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Abstract  24 

Morphogen gradients pattern the endoderm and specify liver and pancreatic progenitors in vivo. 25 

However, if specified organ progenitors can be identified and isolated during human pluripotent 26 

stem cell (hPSC) differentiation is unknown. Here, we report the identification of two novel 27 

surface markers, CD177/NB1 glycoprotein and inducible T cell co-stimulatory ligand 28 

CD275/ICOSL, that isolate specified organ progenitors from seemingly homogenous endoderm 29 

differentiations in vitro. These markers allow assessing anterior definitive endoderm (ADE) 30 

patterning and specification in human revealing different morphogen requirements and 31 

induction efficiencies for the generation of specified pancreatic and liver progenitors using 32 

known and novel differentiation paradigms. Furthermore, molecular profiling and 33 

characterisation of CD177+ and CD275+ ADE subpopulations identified differential expression 34 

of signalling components and inverse activation of canonical and non-canonical WNT 35 

signalling. This signalling milieu specifies CD275+ ADE progenitors towards the liver fate. In 36 

contrast, CD177+ ADE progenitors express and synthesize the secreted WNT, NODAL and 37 

BMP antagonist CERBERUS1 and are specified towards the pancreatic fate. Strikingly, 38 

isolated CD177+ ADE progenitors differentiate more homogenously into pancreatic progenitors 39 

as well as into functionally, more mature and glucose-responsive β-like cells in vitro, when 40 

compared to bulk endoderm differentiations. Overall, the identification of novel surface 41 

markers allowed us to isolate, monitor and understand human organ progenitor formation for 42 

the improved differentiation of β-like cells from hPSC. 43 

 44 
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Introduction 48 

Endoderm patterning in the mouse embryo directly translates into formation of endoderm-49 

derived organs along the anterior-posterior (A-P) axis, including the thymus, thyroid, lungs, 50 

liver, pancreas and gastro-intestinal tract1-3. High Nodal and Wnt signalling during embryonic 51 

patterning and germ layer formation activates the endoderm transcription factors FoxA2, 52 

Sox17, Eomes and Gata4/6 which leads to the execution of an endoderm program4. A series of 53 

morphogenetic events promotes the transformation of naïve endoderm into the primitive gut 54 

tube. During this period, the primitive gut tube is patterned along the A-P and dorso-ventral (D-55 

V) axis and is divided into fore-, mid- and hindgut domains1. Fate mapping studies have 56 

revealed the fate of endoderm-derived organs is specified already shortly after gastrulation5,6. 57 

It is thought that liver and pancreas progenitors are specified and originate from a multipotent 58 

population of anterior definitive endoderm (ADE) depending on the inductive cues of Fgf, Bmp 59 

and Wnt received from neighbouring tissues7. Moderate doses of Fgf signalling induces 60 

albumin (Alb) expression and liver bud formation, whereas low levels of Fgf promotes Pdx1 61 

expression and the formation of the ventral pancreatic bud8. Similarly, a gradient of Bmp and 62 

retinoic acid (RA) signalling further specifies liver versus pancreatic fate. High Bmp signalling 63 

promotes hepatic differentiation and represses pancreatic fate, while lack of RA fails to induce 64 

the dorsal pancreatic bud and generates impaired liver growth7,9. Likewise, the presence of non-65 

canonical Wnt signalling in the foregut endoderm and pancreatic progenitors but not in liver 66 

progenitors suggested cell type-specific activation of the non-canonical Wnt signalling for 67 

progenitor specification and determination10. However, if human endoderm derived organ 68 

progenitors can be identified in culture is not known. Furthermore, the upstream signals that 69 

direct these progenitors into the PDX1+ pancreatic lineage remain elusive, especially in human 70 

development which is not accessible at this stage11. 71 
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Translation of knowledge gained from in vivo studies of endoderm and pancreas development 72 

have guided the in vitro differentiation of hPSCs towards glucose-responsive and insulin-73 

secreting β-like cells12,13. Over the years, the differentiation protocols were steadily improved 74 

and recently up to 50% of insulin-producing β-like cells can be generated routinely14-16. 75 

However, many β-like cells still remain immature and their response to static glucose-76 

stimulated insulin secretion (GSIS) is not comparable to β cells in human islets14. One common 77 

problem of bulk stem cell differentiation is the remarkable heterogeneity of both 78 

undifferentiated and differentiated hPSCs17,18. Enrichment of correct populations can enhance 79 

the differentiation towards a desired lineage and reduce unwanted differentiation towards other 80 

lineages19,20. Previous surface marker screens at pancreatic endoderm stage showed that 81 

enrichment of pancreatic endoderm and endocrine cells can enhance pancreatic progenitor 82 

differentiation towards hormone-positive and glucose-responsive cells21-23. Thus, we 83 

hypothesize that cellular heterogeneity has a significant impact on endoderm patterning and 84 

pancreatic differentiation. 85 

To resolve endoderm heterogeneity we aimed to ascertain novel surface markers for the 86 

identification and characterisation of endoderm subpopulations with the aim of detecting 87 

endoderm-derived organ progenitors in culture. The recognition of CD177 and CD275 as 88 

specific surface markers for ADE subpopulations allowed us to confirm that bulk endoderm 89 

differentiation cultures from human induced pluripotent stem cells (hiPSCs) and human 90 

embryonic stem cells (hESC) are very heterogeneous in nature. Detailed analysis of the CD177+ 91 

and CD275+ ADE progenitors during early differentiation further allowed us to understand the 92 

signals and factors that induce ADE subpopulations and guide liver and pancreatic 93 

differentiations in human. The enrichment of CD177+ ADE permitted for more homogenous 94 

pancreatic differentiation which resulted in improved maturation and function of insulin-95 

producing β-like cells.  96 
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Results 97 

Identification of novel surface markers to distinguish specified ADE subpopulations 98 

Self-organisation and spatial patterning has been recently studied using hESCs24. Current hESC 99 

differentiation protocols induce a seemingly homogenous population of definitive endoderm 100 

(DE) when measured by specific marker genes, i.e. CXCR4, CXCR4/CD117 or 101 

FOXA2/SOX17 at day 4 of differentiation (D4) (Fig. 1a-c). To investigate whether endoderm 102 

differentiation is homogenous we used fluorescent activated cell sorting (FACS) based on 103 

CXCR4 (CD184) and c-KIT (CD117) marker expression and analysed the induced endoderm 104 

by quantitative PCR (qPCR) (Fig. 1b and 1d-g). Surprisingly, CD117 marks only a subset of 105 

CXCR4+ endoderm (63.3%) and the CXCR4+/CD117+ double positive population can be 106 

divided into CXCR4high/CD117high (21.3%), CXCR4mid/CD117mid (15.4%), 107 

CXCR4low/CD117low (26.6%) and CXCR4+/CD117- (15.3%) subpopulations (Fig. 1b). We 108 

found inverse expression levels of FOXA2 and SOX17 in the sorted CXCR4high/CD117high to 109 

CXCR4low/CD117low subpopulations (Fig. 1d, e) and increased expression of the ADE markers 110 

CERBERUS1 (CER1) and hematopoietically expressed homeobox (HHEX) in 111 

CXCR4+/CD117- and CXCR4high/CD117high subpopulations, respectively (Fig. 1f, g). FoxA2 112 

and Sox17 are expressed along opposite A-P gradients in the endoderm during mouse 113 

gastrulation25. These results suggest that the endoderm is molecular heterogeneous and receives 114 

some kind of pattern information in culture, likely through neighbouring cell-type 115 

interactions24, similar to the endoderm in vivo26. 116 

We speculated that the heterogeneity in endoderm can be a result of specified organ progenitors 117 

generated in the culture. Endoderm fate mapping studies in mouse embryos have presented 118 

already specified liver, pancreas and intestinal progenitors shortly after gastrulation5,27. To 119 

resolve endoderm heterogeneity and isolate different endoderm organ progenitors in vitro, we 120 

performed a screen to find novel surface markers that distinguish specified endoderm 121 
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subpopulations. We screened a library of 330 monoclonal antibodies (mAbs) directed against 122 

surface epitopes to identify mAbs that detect subpopulations of DE (FOXA2+/CXCR4+) in H9 123 

hESC at D4 (Fig. 1h, Supplementary Fig. 1a,b). These antibodies included known cluster of 124 

differentiation markers, integrins and other cell surface markers. In general, CXCR4 marks the 125 

entire DE in mouse and humans and is commonly used as a standard marker for quantifying 126 

DE during in vitro differentiations13,28. The use of FOXA2 not only allowed us to identify novel 127 

antibodies that identify DE (FOXA2high/CXCR4+), but also exclude mesendoderm progenitors 128 

(FOXA2low/CXCR4-) present in differentiation cultures (Supplementary Fig. 1b). From the 129 

initial screen, we discovered 30 mAbs which marked distinct subpopulations of the DE 130 

(Supplementary Table 1, Supplementary Fig. 1a). These markers were selected based on mean 131 

intensity of expression in the FOXA2high/CXCR4high population, while being preferentially 132 

lower expressed in the FOXA2low and FOXA2-/CXCR4- populations. As we were specifically 133 

interested in ADE-derived organ progenitors, the secondary screen was focused on mAbs that 134 

identify ADE subpopulations and partially co-express the ADE marker CER1 (Supplementary 135 

Fig. 1e). This identified glycoprotein CD177/NB1, a molecule required for activation of 136 

neutrophils29, as a candidate marker due to its highly dynamic expression range within the DE 137 

population (FOXA2high/CXCR4high) and marking ~49% of CER1+ ADE subpopulation in 138 

CXCR4+ DE (Supplementary Fig. 1c, f). Additionally, CD275/ICOSL, a factor required for T 139 

cell generation30, showed a somewhat broader distribution marking a major subpopulation of 140 

CXCR4+ cells and ~24% of the CER1+ ADE subpopulation in CXCR4+ DE (Supplementary 141 

Fig. 1d, f). mRNA quantification of the enriched CD177+ and CD275+ subpopulations by 142 

magnetic activated cell sorting (MACS) revealed high expression of the endoderm marker 143 

genes FOXA2 and SOX17, when compared to the CXCR4+ sorted DE population 144 

(Supplementary Fig. 1g). Interestingly, the CD177+-enriched subpopulation showed higher 145 

levels of the ADE marker CER1, while the CD275+-enriched subpopulation showed higher 146 

levels of the ADE and liver marker HHEX, suggesting that these are distinct ADE 147 
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subpopulations (Supplementary Fig. 1h)26. Furthermore, in DE cells that are >90% CXCR4+, 148 

