation.

CONCLUSIONS

Our data provide valuable information about the 
metabolic footprint of overconditioning in a well-con-
trolled study in periparturient dairy cows. We identified 

a subset of serum metabolites (mainly BCAA and long-
chain AcylCN) that were significantly associated with 
overconditioning in cows. This finding opens up a new 
avenue of research toward identifying the individual 
contributions of these key metabolites in overcondition-
ing. Among the affected pathways, BCAA degradation 
(before calving) and mitochondrial β-oxidation (after 
calving) were the most enriched pathways. Overcondi-
tioned cows had a greater concentration of long-chain 
AcylCN in serum, pointing to mitochondrial overload 
and impairment of β-oxidation rate in early lactation. 
Some of these metabolic pathways were previously 
identified in relation to obesity in humans. This study 
can be extended further to include other data types 
(i.e., miRNA and mRNA or miRNA and protein), 
potentially providing a further step in understanding 
overconditioning in periparturient cows.
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