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Summary

� Plant nutrient-acquisition strategies drive soil processes and vegetation performance, but

their effect on the soil microbiome remains poorly understood. This knowledge is important to

predict the shifts in microbial diversity and functions due to increasing changes in vegetation

traits under global change.
� Here we documented the topsoil microbiomes of 145 boreal and temperate terrestrial sites

in the Baltic region that broadly differed in vegetation type and nutritional traits, such as myc-

orrhizal types and symbiotic nitrogen-fixation.
� We found that sites dominated by arbuscular mycorrhizal (AM) vegetation harbor relatively

more AM fungi, bacteria, fungal saprotrophs, and pathogens in the topsoil compared with

sites dominated by ectomycorrhizal (EM) plants. These differences in microbiome composition

reflect the rapid nutrient cycling and negative plant–soil feedback in AM soils. Lower fungal

diversity and bacteria : fungi ratios in EM-dominated habitats are driven by monodominance

of woody vegetation as well as soil acidification by EM fungi, which are associated with

greater diversity and relative abundance of carbohydrate-active enzymes.
� Our study suggests that shifts in vegetation related to global change and land use may

strongly alter the topsoil microbiome structure and function.

Introduction

Climate change poses an increasing threat to biodiversity and car-
bon (C) stores in terrestrial ecosystems by shifting vegetation
types, aboveground foliar traits and belowground nutrient acqui-
sition strategies (Stocker et al., 2016; Jo et al., 2019). Human-in-
duced shifts in land use and pollution affect soil nitrogen (N)
availability and terrestrial C cycling (Stocker et al., 2016; Douglas
et al., 2018). Although shifts in N cycling are more localized and
related to sources of N pollution and fertilization, soil C losses
induced by warming and elevated CO2 are globally more uni-
form (Stocker et al., 2016; Jo et al., 2019). However, shifts in soil
C cycling depend on the costs of acquiring N, and thus on nutri-
ent acquisition strategies of plants such as mutualistic root associ-
ations with mycorrhizal fungi and N-fixing bacteria (Norby,
1987; Terrer et al., 2018).

Nearly 90% of plant families have evolved root symbioses with
mycorrhizal fungi that benefit their hosts through enhanced

nutrient and water uptake, and protection against pathogens and
environmental stress (Smith & Read, 2008; Brundrett & Teder-
soo, 2018). Based on the anatomy and taxonomic identity of the
phyto- and mycobionts, mycorrhizas are broadly classified into
four types: arbuscular mycorrhiza (AM), ectomycorrhiza (EM),
ericoid mycorrhiza and orchid mycorrhiza (Brundrett & Teder-
soo, 2018). Arbuscular mycorrhiza and EM plants dominate in
most natural and anthropogenic ecosystems (Soudzilovskaia
et al., 2019), and they differ in belowground C allocation, capac-
ity of organic nutrient acquisition, and impact on soil C and
nutrient cycling (Phillips et al., 2013; Tedersoo & Bahram,
2019). For example, EM systems have evolved relatively higher
N-acquisition efficiency from organic material to cope with
slower decomposition processes and lower litter quality (Smith &
Read, 2008; Terrer et al., 2018; Tedersoo & Bahram, 2019).
Thus, depending on limiting nutrients and plant nutrient acqui-
sition strategies, global change may hamper or support C seques-
tration, with further implications on nutrient cycling and climate
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change (Averill et al., 2014; Jo et al., 2019; Soudzilovskaia et al.,
2019). Together with contrasting nutrient dynamics, EM and
AM systems have contrasting patterns of plant–soil feedbacks
influencing plant community dynamics (Tedersoo et al., 2020).
In general neutral or positive plant–soil feedbacks prevail in EM
systems, compared to the negative plant–soil feedbacks prevailing
in AM systems, likely resulting from contrasting effects of mycor-
rhizal type on soil properties and the activity of various microbial
functional groups, namely antagonists such as soilborne
pathogens (Bennett et al., 2017; Teste et al., 2017; Kadowaki
et al., 2018). In addition to mycorrhizal symbionts, root-associ-
ated bacteria from Rhizobiaceae and Frankiaceae families fix
atmospheric N2 and sustain plant N nutrition. However, despite
such general mycorrhizal type and N-fixing effects on soil pro-
cesses and plant community dynamics, knowledge about direct
and indirect effects of plant nutrient-acquisition strategies on the
diversity and composition of free-living soil microbes and micro-
bial functions relevant to C and N cycling is still lacking.