CD177 marks ~37% and CD275 marks ~20% of cells in H9 hESC differentiation at D4 (Fig. 149 

1h,i). Analysis of several hiPSC and hESC lines affirm that the induction efficiency of pan-150 

endoderm marker CXCR4 reaches up to ~90% in all cell lines making it seemingly homogenous 151 

endoderm (Supplementary Fig. 2a,b). However, further measuring of CD177 or CD275 ADE 152 

markers in CXCR4+ DE revealed marked differences, suggesting that different ratios of ADE 153 

subpopulations are generated in different hiPSC and hESC lines (Supplementary Fig. 2c). When 154 

we compared three previously established endoderm differentiation schemes14,15,31, we 155 

observed differences in the efficiencies of the two ADE subpopulations at almost identical 156 

levels of CXCR4+ DE expression in the H9 hESC and HMGUi001-A hiPSC (Supplementary 157 

Fig. 3). Taken together, these results suggest that we discovered two novel surface markers that 158 

identify distinct ADE subpopulations in the bulk endoderm population, which are induced to 159 

different extend depending on cell line and differentiation protocol. 160 

CD177 and CD275 mark molecular distinct ADE subpopulations  161 

To further characterize CD177+-, CD275+-, and CXCR4+- ADE subpopulations we used MACS 162 

followed by global gene expression profiling and qPCR (Fig. 2a). Gene expression profiles 163 

followed by principal component analysis (PCA) revealed that the enriched CD177+ and 164 

CD275+ ADE subpopulations were not only different from each other, but also different to the 165 

CXCR4+ DE, demonstrating heterogeneity in endoderm differentiation at D4 (Fig. 2b). Gene 166 

ontology (GO) and differential gene expression analysis in three-way comparisons of CD177+, 167 

CD275+ and CXCR4+ populations identified genes related to pathways regulating endoderm 168 

patterning and proliferation as well as pancreatic cell-fate specification (Fig. 2c-e). These 169 

included positive regulation of TGF-β32, downstream signalling of activated FGFR1 pathway7, 170 

positive regulation of MAPK cascades33, retinoic acid (RA)-mediated signalling9 and regulation 171 

of canonical and non-canonical WNT/planar cell polarity (PCP) signalling10.  172 
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Non-canonical and canonical Wnt signalling were described to be differentially regulated in 173 

mouse pancreas vs liver progenitors, respectively10. Due to differential expression of CER1 174 

(Supplementary Fig. 1), a Wnt, Bmp and Nodal signalling antagonist34 and other WNT 175 

signalling components enriched in ADE subpopulations (Fig. 2d-e), we tested whether the 176 

CD177+ and CD275+ ADE subpopulations receive differential WNT signalling. Specifically, 177 

components of the non-canonical WNT/PCP pathway, such as DVL2, CELSR1, and JNK as 178 

well as WNT/PCP ligands, i.e. WNT5A and WNT4 were upregulated in the CD177+ ADE 179 

subpopulation (Fig. 2f). In contrast, the expression of canonical ligand WNT3A and its target 180 

gene AXIN2 were upregulated in the CD275+ ADE subpopulation (Fig. 2g). Western blot 181 

analysis showed increased DVL2 and phospho-JNK levels proposing signalling activation of 182 

the WNT/PCP pathway in the CD177+ ADE subpopulation (Fig. 2h, i). Nuclear translocation 183 

of β-catenin is a hallmark of canonical WNT activation35, thus we tested for the distribution of 184 

β-catenin in the nucleus and cytoplasm by immunofluorescence in the isolated subpopulations. 185 

Remarkably, β-catenin was highly enriched in adherens junctions of CD177+ ADE progenitors, 186 

suggesting degradation in the cytoplasm. Conversely, β-catenin accumulation was observed in 187 

the nucleus and cytoplasm of CD275+ and CXCR4+ populations (Fig. 2j). These results suggest 188 

that CD275+ ADE progenitors receive canonical WNT/β-catenin signalling and might be 189 

specified towards the liver fate, while CD177+ ADE progenitors receive non-canonical 190 

WNT/PCP signalling and might be specified towards the pancreatic fate5,10.  191 

CD177 identifies specified pancreatic progenitors in hPSC differentiation 192 

Next, we studied in detail the surface marker expression of CXCR4, CD177 and CD275 during 193 

hiPSC-derived pancreatic and endocrine differentiation in vitro. The expression of CD177 and 194 

CD275 peaked during ADE formation and patterning and gradually decreased during gut tube 195 

and liver and pancreatic progenitor formation, where the expression of CD177 and CD275 was 196 

almost negligible (Supplementary Fig. 4a). In contrast, we observed high expression of CXCR4 197 



9 
 

during pancreatic and endocrine differentiation until the formation of hiPSC-derived β-like 198 

cells. To test whether the differential activation of cell fate specification pathways in CD177+ 199 

and CD275+ ADE subpopulations (Fig. 2) leads to preferential lineage allocation, we explored 200 

the in vitro differentiation potential towards the liver and pancreatic fate. To test for liver 201 

potency we differentiated the MACS sorted cells towards hepatocytes36 and tested the 202 

expression of early liver progenitor genes AFP, TTR and HHEX (Supplementary Fig. 4b, c). 203 

Remarkably, the expression of mRNA transcripts for HHEX, AFP and TTR were upregulated 204 

in CXCR4+- and CD275+-derived early hepatic progenitors, when compared to CD177+-derived 205 

progenitors (Supplementary Fig. 4c). On the other hand, when we tested for pancreatic 206 

differentiation potency (Fig. 3a), we noticed more uniform expression of GATA6, an important 207 

regulator for pancreatic development37-39, and PDX1 in CD177+-derived pancreatic progenitors 208 

at stage 3 (CD177-PP1) when compared to CXCR4+- and CD275+-derived PP1 (Supplementary 209 

Fig. 4d). We also observed that CD177+-derived pancreatic progenitors at stage 4 (CD177-PP2) 210 

expressed very high mRNA levels of PDX1 and NKX6.1 (Fig. 3b). Immunofluorescence (Fig. 211 

3c) and FACS analysis (Fig. 3d-e) substantiated these findings, suggesting that sorting of the 212 

specified CD177+ ADE subpopulations can enhance the differentiation potential towards the 213 

pancreatic lineage. To exclude the undirected generation of other endoderm-derived organ 214 

progenitors we tested lung (SOX2+) and gut (CDX2+) markers, which were not expressed in 215 

any of the sorted subpopulations at S4 (Supplementary Fig. 4e). Moreover, bulk endoderm 216 

differentiation of several hiPSC and hESC lines consistently showed a positive correlation of 217 

CD177+ ADE at S1 with pancreatic differentiation efficiency at S3 (Supplementary Fig. 5). For 218 

further analyses we used the H1 hESC and HMGUI001-A hiPSC cell lines due to their superior 219 

pancreatic differentiation efficiencies (Supplementary Fig. 5). Taken together, these results 220 

suggest that CD177 not only predicts pancreatic differentiation efficiency at DE stage, but also 221 

shows that CD177-sorted ADE subpopulation differentiates more efficiently into pancreatic 222 

progenitors. 223 
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Canonical WNT inhibits, whereas non-canonical WNT signalling promotes the pancreatic 224 

fate 225 

CD275+ ADE receives canonical WNT signalling and is biased towards liver differentiation, 226 

whereas CD177+ ADE receives non-canonical WNT signalling and is biased towards the 227 

pancreatic fate, consistent with in vivo data from mouse liver and pancreas development10. To 228 

directly test whether modulation of WNT signalling has an impact on pancreatic in vitro 229 

differentiation from hiPSCs, we added IWP2, a Porcupine inhibitor that selectively inhibits 230 

palmitoylation and secretion of Wnt ligands,40 to our differentiation cultures. We modulated 231 

WNT signalling during primitive gut tube (PGT) formation and patterning at S2, when the 232 

expression of CD177 and CD275 reach peak levels (Supplementary Fig. 4), and then further 233 

differentiated towards PP2 stage (Fig. 4a). Under standard differentiation conditions without 234 

IWP2, FACS analysis for PDX1+/NKX6.1+ showed ~75% PP2 cells derived from CD177+-235 

ADE, whereas ~23% were generated from CD275+-ADE and ~45% from CXCR4+-DE (Fig. 236 

4b, Supplementary Table 2). After the addition of IWP2, the percentages of PDX1+/NKX6.1+ 237 

PP2 cells derived from CXCR4+-DE (~70%) and CD275+-ADE (~50%) increased drastically, 238 

suggesting that the inhibition of WNT ligand secretion promotes pancreatic differentiation (Fig. 239 

4b, c). No differences were observed in the percentages of PDX1+/NKX6.1+ cells in CD177+-240 

PP2s, suggesting that CD177+ADE progenitors, which express CER1, are already shielded from 241 

WNT signalling activation, consistent with our previous results (Fig. 2). In addition, CD177+-242 

PP2 showed significantly higher percentages of PDX1+/NKX6.1+ pancreatic progenitors when 243 

compared with previously published protocols (Supplementary Table 2). 244 

As IWP2 impedes overall WNT secretion including canonical and non-canonical WNT ligands, 245 

we decided to directly analyse the impact of canonical and non-canonical WNT signalling on 246 

pancreatic differentiation using signalling specific ligands and small molecules (Fig. 4d). 247 

Therefore, we added the canonical WNT ligand WNT3A (20 ng/ml) and the GSK3β inhibitor 248 
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CHIR (3 µM) to activate canonical WNT signalling and WNT5A (400 ng/ml) to stimulate non-249 

canonical WNT signalling pathways. Addition of IWP2 increased the percentages of 250 

PDX1+/NKX6.1+ PP2 cells from ~30% to ~60% (Fig. 4e-g). In contrast, addition of CHIR 251 

(~10%) and WNT3A (~20%) stalled the generation of PP2 cells, while exposure to WNT5A 252 

ligand (~40%) improved PP2 differentiation (Fig. 4d-g). These results together suggest that 253 

canonical WNT signalling inhibits, whereas non-canonical WNT signalling promotes 254 

pancreatic differentiation.  255 

Another hallmark of canonical WNT signalling is the activation of cell-cycle regulators 256 

triggering cell proliferation41 and of non-canonical WNT signalling to promote cell-cycle exit42. 257 

Cell proliferation assessment in CD177+-, CD275+- and CXCR4+-PP2s by EdU pulse labelling 258 

revealed ~15% of CD177+-PP2s were EdU+ compared to ~50% of CD275+- and ~60% of 259 

CXCR4+-PP2s (Fig. 4h, i). Suppression of NGN3 during the early stages of pancreatic 260 

differentiation is vital to reduce the generation of polyhormonal cells expressing insulin and 261 

glucagon43 and cell-cycle lengthening is essential to induce NGN3 expression44. Hence, we 262 

tested for the induction of NGN3 mRNA in CD177+-, CD275+- and CXCR4+-PP2s at S4 and in 263 

endocrine progenitors (EPs) at S5. NGN3 mRNA was tightly regulated in CD177+-PP2s and 264 

very efficiently induced in CD177+-EPs at S5, when compared to CXCR4+- and CD275+-PP2s 265 

and -EPs (Fig. 4j).  266 

CD177+ specified ADE generates efficiently stem cell-derived β-like cells (SC-β-cells)  267 

To determine whether hiPSC-derived CD177+-ADE not only generates more efficiently 268 

pancreatic and endocrine progenitors, but also SC-β-cells we differentiated MACS-enriched 269 

DE and ADE towards INS+/NKX6.1+ cells at S7 (Fig. 5a). Since CXCR4+-DE represents the 270 

bulk endoderm population, we decided to compare CD177+-ADE to CXCR4+-DE and 271 

additionally used unsorted (US) heterogeneous endoderm differentiations to benchmark the 272 

state-of-the art differentiation protocols. We added IWP2 to our cultures to optimize the overall 273 
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pancreatic differentiation efficiencies. In average, ~62% of CD177+- and ~46% of CXCR4+-β-274 

cells synthesized both INS and NKX6.1 protein (Fig. 5b-d). We also observed similar 275 

percentages of INS+/NKX6.1+ cells (~45%) in the US-derived β-like cells (US-β-cells) after the 276 

treatment with IWP2 (Fig. 5b-d). Immunostaining and FACS of sectioned clusters revealed 277 

most of the cells to be INS+ and only a small subset of cells (~10%) of CD177+-β-cells and 278 

(~20%) of US-β-cells were polyhormonal (INS+/GCG+) cells (Fig. 5d, f, g, Supplementary 279 

Table 2). We observed only a small population of polyhormonal INS+/SST+ cells in the US-β-280 

cells  and CD177+-β-cells (Fig. 5e-g). Finally, we repeated these experiments with the H1 hESC 281 

line and confirmed that CD177+-ADE as compared to bulk differentiations shows more 282 

homogenous and efficient pancreatic and β-like cell differentiation (Supplementary Fig. 6a-c, 283 

f-g). 284 

CD177+ specified ADE generates more mature and functional SC-β-cells 285 

Subsequently, we determined whether enrichment of ADE progenitors during early stages of 286 

differentiation not only improved SC-β-cell differentiation efficiency, but also maturation and 287 

function. As the establishment of polarity and compaction plays an important role in maturation 288 

of β-cells42,45, we decided to test if 2D vs 3D culture of the sorted cells influences the induction 289 

and expression of PDX1 and NKX6.1 during pancreatic differentiation. Therefore, we sorted 290 

CD177+ and CXCR4+ DE/ADE and further differentiated these into pancreatic progenitors 291 

either in 2D adherent cultures or after re-aggregation in 3D clusters (Supplementary Fig. 7a). 292 

We observed a slight increase in the amount of PDX1+/NKX6.1+ double positive PP2s in 3D 293 

culture (Supplementary Fig. 7b). Interestingly, we noticed the formation of dense and compact 294 

aggregates with defined E-CAD+ adherens junctions in CD177+-β-cells (Supplementary Fig. 295 

7c), in line with the enrichment of the cell-cell adhesion molecule -catenin in CD177+ ADE 296 

progenitors (Fig. 2l). Next, we analysed the expression of maturation markers in SC-β-cells and 297 

found elevated levels of MAFA and GLUT1 mRNA transcripts in CD177+-β-cells compared to 298 
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US-β-cells, but still significant lower expression when compared to human islets (Fig. 6b). 299 

Immunocytochemistry data showed the presence of MAFA in nuclei (Fig. 6c) and GLUT1 in 300 

both membrane and cytoplasm (Fig. 6e) in higher percentages in CD177+-β-cells at S7. 301 

Quantification by FACS revealed that CD177+-ADE generates more SC-β-cells co-expressing 302 

INS and MAFA (~42%) as well as co-expressing INS and GLUT1 (~38%) (Fig. 6d, f). In line 303 

with this, H1-derived CD177+-β-cells showed higher percentages of β-cells expressing INS and 304 

GLUT1 (~31%) and INS and MAFA (~17%) compared to US-β-cells (Supplementary. Fig. 6d-305 

h). The increased maturation state was further supported by the comparison to previous 306 

published protocols14,15 (Supplementary Table 2), implicating that the isolation of pancreatic 307 

specified ADE promotes more homogenous differentiation towards β-like cells when compared 308 

to heterogeneous bulk DE (Fig. 6f).  309 

Finally, we tested the functionality of US-β-cells and CD177+-β-cells by assessing their 310 

response to glucose stimulation in sequential static and dynamic challenges. At S7, the US- and 311 

CD177+-β-cells in 3D clusters strongly stained red for dithizone (DTZ), a zinc chelating reagent 312 

that stains the insulin granules (Fig. 7a). In line with the increased number and maturation status 313 

(Fig. 6), we recorded significant more insulin content in H1- and hiPSC-derived CD177+-β-314 

cells (Fig. 7b, Supplementary Fig. 8a). Upon exposure to increasing concentrations of glucose 315 

(5.6, 11.1 and 20 mM), US-and CD177+-β-cells showed glucose-stimulated insulin secretion 316 

(GSIS), but US-β-cells failed to prolong the response with 20 mM glucose (Fig. 7c), implying 317 

exhaustion of insulin granules with repeated higher glucose stimuli. Low glucose stimulus of 318 

2.8 mM glucose drastically reduced GSIS in CD177+-β-cells almost to the basal levels (dashed 319 

line) pinpointing tight sensation and glucose regulation compared to US-β-cells (Fig. 7c). Next, 320 

we performed sequential static GSIS with both hiPSC and H1 hESC lines. We observed that 321 

CD177-β-cells were capable of sensing repeated low and high glucose impulses, thus regulating 322 

the insulin release depending upon glucose stimulation in both cell lines (Fig. 7d, 323 
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Supplementary Fig. 8b). Though hiPSC-derived US-β-cells could regulate the initial shift from 324 

2.8 mM to 20 mM glucose, they failed to show increase GSIS in the 2nd glucose challenge (Fig. 325 

7d). H1 hESC-derived US-β-cells completely failed to regulate insulin release upon different 326 

glucose stimulations (Supplementary Fig. 8b).  327 

Ultimately, we supplemented our static assays with dynamic GSIS in two different cell lines; 328 

hiPSC and H1 hESC. We thus tested the response of US-β-cells and CD177+-β-cells to 329 

secretagogues, such as 20 mM glucose, 10 nM Exendin-4 (Ex-4) and 25 mM KCl in a perifusion 330 

system. Upon exposure to 20 mM glucose, CD177+-β-cells consistently displayed a rapid first-331 

phase insulin release as well as a secretory response to the secretagogues Ex-4 and KCl similar 332 

to human islets in both cell lines (Fig. 7e, g, Supplementary Fig. 8d). However, after Ex-4 333 

stimulation SC-β-cells were not capable of shutting off the insulin release rapidly in the low 334 

glucose condition, indicating either a still immature β-cell status or lacking inhibitory - and/or 335 

-cells, when compared to human islets. In agreement with the insulin content of CD177+-β-336 

cells (Fig. 7b, Supplementary Fig. 8a), we consistently observed less insulin secretion compared 337 

to human islets in SC-β-cells (Fig. 7e, g, Supplementary Fig. 8d). In comparison, we did not 338 

observe a first-phase insulin release in US-β-cells on 20 mM glucose stimulation, but a reliable 339 

response to additional Ex-4 induction in the presence of high glucose and KCl hyperpolarization 340 

(Fig. 7f, Supplementary Fig.8c). This data collectively suggests that CD177+-β-cells are 341 

significantly more mature and functional than SC-β-cells derived by bulk differentiation using 342 

hiPSC and hESC cell lines. 343 

 344 

 345 

 346 

 347 
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Discussion 348 

In this study, by means of novel surface markers (CD177 and CD275), we report remarkable 349 

functional heterogeneity of the ADE in vitro, the signalling requirements for pancreatic 350 

progenitor specification and how sorting of specified organ progenitors at the endoderm stage 351 

can improve the differentiation, maturation and function of SC-derived β-like cells in vitro. 352 

Although cellular heterogeneity is an obvious origin for uncontrolled pluripotent stem cell 353 

differentiations resulting in low numbers of terminally differentiated cell types, it has not been 354 

addressed systematically before. We resolved this endoderm heterogeneity by identifying 30 355 

mAbs directed against surface epitopes. Here, we specifically focused on CD177+ and CD275+ 356 

ADE subpopulations. This revealed very different quality and quantity of endoderm generated 357 

in vitro using several hiPSC and hESC lines and different published protocols14,15,31, suggesting 358 

that quality control at early steps of differentiation is warranted to direct ADE and further 359 

endoderm-derived organ differentiation. In vivo, high TGF-β/Nodal activity promotes the 360 

anterior fate, while lower Nodal signalling strength, Bmp signalling from the extra-embryonic 361 

region and high canonical Wnt/β-catenin signalling at the posterior side specifies posterior 362 

fates1,46-48. Interestingly, we observed higher expression of CER1, a Nodal, Bmp and Wnt 363 

signalling antagonist49, in CD177+ ADE progenitors, suggesting an active auto-regulatory 364 

feedback loop modulating ligand-receptor interactions in these cells and thus fine-tuning the 365 

morphogen requirements to maintain the anterior characteristic and fate specification of the 366 

CD177+ ADE progenitors1,50,51. Hence, we propose that the endoderm is inherently 367 

heterogeneous and depending upon the signalling it receives, the endoderm is patterned by 368 

intrinsic and extrinsic cues which translate into the formation of distinct organ progenitors. In 369 

the future it will be interesting to explore the nature of the other endoderm subpopulations that 370 

can be marked by one of our 30 mAbs to identify organ progenitors for the lung, thymus and 371 

thyroid and the related signalling cues to induce fate specification and allocation. 372 
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Endoderm patterning in mice leads to fate specification of organ progenitors5. In human, 373 

gastrulation and very early lineage commitment cannot be studied as it has happened already 374 

before pregnancy can be confirmed11. Our study has helped to get first insights into how fine 375 

tuning of morphogen gradients lead to patterning and fate specification during human endoderm 376 

development in vitro. The secretion of the extracellular WNT, BMP and NODAL inhibitor 377 