Free-living soil microorganisms both affect and respond to
shifts in rhizosphere processes because of their integral roles in
plant nutrition, cycling of organic material and regulation of
plant communities (Bardgett & Wardle, 2010). Bacteria drive
most soil N-cycling processes such as N-fixation, nitrification and
denitrification (Philippot et al., 2007; Reed et al., 2011). Sapro-
trophic Basidiomycota have evolved efficient mechanisms for
degrading lignin and soil organic complexes, whereas other
microfungi and bacteria decompose less recalcitrant polymers
such as cellulose, hemicellulose and chitin, but also by-products
of the lignin degradation pathway. The relative importance of
bacteria and fungi in decomposition processes depend on soil
acidity and C : N ratio (Waring et al., 2013; Bahram et al.,
2018), which are driven strongly by the dominant vegetation via
litter input (Waring et al., 2015) and potentially by mycorrhizal
type (Lin et al., 2017). Due to high plant C allocation to EM
fungi and the use of similar substrates, EM fungi may outcom-
pete saprotrophic fungi for soil organic N sources, which may
result in hampered degradation activity, termed the Gadgil effect
(Gadgil & Gadgil, 1975; Fernandez & Kennedy, 2016). Soil-
borne pathogens have a direct negative effect on plant perfor-
mance and thus can drive patterns of plant diversity (Bardgett &
Wardle, 2010). Ectomycorrhizal fungi compared to AM fungi
offer greater physical protection against soilborne pathogens, but
also may maintain unfavourable conditions for disease progres-
sion such as high C : N ratios and low pH (Tedersoo & Bahram,
2019).

Here we performed a regional-scale investigation of topsoil
microbes and their potential gene functions in 145 sites with con-
trasting edaphic conditions (Supporting Information Fig. S1),
dominated either by AM or EM vegetation and/or N-fixing
plants, to estimate the effects of these nutrient acquisition strate-
gies on the free-living topsoil microbiome and its potential gene
functions. We used metabarcoding and shotgun metagenomics
techniques for identification of taxa and gene functions, respec-
tively. We tested a hypothesis that temperate/boreal EM, AM
and N-fixing dominated systems have contrasting soil microbial
community compositions and potential functions, driven by

direct interactions and indirectly by altering the soil conditions of
C : N ratio and pH. More specifically, we predicted that with
EM vegetation dominance EM fungi become the dominant soil
organism group, favouring fungi to bacteria driven processes, as
reflected in lower bacteria : fungi ratios in EM compared to AM
systems. We further hypothesized that EM fungi suppress soil-
borne pathogens and saprotrophs in EM systems, with negative
consequences for plant community diversity and turnover (Mari-
otte et al., 2018).

Materials and Methods

Sampling

We performed sampling and documented vegetation parameters
(including plant identity, functional type and basal area) in 145
plots (5800 subsamples) representing various soil types and vari-
ous plant nutrient acquisition strategies across the northern Baltic
region in Estonia and Latvia (Table S1). The sites were selected
to represent various vegetation types, contrasting soil conditions
and relative abundance of individual ectomycorrizal (EM), arbus-
cular muycorrhizal (AM) and nitrogen (N)-fixing plant species
but keeping climatic variation minimal (Fig. S1). These sites
included 73, 16, 50 and six 2500-m2 plots in natural forests
dominated by EM deciduous woody plants (total 16 species),
EM coniferous trees (Pinaceae; three species), AM deciduous
woody plants (48 species), and AM coniferous trees (Cupres-
saceae; two species), respectively. Altogether 12 EM plots (Alnus
incana, A. glutinosa) and four AM plots (Caragana arborescens,
Hippophae rhamnoides) were dominated by N-fixing plants.
Grasslands and fields comprising no woody plants included six
and eight plots, respectively. To determine plant composition,
we recorded the relative abundance of plant species based on
basal area (for tree) or relative cover (for grasses and crops) in
each plot. We used a broad classification of AM and EM types,
because dual mycorrhizas as well as other mycorrhizal types such
as ericoid mycorrhiza were under-represented in our study. Time
since last fire, vegetation age and the proportion of each woody
plant species (basal area basis) also were recorded. We down-
loaded climate data from the WorldClim database (www.worldc
lim.org). Samples were taken mostly during growing seasons
from 2011 to 2016 (Table S1). Mean annual temperature and
precipitation for all samples ranges from 4.7–7.0°C and 549–
745 mm, respectively. We excluded climatic variables from statis-
tical analyses, because of little climate variation across the
4009 400 km study area and little climate effect on microbes in
our study based on preliminary analyses. In each site, 40 soil sub-
samples (5 cm diameter 9 5 cm depth – no distinction was made
between organic and mineral layers) were collected, and air-dried
within 12 h of collection and homogenization. Total carbon (C),
13C, total N and 15N content were measured using an elemental
analyzer (Eurovector, Milan, Italy) and an isotope ratio mass
spectrometer (MAT 253; Thermo Electron, Bremen, Germany),
following Tedersoo et al. (2012). Total phosphorus (P) and
potassium (K) concentration were measured in ammonium lac-
tate (Tecator ASTN 9/84; AOAC, 1990). Concentrations of
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calcium (Ca) and magnesium (Mg) were measured in 1M
ammonium acetate (Tecator ASTN 90/92; Page et al., 1982).