CER1, positive regulation of TGF-β signalling, regulation of canonical and non-canonical 378 

Wnt/planar cell polarity prompted the specification of CD177+ ADE progenitors towards the 379 

pancreatic fate. On the other hand, upregulation of transcription factor HHEX and activation of 380 

canonical WNT signalling specified CD275+ ADE subpopulations towards the liver fate. 381 

Interestingly, blocking the secretion of WNT ligands promoted, whereas activation of the 382 

canonical WNT pathway inhibited the pancreatic fate, thus underpinning the role of canonical 383 

WNT inhibition during pancreatic fate specification10. The efficient generation of CD177+ 384 

ADE-derived pancreatic progenitors showed that depleting cell populations that are not 385 

specified towards the pancreatic fate can help in increasing the homogeneity of organ 386 

progenitors and improve directed differentiation. This is an important consideration when 387 

choosing an 2D adherent or 3D cluster differentiation paradigm. For example, even if endoderm 388 

induction efficiency is >90%, dragging along mesoderm (contaminating) cells in bulk 389 

differentiations can vastly influence the specification and identity of endoderm-derived organ 390 

progenitors. Priming of sorted CD177+ ADE progenitors towards pancreatic fate by non-391 

canonical WNT/PCP signalling further translated into efficient pancreatic and endocrine 392 

specification of these cells. In mice, loss of Celsr2 and Celsr3, two principle components of 393 

WNT/PCP signalling reduced endocrine specification, β cell differentiation and glucose 394 

homeostasis52.  395 

Islet architecture and compaction as well as the WNT/PCP pathway trigger β cell maturation 396 

and function42,45. Recently published protocols for the generation of β-like cells in vitro used 397 
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an air-liquid interface (ALI) system to maintain apical-basal polarity to generate glucose-398 

responsive β-like cells14,53. The pancreatic progenitors generated from CD177+ ADE were more 399 

polarised and formed tighter and compact clusters likely due to the high expression and activity 400 

of the Wnt/PCP pathway and increased cell-cell adhesion. This together with the enrichment of 401 

specified pancreatic progenitors potentially explains the more homogenous pancreatic and 402 

endocrine differentiation. The evident increased expression of β cell maturation marker MAFA 403 

and GLUT1 in CD177+ ADE-derived β-like cells suggested that cluster architecture and 404 

polarisation have an impact on maturation and functionality. Another striking result was the 405 

expression of glucose transporter GLUT1 by CD177+ ADE generated β-like cells. In mouse β 406 

cells, the presence of GLUT2 during maturation of β cells is necessary for the proper uptake 407 

and sensing of glucose to initiate insulin secretion45. Upon static glucose stimulation, the insulin 408 

secretion of the in vitro generated β-like cells using previously published protocols is ~1.5-2 409 

fold14,15,38,54,55. The β-like cells generated from enriched CD177+ ADE, however, showed 410 

increased insulin content and improved sequential static and dynamic GSIS with a rapid first-411 

phase response. Nevertheless, in the light of recent publications the link between classical 412 

maturation markers (MAFA and GLUT1) and functionality of SC-β-cells needs to be 413 

revisited56,57. In both studies the authors failed to detect MAFA and GLUT1 expression in the 414 

SC-β-cells, but both studies showed dynamic GSIS. One study showed rapid first-56 and the 415 

other rapid first- and second-phase insulin secretion57 after glucose stimulation. Contrary to 416 

these findings, ours and other studies show co-expression of INS and MAFA in SC-β-417 

cells14,23. A combined approach of enriching CD177-ADE progenitors and improved 418 

differentiation protocols56,57 will further enhance the maturation and functionality of SC-β-419 

cells. This points towards the actuality that hESC and hiPSC genetic background, 420 

differentiation protocols, methods and antibodies, as well as functional read-outs are 421 

inherently different and need to be harmonized for standardized quality control of SC-β-422 

cells.  423 
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Recent publications also point to the fact that enrichment of certain subpopulations of cells (e.g. 424 

CD177+ ADE or GP2+ PP)22,23 at different stages during differentiations can enhance the 425 

efficiency of the terminally differentiated phenotypes and increases the purity and safety of the 426 

differentiation product. Isolation of CD177+-specified ADE progenitors will help in controlling 427 

the differentiation at early stages even before PDX1 can be measured thereby maintaining 428 

homogeneity at later stages of differentiation. Testing CD177 induction at DE/ADE stage at S1 429 

can be used as an estimate to determine the differentiation potential of genetically different 430 

hiPSC and hESC lines towards the pancreatic lineage. This can be important for upscaling the 431 

differentiation process and generate large number of pancreatic progenitors for β-cell 432 

replacement therapy. Encouraging results on self-expanding endoderm have shown the capacity 433 

to enhance homogenous differentiation to hormone producing cell types by synchronizing the 434 

differentiation speed and reducing cellular heterogeneity28.  435 

Taken together, our results do not only broaden the understanding of human pancreatic 436 

development but also provides insights into how the translation of certain developmental cues 437 

can contribute to generation of mature β-like cells in vitro. CD177+ and CD275+ serve as tools 438 

to standardise early differentiations in terms of generation of specified organ progenitors before 439 

moving on with expensive and time-consuming long-term differentiation paradigms. In light of 440 

these recent findings, our study will help to globally accelerate upscaling the production of 441 

clinically relevant cells for disease modelling, drug testing and cell-replacement therapy. 442 

 443 

 444 

 445 

 446 

 447 
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Materials and Methods 448 

 449 
Cell sources 450 

Human islets were obtained from the Rudbecklaboratoriet C11 (Uppsala, Sweden) and islet 451 

core facility (Edmonton, Canada) with informed consent. The H9, H1 and HUES8 hESC lines 452 

was received from WiCell Research Institute, Inc. (Madison, WI). The Mel1-NKX6.1-GFP 453 

were obtained from Australian Stem Cell Centre (Clayton, Victoria). An episomal 454 

reprogrammed HMGUi-001 iPSC line was generated in lab from control group of MODY-4 455 

patients58 (Gibco Human Episomal iPSC, Cat#A18945, Life Technologies, CA). All cell lines 456 

have been authenticated by Cell Line Genetics (Madison, WI) and confirmed to be 457 

mycoplasma-free by using the Lonza MycoAlert Mycoplasma Detection Kit (Lonza, 458 

Cat#LT07-418). The hESC lines were used under the permission of Robert Koch Institute. 459 

In vitro differentiation of human pluripotent stem cells towards pancreatic β-like cells. 460 

H9, H1, Mel1-NKX6.1-GFP, HUES8 and HMGUi-001 iPSCs were cultured on 1:30 diluted 461 

Geltrex (Invitogen, U.K, Cat#A1413302) in StemMACS iPS-Brew medium (Miltenyi Biotec, 462 

Germany, Cat#130-104-368). At ~70% confluency, cultures were rinsed with 1× DPBS without 463 

Mg2+ and Ca2+ (Invitrogen, Cat#14190) followed by incubation with 0.5 mM EDTA 464 

(Applichem, Cat#12604-021) for 2–3 min at 37°C. Single cells were rinsed with iPS-Brew, and 465 

spun at 1300 r.p.m. for 3 min. The resulting cell pellet was suspended in iPS-Brew medium 466 

supplemented with Y-27632 (10 μM; Sigma-Aldrich; MO, Cat#Y0503) and the single cell 467 

suspension was seeded at ~1.5–2×105 cells/cm2 on Geltrex-coated surfaces. Cultures were fed 468 

every day with iPS-Brew medium and differentiation was initiated 24 h following seeding, 469 

resulting in ~90% starting confluency. This confluency is a key factor to getting proper 470 

patterning of endoderm. 471 
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The cells were differentiated towards definitive endoderm using MCDB131 medium 472 

supplemented with 0.5% BSA (Sigma, Cat#10775835001), 100 ng/ml Activin A (Peprotech, 473 

Cat#120-14-300) and 25 ng/ml WNT3A (Peprotech, Cat#315-20) or 3 µM CHIR-99021 474 

(Miltenyi Biotec, Cat#130-103-926) for the first day. For the next 2 days, the cells were treated 475 

with MCDB131 supplemented with 0.5% BSA and 100ng/ml Activin A. 476 

For differentiation towards β cells, Rezania et al. 2014 β-cell differentiation protocol was 477 

used14. In nutshell, the cells were differentiated towards primitive gut tube with MCDB131 478 

supplemented with 0.5 % BSA, 50 ng/ml of FGF7 (Peprotech, Cat#100-19-100) 0.25 mM 479 

ascorbic acid (Sigma, Cat#120-14-300) and 1.25 µM IWP2 (Tocris, Cat#3533-10) for 2 days. 480 

For the WNT signalling activation experiments only, 20 ng/ml of WNT3A or 3 µM CHIR was 481 

added to the cultures along with the S2 medium without IWP2. For differentiation towards 482 

posterior foregut, the cells were further exposed to MCDB131 medium supplemented with 483 

1xGlutamax (Gibco, Cat#A12860-01), 2% BSA (Cat#10775835001), 0.25 mM ascorbic acid 484 

(Sigma, Cat#A4544-25G), 50 ng/ml FGF7, 0.25 µM SANT-1 (Sigma, Cat#S4572-5MG), 1 µM 485 

retinoic acid (Sigma, Cat#R2625-50MG), 100 nM LDN193189 (Sigma, Cat#04-0074), 1:200 486 

ITS-X (Gibco, Cat#51500-056) and 200 nM TPB (Merk Millipore, Cat#565740-1MG) for 2 487 

days. The cells were then further differentiated towards pancreatic endoderm using MCDB131 488 

supplemented with 1xGlutamax, 10 mM final glucose concentration, 2% BSA, 0.25 mM 489 

ascorbic acid, 2 ng/ml FGF7, 0.25 µM SANT-1, 0.1 µM retinoic acid, 200 nM LDN193189, 490 

1:200 ITS-X and 100 nM TPB for 3 days. For induction of pancreatic endocrine precursors, the 491 

cells were next exposed to MCDB131 medium supplemented with 1xGlutamax, 20 mM final 492 

glucose concentration, 2% BSA, 0.25 µM SANT-1, 0.05 µM retinoic acid, 100 nM 493 

LDN193189, 1:200 ITS-X, 1 µM T3 (Sigma, Cat#T6397-100MG), 10 µM ALK5 Inhibitor II 494 

(Enzo life sciences, Cat#ALX-270-445-M005), 10 µM zinc sulphate (Sigma, Cat#SI Z0251-495 

100G) and 10 µg/ml heparin (Sigma, Cat#H3149) for 3 days. Hormone positive cells were 496 
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generated by exposing the endocrine progenitors from last step with MCDB131 supplemented 497 

with 1xGlutamax, 20 mM final glucose concentration, 2% BSA, 100 nM LDN193189, 1:200 498 

ITS-X, 1µM T3, 10 mM ALK5 Inhibitor II, 10 µM zinc sulphate and 100 nM gamma secretase 499 

inhibitor XX (Merck, Cat#565789) for the first 7 days. For maturation of β-like cells, the cells 500 

from previous stage were treated with 2% BSA, 1:200 ITS-X, 1 µM T3, 10 µM ALK5 inhibitor 501 

II, 10 µM zinc sulphate, 1 mM N-acetyl cysteine (Sigma, Cat#A9165), 10 µM Trolox (EMD, 502 

Cat#648471), 2 µM R428 (SelleckChem, Cat# S2841) and 10 mg/ml of heparin for 15 days. 503 

Hepatic lineage commitment protocol 504 

For generation of hepatic progenitors from DE, cells were sorted for CD177, CD275 and 505 

CXCR4 at day 4 and were then seeded on Geltrex coated ibidi chambers at the cell density of 506 

2x105 cells per well. Briefly, the cells were washed the next day and culture medium was 507 

changed to hepatic commitment medium KO-DMEM (Knockout serum replacement medium) 508 

supplemented with 1 mM L-glutamine, 1% nonessential amino acids, 0.1 mM 2-509 

mercaptoethanol, and 1% dimethyl sulfoxide for 3 days. For the maturation, the cells were then 510 

cultured in Iscove’s modified Dulbecco’s medium (IMDM) supplemented with 20 ng/mL 511 

Oncostatin M (Peprotech, Cat#300-10T), 0.5 μM dexamethasone (Sigma, Cat#D1756-1G) and 512 

1:200 ITS-X supplement for 8 more days. 513 

Sorting ADE subpopulations 514 

On day 4 of differentiation (DE/ADE), the differentiated samples were collected and stained 515 

for surface markers CD177, CXCR4 and CD275. For staining of the surface markers, 10 µl Ab 516 

(conjugated to APC) was added per 1x106 cells in 100 µl volume of MCDB1+0.5% BSA. The 517 

cells were stained in dark for 15 min on ice. For magnetic labelling of the antibody the stained 518 

cells were washed 3x with PBS to remove the antibody and then suspended in 80 µl of 519 

MCDB131+0.5% BSA medium with 20 µL of Anti-APC Microbeads per 10x106 of total cells. 520 
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The cells were incubated for 15 min at 4°C. The cells were washed with 1-2 ml of PBS and 521 

then suspended up to 20x106 cells in 500 µL of MCDB131+0.5% BSA and proceeded with 522 

magnetic sorting. For magnetic sorting of the ADE subpopulations, the LS column was placed 523 

in magnetic sorter. The column was rinsed with 3 ml of PBS. Cell suspension was applied to 524 

the column and the flow through containing unlabelled cells was discarded. The column was 525 

then washed 3x with 3 ml of PBS. The antibody positive cells were collected by removing the 526 

column from the separator and flushing it with 5 ml of medium. The cells were then seeded in 527 

iPS-Brew medium supplemented with 10 µM Y-compound at the seeding density of 2-10x103 528 

cells in 1 well of ultra-low attachment round bottom 96 well plates to form an aggregate or 529 

4x105 cells in one well of ibidi chamber for further differentiation and staining. 530 

Quantitative qPCR analysis and gene profiling 531 

Gene expression was assessed in differentiated cells by Taqman Arrays (Applied Biosystems). 532 

Data were analysed using Expression Suite Software (Applied Biosystems) and normalized to 533 

undifferentiated hESCs using ΔΔCt method. Refer to Supplementary Table 3 for primer details. 534 

Immunofluorescence staining and Western blotting 535 

For immunocytochemistry, the cells or aggregates were dissociated using Accutase and fixed 536 

in 4% PFA. The cells were then permeabilised using 0.5% Triton-X in blocking buffer for 30 537 

minutes at room temperature. The cells were blocked for 1 h using donkey block and stained 538 

for interested markers at 4°C overnight. Secondary antibody staining was performed for 2 h at 539 

room temperature. the following day. DAPI staining was used to define nucleus. List of primary 540 

antibodies used for immunostaining are mentioned in Supplementary Table 4. 541 

Nuclear fractionation was done from sorted cells using Subcellular protein Fractionation Kit 542 

for cultured cells from Thermo Scientific (Cat#78840). For Western blotting, cells were 543 

dissociated in RIPA buffer directly after sorting. Cell lysates were resolved by SDS-PAGE, 544 
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transferred to PVDF membrane (Biorad) and incubated with the antibodies (Primary antibody: 545 

o/n, 4°C; Secondary antibody 1 h, room temperature). Protein bands were visualized using HRP 546 

conjugated antibodies and chemiluminescence reagent (Millipore). The bands were quantified 547 

with ImageJ. Refer to Supplementary Table 4 for the dilutions and list of antibodies. 548 

Flow cytometry analysis 549 

hESCs, hiPSCs and differentiated cells were dissociated and single cell suspension was 550 

prepared. The cells were fixed, permeablilised and stained for DE, pancreatic endoderm, 551 

pancreatic progenitors and hormone positive markers. FACS gating was determined using 552 

isotype antibodies. Cells were analysed using BD FACS Aria III. The list of all the FACS 553 

antibodies and isotype controls are mentioned in Supplementary Table 4. 554 

Sequential static glucose stimulated insulin secretion 555 

Sequential static glucose stimulated insulin secretion (seqGSIS) of the generated β-like cells 556 

was performed based on previous described protocols14,59. Briefly, 5 aggregates (6,000-10,000 557 

cells in total) (n=4-5, biological replicates) were picked and rinsed three times with KRBH 558 

buffer (129 mM NaCl, 4.8 mM KCl, 2.5 mM CaCl2, 1.2 mM MgSO2, 1 mM Na2HPO4, 1.2 mM 559 

KH2PO4, 5 mM NaHCO3, 10 mM HEPES and 0.1% BSA in deionized water and sterile filtered) 560 

and then equilibrated in KRBH buffer at 37°C for 30 min. Aggregates then were incubated in 561 

KRBH buffer spiked with 2.8 mM glucose for 30 min at room temperature. Supernatants were 562 

collected and the aggregates were transferred to KRBH buffer spiked with 20 mM glucose for 563 

30 min. Supernatants were collected again. The aggregates were then washed to remove left 564 

over high glucose with KRBH and another round of low glucose and high glucose stimulus was 565 

performed. At the end of the experiment, cell aggregates were dissociated into single cells and 566 

the cell numbers were counted to normalize the GSIS. Mercodia Human Insulin ELISA kit 567 



24 
 

(Mercodia, Cat#10-1113-01) was used to measure the insulin content in supernatant sample 568 

following manufacturer’s protocol. 569 

Dynamic glucose stimulated insulin secretion 570 

Briefly, 25 SC-derived β-cells (iPSC (n=3), H1 hESC (n=5) biological replicates) or human 571 

islets from healthy donors (n=4 biological replicates) were pre-incubated in KRBH buffer (115 572 

mM NaCl, 5 mM KCl, 2.5 mM CaCl2, 1 mM MgCl2, 24 mM NaHCO3,10 mM HEPES and 573 

0.1% BSA, pH 7.4) containing 2.8 mM Glucose for 30 min and then loaded on a nylon filter in 574 

a plastic perfusion chamber containing acrylamide-based microbead slurry (Bio-Gel P-4, Bio-575 

Rad Laboratories). The SC-derived β-cells or human islets were then sequentially perifused 576 

with low glucose (2.8 mM) for 12 min, followed by high-glucose (20 mM) for 24 min, Exendin-577 

4 (10 nM) + high glucose (20 mM) for 24 min, low glucose (2.8 mM) for 12 min and a final 578 

step with 25 mM KCl for 12 min at a constant flow rate of 100 µl/180 sec using the BioRep 579 

perifusion system (Model No. PERI-4.2) maintained at 37°C in a temperature controlled 580 

chamber. Flow through fractions were collected on a 96-well plate maintained at 4°C and 581 

quantified for insulin content using Human Insulin ELISA (Mercodia, Cat#10-1113-01) as per 582 

manufacturer’s instruction. After the completion of run, SC-derived β-cells or human islets 583 

were recovered from perifusion chambers and assayed for DNA contents and quantified using 584 

Quant-IT PicoGreen dsDNA kit, (Thermo Fischer, Cat# P7581). 585 

 586 

 587 

 588 

 589 

 590 
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 Table 1: Demographic information and characteristics of healthy human islet donors 591 

Donor 

ID 

Age 

(Years) 

Gender BMI HLA Islet 

Purity 

(%) 

HbA1c 

(%) 

R301 18 M 19 A:2, - B:65, 49 BW: 6, 4 

CW:7, 8 DRB1: DR:11, 

13 

DQB1: 7, 6 DQA1:5, 1 

DPA1: 1, -DPB1:02;01, 04;01 

Other: DRW - 52, 52 

75 5 

R305 60 M 21 A:11, 31 B:8, 44 BW: 6, 4 

CW:5, 7 DRB1:17, 4 DR:  

DQB1: 2, 7 DQA1: 5, 3 

DPA1: 1, 2 DPB1: 1, 04;01 

Other: DR52present DR53 

present 

80 5.6 

R306 22 M 21.1 A:1, 3 B:8, 65 BW:6, 6 

CW: 7, 8 DRB1:15, 15 

DR:51, -- DQB1:6, 6 

DQA1: 1, 1 DPA1: 1, 1 

DPB1: 1, 01;02  

  

R309 47 F 27.4 A:2 ,3 B:7, 60 BW:6, 6 

CW:10, 7 DRB1:  

DR:5, 15 DQB1:8, 6 

DQA1: 1, 3 DPA1:1, 1 
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DPB1: 04;01, 04;01 

Other: DRW - 53, 51 

R310 25 M 26.4 A:02, 31 B:7, 60 BW:  

CW:10, 7 DRB1:13, 15 DR:  