Molecular analysis

In order to determine the taxonomic and functional gene compo-
sition of soil, we used an amplicon-based approach for soil
prokaryotes and eukaryotes as well as a shotgun metagenomics
approach for gene-encoded functions. Total DNA was extracted
from 2.0 g sample material (soil and fine root powder from
homogenized soil samples) using the PowerMax Soil DNA Isola-
tion Mini kit (MoBio, Carlsbad, CA, USA) following the manu-
facturer’s instructions (Tedersoo et al., 2014). Total DNA
concentration was used as a proxy for microbial biomass,
although it also may represent microbial necromass (Torti et al.,
2015). The entire soil metagenome was sequenced from 5 lg
extracted DNA that was sonicated to fragments of 300–400 bases
and further ligated to adaptors using the TruSeq Nano DNA HT
Library Prep Kit (Illumina Inc., San Diego, CA, USA). DNA
libraries were sequenced on three runs in Illumina HiSeq 2500
platform (29 250 bp paired-end chemistry, rapid run mode).
The DNA samples were subjected to metabarcoding of Bacteria
and Archaea using primers 515FB and 926R to target the riboso-
mal rRNA 16S gene V4 region (Walters et al., 2016). All eukary-
otes including fungi were targeted based on partial 18S rRNA
gene (V9 subregion) and full-length internal transcribed spacer
(ITS) region using the primers ITS9MUNngs and ITS4ngsUni
(Tedersoo & Lindahl, 2016). Samples were amplified using one
of 115 primer pairs, in which both primers were tagged with a
unique 10-base Golay index (at least four differences to each
other; all starting with A; AT : GC ratio between 0.4 and 0.6).
The 25-µl PCR mix consisted of 16 µl sterilized H2O, 5 µl
59HOT FIREPol Blend MasterMix polymerase (Solis Biodyne,
Tartu, Estonia), 0.5 µl each primer (200 nM) and 3 µl DNA
extract. Thermal cycling conditions were the following: 95°C for
15 min, 30 cycles of 95°C for 30 s, 50°C 45 s and 72°C for
1 min, with a final extension step at 72°C for 10 min. PCR prod-
ucts of two technical replicates were pooled and their relative
quantity was estimated by running 2 ll DNA on 1% agarose gel
for 15 min. DNA samples producing no visible band or an overly
strong band were re- amplified using 35 and 25 cycles, respec-
tively. The amplicons were pooled and purified using
FavorPrepTM Gel/PCR Purification Kit (Favorgen, Vienna, Aus-
tria) and shipped for library preparation in sequencing service
providers’ laboratories in the Estonian Biocenter, University of
Tartu (Illumina MiSeq and HiSeq platforms) and Oslo Univer-
sity Sequencing Center (PacBio). For fungal identification, we
used the PacBio platform that outperforms other platforms in
terms of distinguishing species, taxonomic precision and (lower)
proportion of artefacts (Tedersoo et al., 2018). Negative and pos-
itive controls were used throughout the experiment including
sequencing. All metagenomics and metabarcoding sequences
have been deposited in the European Bioinformatics Institute
Sequence Read Archive database: PRJEB24121 (ERP105926);
16S and ITS metabarcoding data of global soil samples, accession
nos. PRJNA598043.