DQB1: 6, 6 DQA1:1, 1 

DPA1: 1, 2 DPB1:0401, 5 

Other: DRB3 - 52, -- 

  

Human islets were obtained from the University of Alberta Diabetes Institute Islet Core 592 

(Edmonton, Alberta, Canada). Islets from healthy donors R305, R306, R309, R310 were used 593 

for dynamic GSIS, whereas R301, R305, R306, R309, R310 were used for insulin content.  594 

Insulin content 595 

S7 clusters from CD177, unsorted differentiations and human islets were washed with PBS and 596 

dissociated using Accutase. Cells were counted and 1000 cells were collected for measuring 597 

insulin content. The cells were resuspended in Acid-EtOH solution (1.5% HCL and 70% EtOH) 598 

and kept on a shaker at 4°C overnight. The tubes were centrifuged at 2100 g for 15 min and 599 

supernatant was collected and neutralised with an equal volume of 1 M Tris (pH 7.5). Human 600 

insulin was measured using Mercodia Human Insulin ELISA kit (Mercodia, Cat#10-1113-01). 601 

DTZ staining 602 

S7 clusters were washed with PBS and then suspended into DTZ staining for 2 min at RT. The 603 

cells were then washed with PBS and pictures were taken with Leica Stereoscope. 604 

Affymetrix microarray analysis 605 
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For gene profiling, total RNA was extracted using miRNeasy Mini kit (Qiagen, Cat#217004), 606 

RNA integrity was checked using Agilent 2100 Bioanalyzer (Agilent RNA 6000 Pico Kit) and 607 

only high quality RNA (RIN>7) was used for microarray analysis. Total RNA (5 ng) was 608 

amplified using the Ovation Pico WTA System V2 in combination with the Encore Biotin 609 

Module (Nugen). Amplified cDNA was hybridised on Affymetrix Human Gene ST 2.0 arrays 610 

(Affymetrix, 902113). Staining and scanning (GeneChip Scanner 3000 7G) was done according 611 

to the Affymetrix expression protocol including minor modifications as suggested in the Encore 612 

Biotin protocol. Expression console (v.1.4.1.46, Affymetrix) was used for quality control. All 613 

subsequent computational analysis was performed in R using Bioconductor packages. 614 

Expression data were RMA normalised using the oligo package (version 1.42.0) and probe sets 615 

were annotated using the package hugene20sttranscriptcluster.db (version 8.7.0). Differential 616 

expression analyses were performed using the limma package (version 3.34.9) and P-values 617 

were adjusted for multiple testing by Benjamini-Hochberg correction. A gene was considered 618 

as differentially expressed if the raw P-value was below a threshold of 0.01 and the fold-change 619 

was greater than or equal to 1.5. Functional enrichments were conducted using HOMER60. All 620 

microarray data is available at GEO under the accession number GSE113791 621 

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE113791). 622 

Image analysis 623 

Images were acquired with Leica SP5 confocal microscope and Zeiss LSM 880 Airy Scan 624 

confocal microscope. Images taken by Leica confocal were analysed using Leica LAS AF Lite. 625 

Images taken by Zeiss confocal microscope were analysed using Zeiss Zen Blue software. 626 

Statistical analysis and reproducibility 627 

All values are depicted as means ±s.e.m. All statistical tests performed are mentioned in figure 628 

legends for each data set. In brief, statistical significance is defined as P<0.05. Sample sizes are 629 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE113791
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provided in the figure legends. Comparison of 3 or more data sets were performed using 630 

ordinary one way ANOVA with Bonferroni’s multiple comparison test for Figs. 1d-g, 2f-g, 631 

3b/e, 4b/e/i, 6b, 7b and Supplementary Figs. 1g-h, 3e and 4c. Two tailed unpaired t-tests 632 

(Student’s t-test) with Welch’s correction was used in Fig. 4j, 5d/e, 6f, 7d and Supplementary 633 

Fig. 6g/h, 8a. Two tailed unpaired t-tests (Student’s t-test) assuming equal standard deviation 634 

in Supplementary Fig. 8b. All statistics were performed using GraphPad Prism software 8 635 

(GraphPad Software Inc., La Jolla, CA). No statistical methods were used to determine 636 

sample size. All P values are displayed in the figures. 637 
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Main Figure Legends: 860 

Figure 1. Identification of novel CD177+ and CD275+ ADE subpopulations (a) Schematic 861 

representation of hESCs differentiation towards DE showing the growth factors and small 862 

molecules added. (b-c) Representative FACS plot of CXCR4+/CD117+ cells (b) showing a 863 

heterogeneous population and apparent homogenous FOXA2+/SOX17+ (c) DE. (d-e) Gene 864 

expression profiles of CXCR4+/CD117-, CXCR4high/CD117high, CXCR4mid/CD117mid and 865 

CXCR4low/CD117low cells for FOXA2 and SOX17. (f-g) Gene expression profiles of 866 

CXCR4+/CD117-, CXCR4high/CD117high, CXCR4mid/CD117mid and CXCR4low/CD117low cells 867 

for CER1 and HHEX (Fig. 1b-g n=3, biological replicates). Mean ±s.e.m, P<0.05 and P<0.01 868 

is determined using ordinary one way ANOVA with Bonferroni’s test for multiple analysis. (h) 869 

Summary of the antibody screen identifying and isolating CD177+ and CD275+ as novel 870 

markers to identify ADE subpopulations. CXCR4 and FOXA2 are used as controls to identify 871 

the whole DE. (i) hPSCs and hPSC-derived DE stained for CXCR4, CD177 and CD275 as 872 

shown by live cell FACS. 873 

Figure 2. Molecular profiling of CD177+, CD275+ and CXCR4+ DE subpopulations reveal 874 

distinct signatures (a) Summary of differentiation protocol towards DE/ADE followed by 875 

MACS sorting to enrich for CD177 and CD275 subpopulation. CXCR4 represents the non-876 

enriched DE/ADE population. (b) PCA analysis showing mRNA derived transcriptome profiles 877 

are characteristic of different DE/ADE subpopulations. (c-e) Bar graphs of selected and 878 

significantly enriched gene ontology (GO) terms in CD275+ versus CXCR4+ (c), CD177+ versus 879 

CD275+ (d) and CD177+ versus CXCR4+ (e) DE populations. (f-g) Validation of the microarray 880 

analysis by real-time qPCR for non-canonical WNT/PCP components and ligands (f) and 881 

canonical WNT components and ligands (g) (n=3, biological replicates). Error bar represents 882 

±s.e.m; P<0.05 and P<0.01 is determined using ordinary one way ANOVA with Bonferroni’s 883 

test for multiple analysis. Data were normalized to 18S. (h, i) Western blot analysis (h) and 884 

quantification (i) of WNT/PCP components such as p-JNK and DVL2 in ADE subpopulations. 885 

GAPDH is used as a loading control. (j-k) Nuclear fractionation (j) and quantification (k) of β-886 

CATENIN in cytoplasm (C) and nucleus (N) of enriched ADE subpopulations. (l) 887 

Immunofluorescence analysis validated the exclusive localization of β-catenin in the membrane 888 

in CD177+ ADE cells and in the cytoplasm and nucleus in CD275+ ADE and CXCR4+ DE cells. 889 

FOXA2 is used as a nuclear marker. Scale bars 50 µm and 20 µm in inset. 890 

Figure 3. CD177+ ADE efficiently differentiates into PDX1+/NKX6.1+ pancreatic 891 

progenitors (a) Summary of pancreatic differentiation protocol after the enrichment of 892 
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CD177+, CD275+ and CXCR4+ at DE stage. (b) mRNA quantification of PDX1 and NKX6.1 in 893 

S4 cells generated from enriched subpopulations. Data is represented as ±s.e.m; P<0.05 and 894 

P<0.01 is determined using ordinary one-way ANOVA with Bonferroni’s test for multiple 895 

analysis. Data were normalized to CXCR4-PP2. GAPDH was used as a control. (c) 896 

Immunofluorescence staining of CD177+-, CD275+- and CXCR4+-PP2s for PDX1 and NKX6.1 897 

showing most of the CD177-PP2 positive for PDX1/NKX6.1. Scale bars 50 µm. (d) 898 

PDX1/NKX6.1 intracellular FACS analysis and quantification (e) of CD177+-, CD275+- and 899 

CXCR4+-PP2 showing percentage of PDX1+/NKX6.1+ cells. Data is represented as ±s.e.m; 900 

P<0.05 and P<0.01 is determined using ordinary one-way ANOVA with Bonferroni’s test for 901 

multiple analysis. Exact P values are mentioned in the figure. 902 

Figure 4. Inhibition of canonical WNT secretion promotes pancreatic differentiation (a) 903 

Overview of differentiation protocol towards pancreatic progenitors (PP2) where inhibition of 904 

WNT secretion is performed at S2 stage in CD177+-, CD275+- and CXCR4+-DE using IWP2. 905 

(b-c) FACS quantification (b) and immunocytochemistry (c) for the percentage of cells 906 

expressing PDX1+/NKX6.1+ generated from CD177+-, CD275+- and CXCR4+-ADE. Scale 907 

bars, 20 µm. (d-g) Protocol for activation of canonical and non-canonical WNT pathway using 908 

20 ng/ml WNT3A or 3 µM CHIR and 400 ng/ml of WNT5A at S2 stage. (e-g) Analysis (e) of 909 

representative FACS plots (f) and immunofluorescent images (g) for PDX1/NKX6.1 at S4 stage 910 

showing activation of canonical WNT pathway hampering PP2 induction. Data in (b,e,i) is 911 

represented as ±s.e.m; P<0.05 and P<0.01 is determined using ordinary one-way ANOVA with 912 

Bonferroni’s test for multiple analysis. Exact P values are mentioned in the figure. Scale bars, 913 

50µm. (h) EdU staining (h) and quantification (i) for EdU+ cells in different ADE subsets 914 

revealing the exit of cells from the cell cycle. Scale bars, 80 µm. (j) mRNA analysis of NGN3 915 

at S4 and S5 stage in different ADE subpopulations. (n=3, biological replicates). Error bar 916 

represents ±s.e.m; P<0.05, P<0.01, two-sided unpaired t-test. Data were normalized to 18S. 917 

Figure 5. CD177+- ADE efficiently differentiates into NKX6.1+/INS+ β-like cells (a) 918 

Schematic representation of adapted Rezania et al. 2014 protocol for differentiation towards 919 

pancreatic β cells. (b, f) Representative immunofluorescent staining for CD177-β-cells, 920 

CXCR4-β-cells and unsorted (US-β-cells) for: (b) NKX6.1 (red) and C-peptide (green) and (f) 921 

GCG (red), INS (green) and SST (magenta). Nuclear DAPI staining is shown in blue. Scale 922 

bars, 20 µm (b) and 50 µm (f).  (c, g) Representative FACS plots for CD177-β-cells, CXCR4-923 

β-cells and US-β-cells for expression of INS and NKX6.1 (c) and INS, GCG and SST (g). (d-924 

e) FACS quantification of the cells at S7 stage for the percentage of cells expressing INS, 925 
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NKX6.1 and GCG (d) and INS and SST (e). 4 biological independent experiments were used. 926 

Data is represented as ±s.e.m; P<0.05 and P<0.01 is determined using ordinary one-way 927 

ANOVA with Bonferroni’s test for multiple analysis (d) and two-sided unpaired t-test (e). Exact 928 

P values are mentioned in the figure. 929 

Figure 6. CD177+- enriched ADE generates more mature β-like cells in vitro (a) Outline of 930 

the differentiation protocol. (b) Gene expression profile of β-like cells for maturation markers 931 

MAFA and GLUT1. Data are expressed as the fold change relative to US-β-cells. Data is 932 

represented as ±s.e.m; P<0.05 and P<0.01 is determined using ordinary one-way ANOVA with 933 

Bonferroni’s test for multiple analysis. Exact P values are mentioned in the figure. Data were 934 

normalized to 18S. (c, e) Immunohistochemistry for the expression of MAFA (red) and INS 935 

(green) and (e) INS (green) and GLUT1 (red) in US-β-cells and CD177-β-cells. DAPI is shown 936 

in blue. Insets show higher magnification images. For MAFA, staining was performed on 937 

monolayer due to antibody issues in PFA fixed sections. GLUT1 staining was performed on 938 

sectioned aggregates. Scale bars, in low magnification images, 50 µm (c) and high 939 

magnification images 5 µm (c) and 20 µm (e) and inset 80 µm (e). (d, f) FACS analysis (d) and 940 

quantification (f) of cells expressing MAFA and GLUT1 in differentiation at S7. Each point is 941 

a biological independent replicate. Data is represented as ±s.e.m; P<0.05 and P<0.01 is 942 

determined using non-parametric Student’s t test. Exact P values are mentioned in the figure. 943 

Figure 7. Functional characterization of the US-β-cells and CD177-β-cells (a) Images of 944 

US-β-cells and CD177-β-cells stained with DTZ (b) Comparison of insulin content in 1000 945 

cells between US-β-cells (n=9), CD177-β-cells (n=9) and human islets (n=5). (c) Sequential 946 

static GSIS assay comparing the insulin secretion of US-β-cells and CD177-β-cells when 947 

subjected to 2.8, 5.6, 11.1, 20 and 2.8 mM glucose stimulations in the interval of 30 minutes 948 

(n=4, biological replicates) (d) Insulin secretion in static GSIS on 5 aggregates collected from 949 

US-β-cells (n=4; biologically independent experiments) and CD177-β-cells (n=5; biologically 950 

independent experiments) in response to multiple challenges with 30 min of 2.8 and 20 mM 951 

glucose. (e-g) Insulin secretion in response to dynamic glucose, Ex-4 and KCl challenges in a 952 

perifusion system on US-β-cells (f) and CD177-β-cells (n=3, biological replicates) (g) cells in 953 

comparison to human islets (n=4, biological replicates) (e). Data is represented as ±s.e.m; 954 

P<0.05 and P<0.01 is determined using ordinary one-way ANOVA with Bonferroni’s test for 955 

multiple analysis (b) and non-parametric Student’s t test (d). 956 

 957 
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Supplementary Figure legends: 958 

Supplementary Fig. 1. Screening strategy for the identification of endoderm 959 

subpopulations (a) Screening work flow for the initial screen. (b-d) Representative FACS plots 960 

for CD177 and CD275 (b) labelling of differentiated day 4 DE cells with known endoderm 961 

markers (FOXA2 and CXCR4) revealed definitive endoderm (FOXA2+/CXCR4+) and mes-962 

endoderm (FOXA2low/CXCR4-) subpopulations (c-d) CD177 and CD275 expression profiles 963 

reveal different endoderm subpopulations. (e) Immunofluorescent staining for CER1 (green) 964 

with FOXA2 (red) in DE cultures. Scale bar, 50 µm. (f) FACS analysis for CD275+/CER1+ and 965 

CD177+/CER1+ ADE cell populations in day 4 DE. (g-h) qPCR quantification for the mRNA 966 

expression of FOXA2 and SOX17 (g), CER1 and HHEX (h) in enriched CD177+ and CD275+ 967 

ADE subpopulations. Data is represented as ±s.e.m; P<0.05 and P<0.01 is determined using 968 

ordinary one-way ANOVA with Bonferroni’s test for multiple analysis. 969 

Supplementary Fig. 2. Percentage of CD177+ and CD275+ ADE subpopulations induced 970 

in different hESC and hiPSC lines (a-b) Endoderm differentiation scheme from hESCs 971 

towards DE/ADE. (b) FACS plots represent the percentage of CXCR4+/CD177+ and 972 

CXCR4+/CD275+ subpopulations in hH1, hMEL1-NKX6.1, HMGUi001-A hiPSC, HUES8 973 

and H9 at DE/ADE stage. (c) Quantification of flow cytometry data from (b). Each point 974 

represents a biologically independent experiment.  975 

Supplementary Fig. 3. Induction efficiency of CD177+ and CD275+ ADE shows variation 976 

using different protocols (a-c) Adaptation of previously published endoderm differentiation 977 

protocols from hESCs. (d) FACS quantification for the percentage of total population 978 

expressing CXCR4 in DE cells derived from HMGUi001-A hiPSC using 3 different endoderm 979 

induction protocols (n=3 biological replicates). (e) FACS quantification for the percentage of 980 

cells expressing CXCR4+/CD177+ and CXCR4+/CD275+ in DE generated using previously 981 

published protocols. 982 

Supplementary Fig. 4. Differentiation of enriched CD177+ , CD275+ and CXCR4+ ADE 983 

subpopulations towards liver and pancreas fate (a) Expression of CD177+-, CD275+-, and 984 

CXCR4+ during differentiation of hESCs towards pancreatic β-like cells. (b) Liver 985 

differentiation protocol. (c) qPCR quantification of the expression of early liver progenitor 986 

markers HHEX, TTR and AFP in enriched ADE subpopulations. Data is represented as ±s.e.m; 987 

P<0.05 and P<0.01 is determined using ordinary one-way ANOVA with Bonferroni’s test for 988 

multiple analysis. (d) Immunofluorescent staining of pancreatic progenitor cells derived from 989 
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enriched ADE subpopulations for the co-expression of posterior foregut marker GATA6 and 990 

PDX1. Scale bars, 50µm. e) Immunofluorescent staining of pancreatic progenitor cells derived 991 

from enriched ADE subpopulations for the co-expression of lung marker SOX2, intestinal 992 

marker CDX2 and PDX1. Scale bars, 50µm. 993 

Supplementary Fig. 5. CD177+ ADE positively correlates with PP1 induction (a) Pancreatic 994 

induction protocol. (b) FACS analysis of H1, HMGUi001-A hiPSC, HUES8 and MEL1-995 

NKX6.1 for PDX1 at S3 stage. (c) Quantification of CD177+ cells generated at S1 and PDX1+ 996 

cells generated at S3 stage showing correlation between CD177 and PDX1 induction. Each 997 

point on the graph depicts a biologically independent data set. 998 

Supplementary Fig. 6. H1 hESC pancreatic and endocrine differentiations of CD177+ and 999 

US-DE (a) Overview of differentiation protocol used to generate CD177/US-β-cells. (b-e) 1000 

Immunostainings for INS and NKX6.1 (b), GCG, INS and SST (c) and C-peptide and GLUT1 1001 

(d), INS, MAFA and NKX6.1 (e) in CD177- and US-β-cells. Scale bars, 50 µm. (f) 1002 

Representative flow cytometry contour plots of S4 and S7 cells generated from CD177- and 1003 

US-ADE/DE cells on H1 line and stained for indicated markers. (g,h) Percentage of cells 1004 

expressing indicated markers. Data is represented as ±s.e.m; P<0.05 and P<0.01 is determined 1005 

using non-parametric Student’s t test. Exact P values are mentioned in the figure. 1006 

Supplementary Fig. 7. Comparison of 2D and 3D culture system on pancreatic 1007 

differentiation (a) Overview of differentiation protocol used. (b) Comparison of 1008 

PDX1+/NKX6.1+ generated from CD177+- and CXCR4+-ADE in 2D and 3D settings. (c) 1009 

Morphology of CD177 and CXCR4-β-cells; DAPI (blue) and E-CAD (green). Scale bars, 20 1010 

µm. Graph represents the size of the aggregates in µm. Mean ±s.e.m, P<0.05 determined using 1011 

non-parametric Student’s t test. Exact P value is mentioned in the graph. 1012 

Supplementary Fig. 8. H1 hESC-derived CD177-ADE generates more functional -like 1013 

cells in vitro. (a) Insulin content of US-β-cells and CD177-β-cells (n=10, biological replicates). 1014 

(b) Comparison of insulin secretion of US-β-cells and CD177-β-cells in sequential static GSIS 1015 

(n= 5, biological replicates). (c,d) Insulin secretion in response to dynamic glucose, Ex-4 and 1016 

KCl challenges in a perifusion system on US-β-cells (c) and CD177-β-cells (d) (n=5, biological 1017 

replicates). Data is represented as ±s.e.m; P<0.05 and P<0.01 is determined using non-1018 

parametric Student’s t test. Exact P values are mentioned in the figure. 1019 

 1020 
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Supplementary Table 1: List of antibodies selected for secondary screen 1021 

No Antibody Isotype 

1 Mouse IgG1-isotype control  

2 Mouse IgG2a-isotype control  

3 Mouse IgG2b-isotype control  

4 Mouse IgM-isotype control  

5 Rat IgG2a-isotype control  

6 Rat IgG2b- isotype control  

7 CD44 Mouse IgG1 

8 CD90 Mouse IgG1 

9 CD111 Mouse IgG1 

10 CD133/1 (AC133) Mouse IgG1 

11 CD146 Mouse IgG1 

12 CD262 Mouse IgG1 

13 CD275 (B7-H2) Mouse IgG1 

14 Anti-PTK7 (CCK-4) Mouse IgG2a 

15 CD133/2 (293C3) Mouse IgG2b 

16 Anti-PSA-NCAM Mouse IgM 

17 CD15 Mouse IgM 

18 CD49f Rat IgG2a 

19 ANTI CX3CR1 Rat IgG2b 

20 Anti CCR10 Recombinant human IgG1 

21 Anti HLA-DQ Recombinant human IgG1 

22 Anti-SSEA1 Recombinant human IgG1 

23 Anti- SSEA4 Recombinant human IgG1 

24 CD46 Recombinant human IgG1 
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 1022 

 1023 

 1024 

 1025 

25 CD47 Recombinant human IgG1 

26 CD49b Recombinant human IgG1 

27 CD51 Recombinant human IgG1 

28 CD82 Recombinant human IgG1 

29 CD131 Recombinant human IgG1 

30 CD138 (44F9) Recombinant human IgG1 

31 CD171 (LCAM) Recombinant human IgG1 

32 CD177 Recombinant human IgG1 

33 CD244 (2B4) Recombinant human IgG1 

34 CD270 (HVEM) Recombinant human IgG1 

35 CD184 Mouse IgG2a 

36 DCIR Recombinant human IgG1 

37 CD234 Recombinant human IgG1 

38 Anti- LGR5 Rat IgG2b 

39 CD166 Recombinant human IgG1 

40 CD195 CCR5 Recombinant human IgG1 

41 Anti SSEA-5 Mouse IgG1κ 

42 Anti-NOTCH1 Recombinant human IgG1 

43 CD41a (ITGA2b) Recombinant human IgG1 

44 CD49c (ITGA3) Recombinant human IgG1 

45 CD140b Recombinant human IgG1 

46 CD181 (CXCR1) Mouse IgG2bκ 
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Supplementary Table 2: Stage-wise comparison of pancreatic progenitors and β-like 1026 

cells (S3-S7) generated from enriched CD177+ ADE and CXCR4+ ADE vs already 1027 

published protocols*. 1028 

Stage 

(% of cells from 

total population) 

CD177+ 

derived 

pancreatic 

precursors 

CXCR4+ 

derived 

pancreatic 

precursors 

Bulk 

differentiati

onaccordin

g to 

Rezania 

et.al., 2014 

(as 

published) 

Bulk differentiation 

according to Pagliuca 

et.al., 2014  (as 

published) 

S3: PDX1+ cells >70% >50% >89% >85% 

S4: 

PDX1+/NKX6.1+ 
>60% >50% >62% >55% 

S6: 

INS+/NKX6.1+ 

GCG+/INS+ 

 

>60% 

>13% 

 

>50% 

>10% 

 

>44% 

>20% 

 

C-peptide+/NKX6.1+: 

>38% 

GCG+/C-peptide+: >8% 

S7:  

INS+/MAFA+ 

INS+/GLUT1+ 

 

>30% 

>30% 

 

>20% 

>20% 

 

NA 

NA 

 

NA 

NA 

 1029 

* NA: not available 1030 

A direct comparison between GLUT1+/INS+ β-like cells derived from CXCR4+-, CD177+-ADE 1031 

compared to already published protocols at S7 stage was not possible as both the protocols did 1032 

not check for the expression of GLUT1. 1033 

 1034 

 1035 

 1036 
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Supplementary Table 3: List of primers for qPCR 1037 

 1038 

 1039 

 1040 

 1041 

 1042 

 1043 

 1044 

 1045 

 1046 

 1047 

 1048 

 1049 

 1050 

 1051 

 1052 

 1053 

 1054 

 1055 

 1056 

 1057 

 1058 

 1059 

 1060 

 1061 

 1062 

 1063 

 1064 

Primer  Sequence/TaqMan id 

GAPDH Hs02758991_g1 

18S Hs99999901_s1 

FOXA2 Hs00232764_m1 

SOX17 Hs00751752_s1 

CER1 For: CCCATCAAAAGCCATGAAGT 

Rev: TTTCCCAAAGCAAAGGTTGT 

HHEX For: ACGGTGAACGACTACACGC 

Rev: CTTCTCCAGCTCGATGGTCT 

CELSR1 Hs00947712_m1  

WNT4 Hs01573504_m1 

WNT5A Hs01086864_m1  

DVL2 Hs00182901_m1 

WNT3A Hs00263977_m1  

AXIN2 Hs00610344_m1  

NGN3 Hs01875204_s1 

PDX1 Hs00236830_m1 

NKX6.1 Hs01055914_m1 

NEUROD1 Hs01922995_s1 

MAFA Hs01651425_s1/Hs04186804_s1 

GLUT1 Hs00892681_m1 

UCN3 Hs00846499_s1 

TTR For: ACTTGGCATCTCCCCATTC 

Rev:TAGGAGTAGGGGCTCAGCAG 

AFP Hs00173490_m1 

NKX2.2 Hs00159616_m1 

INS Hs02741908_m1 

GCG Hs01031536_m1 
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Supplementary Table 4: List of Antibodies for Immunohistochemistry, FACS and 1065 

Western blotting 1066 

Conjugated antibodies: 1067 

Antibody Company Catalogue No Dilution FACS 

Human CXCR4-PE 

Human CXCR4-APC 

Miltenyi Biotec 

Miltenyi Biotec 

 

130-098-354 

120-010-802 

 

1:40 

Human CD117-APC 

Human CD117-PE 

Miltenyi Biotec 

Miltenyi Biotec 

 

130-091-733 

130-091-734 

 

1:40 

FOXA2 
R and D 

 

IC2400G 

 
1:10 

SOX17 
R and D 

 

IC1924A 

 
1:10 

Human CD177-APC 

Miltenyi Biotec 

 

 

120-017-498 

 
1:20 

Human CD275-APC 

 

Miltenyi Biotec 

 

120-012-112 

 
1:20 

PE Mouse anti-PDX1 
BD Pharmingen™ 

 

562161 

 
1:40 

Alexa Fluor® 647 

Mouse anti-Nkx6.1 

BD Pharmingen™ 

 

563338 

 
1:40 

Alexa Fluor® 647 

Mouse IgG1 κ Isotype 

Control 

BD Pharmingen™ 

 

563023 

 
1:40 

 1068 

 1069 
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Unconjugated antibodies: 1070 

Antibody Company Catalogue No Dilution FACS Dilution IF 

Rabbit FOXA2 Cell signalling 8186 1:1000 1:1000 

Goat SOX17 Acris/Novus GT15094 1:1000 1:1000 

Goat CER1 R&D Systems AF1075 1:1000 1:1000 

Mouse β-

catenin 
BD 610154 1:1000 1:1000 

Guinea pig 

INSULIN 

Thermo 

Schientific 
PA1-26938 1:100 1:100 

Guinea pig C-

peptide 
Abcam ab30477 1:300 1:300 

Rabbit MAFA Betalogics LP9872 1:100 1:100 

Rabbit GLUT1 Thermo Fisher PA1-37782 1:100 1:100 

Goat GATA6 R&D Systems AF1700 1:1000 1:1000 

Mouse SOX2 
Abgent / Bio 

Cat 
AM2048 1:1000 1:1000 

Rabbit CDX2 Santa Cruz sc-134468 1:1000 1:1000 

Goat PTF1A NCBI AB2153 1:1000 1:1000 

Mouse GCG Sigma G2654-.2ML 1:300 1:300 

Goat PDX1 R&D Systems AF2419 1:100 1:500 

Rabbit NKX6.1 

Goat NKX6.1 

Novus 

biologicals 

R&D systems 

NBP1-49672 

AF5857 

1:2000 

1:300 

1:5000 

1:300 

 1071 

Unconjugated antibodies: 1072 

Antibody Company Catalogue No Dilution 

Rabbit p-JNK Cell signalling 4668 1:1000 

Rabbit DVL2 Cell signalling 3216 1:1000 

Mouse β-catenin BD 610154 1:2000 

Mouse GAPDH Merck Biosciences CB1001 1:6000 

 1073 
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Figure 3. CD177+ ADE efficiently differentiates into pancreatic progenitors  

hESCs

MACS Sorting on D4

CD275, CD177, CXCR4
CD275+

CXCR4+

DE/ADE
OCT4
NANOG
SOX2

AA
WNT3A

AA

3d

S1

FOXA2
SOX17
CXCR4

2d

FGF7
VitC

PGT

S2

FOXA2
HNF1A
HNF4A

2d

FGF7
VitC
RA

TPB
SANT-1

LDN

S3

PP1
FOXA2
PDX1

3d

PP2
FOXA2
PDX1
NKX6.1

FGF7
VitC
RA

TPB
SANT-1

LDN

S4
a)

 b)

 d)

PD
X1

NKX6.1

29.4

CXCR4-PP2

CD177-PP2

Isotype

CD275-PP2

C
D

17
7-

PP
2

C
D

27
5-

PP
2

C
XC

R
4-

PP
2

DAPI/MERGE
 c)

0.0

3.89

97.5 1.04

1.46

CD177+

25.4 22.9

47.8 3.81

 e)

CXCR4-P
P2

CD17
7-P

P2

CD27
5-P

P2
0

20

40

60

80

100

p=0.0168

CXCR4-P
P2

CD17
7-P

P2

CD27
5-P

P2
0.0

0.5

1.0

1.5

2.0

2.5

Fo
ld

 c
ha

ng
e 

re
la

tiv
e 

to
 C

XC
R

4-
PP

2

0.0027p= 0.0005p=

CXCR4-P
P2

CD17
7-P

P2

CD27
5-P

P2
0.0

0.5

1.0

1.5

2.0

2.5
0.0286p= 0.0019p=

PDX1 NKX6.1

FACS analysisPDX1  NKX6.1

%
 o

f P
D

X1
+/

N
KX

6.
1+

 c
el

ls

25.2 49.2

5.3220.3

25.1 59.8

12.8 2.31

Fo
ld

 c
ha

ng
e 

re
la

tiv
e 

to
 C

XC
R

4-
PP

2



Figure 4. Inhibition of canonical WNT secretion promotes pancreatic differentiation
a)
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c)  d)

e)

Figure 6. CD177+  ADE generates more mature β-like cells in vitro 
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Supplementary Fig. 1. Screening strategy for the identification of endoderm subpopulations 
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Supplementary Fig.6. H1 hESC pancreatic and endocrine differentiations in CD177+ ADE and US-DE
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Supplementary Fig. 7. Comparison of 2D and 3D cell culture system on pancreatic differentiation
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 a)  b)

 c)  d)

Supplementary Figure 8. H1 hESC CD177+ ADE generates more functional β-like cells in vitro
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