Bioinformatics analysis

Metagenomics Metagenomics analysis followed the procedure
described in (Bahram et al., 2018). Briefly, reads were quality-fil-
tered by removing those with < 70% max length of run (i.e.
150 bp), an accumulated error > 2 or an estimated accumulated
error > 2.5, with a probability of ≥ 0.01 and > 1 ambiguous posi-
tion. Reads were trimmed if a quality window of 15 bases
dropped < 20 at the 30 end. This resulted in 980 810 505 reads.
Quality-filtered reads were merged using FLASH (Mago�c &
Salzberg, 2011) and mapped against the reference databases
eggnog (Huerta-Cepas et al., 2015) and custom-modified CAZY

(using DIAMOND in BLASTX mode; parameters k = 5, e = e�4) to
quantify the abundance of functional genes. The scores of two
unmerged query reads that mapped to the same target were com-
bined to avoid double counting reads. To combine DIAMOND hit
scores on target proteins, we summed the hit score of the forward
and reverse reads matching a given target, using custom Perl
scripts. To calculate the corresponding e-values independently
from sequence as well as database parameters, we selected the
lower e-value of either forward and reverse reads. We note that
this approach reflects the potential function of organisms, which
are not necessarily expressed at the transcript and enzyme level.
Compared to bacterial and fungal pathogens, forest soil fungi are
under-represented in genome databases, which will underpower
assignment of functions to specific fungal guilds.

Metabarcoding The LOTUS 1.462 pipeline was used for 16S
amplicon sequence processing (Hildebrand et al., 2014). Reads
were demultiplexed with a modified quality-filtering procedure
to trim reads to 170 bp and reject substandard reads: accumu-
lated error ≤ 2; presence of unique reads > 7 times in one, > 3
times in two or > 2 times in three samples. In total 22 335 463 of
31 286 576 reads passed the quality control and these were clus-
tered with UPARSE (Edgar, 2013) at 97% sequence similarity.
Chimeric operational taxonomic units (OTUs) were detected
and removed based on both reference-based and de novo chimera
checking, using the RDP reference (http://drive5.com/uchime/rd
p_gold.fa) in UCHIME (Edgar et al., 2011). Because our intention
was to focus on the most abundant taxa, low-abundance OTUs
with < 4 sequences were removed by UPARSE, as implemented
in LOTUS by default, to minimize artefactual taxa in our datasets.
The bacterial OTU abundance matrix was filtered from
sequences of eukaryotic and chloroplastic origin, and rarefied to
the lowest number of shared OTUs to remove the effect of
sequencing depth across samples. Bacterial OTUs were assigned
into different functional groups using FAPROTAX (Louca et al.,
2016).

PacBio amplicon sequences were processed using PIPECRAFT

(Anslan et al., 2017), resulting in 394 067 quality-filtered reads.
Clustering at 97% sequence similarity was used for calculating
OTUs. Representative sequences of OTUs were BLASTN-queried
against the UNITE 7.1 reference dataset. Taxonomic assign-
ments were performed at 70%, 75%, 80%, 85% and 90%
sequence similarity to roughly match phylum, class, order, family
and genus level, respectively. Taxa with sequence similarity
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< 70% to any taxon or match e-value > e�50 were considered
unidentified at the kingdom level. Fungal taxa were functionally
assigned to principal guilds (Nguyen et al., 2016; Tedersoo &
Smith, 2017).

Data analysis

The OTU abundance matrices were rarefied once to an equal
number of reads (20 000 for bacteria and 500 for fungi) per sam-
ple to reduce the effect of variation in terms of sequenced reads
using the function rrarefy in R/VEGAN (Oksanen et al., 2007).
Alternatively, residuals of models with square root of total read
abundance were used for analyzing richness (Tedersoo et al.,
2014). The results were very similar between two approaches,
and thus we only report the results of the latter approach
(McMurdie & Holmes, 2014). To deal with compositionality of
abundance matrices (Gloor et al., 2017), we transformed the
abundance-based compositional dataset by using centred log ratio
transformation (CLR) in the MIXOMICS package (Rohart et al.,
2017). Five samples were removed from the analyses, because
they were either from anoxic habitats and hence outliers in com-
munity analyses, or contained a few bacterial reads and were
therefore excluded from both the fungal and bacterial dataset.
For better visualization of the data in Fig. 1 and Fig. S6, the per-
centage of EM plants more and less than 50% were rescaled with
|EM%-50|4 and –|EM%-50|4, respectively.

The B : F ratio was calculated based on the proportion of bac-
terial to fungal metagenomic rRNA genes, as shown previously to
correlate strongly to phospholipid-derived fatty acids (PLFA)-
based B : F ratio (Bahram et al., 2018; Fig. 2a). To include plant
community composition in our univariate analysis, we used the
first two axes from a principal coordinates analysis (PCoA) as
implemented in the APE package (Paradis et al., 2004) (Fig. S2).
For the PCoA analysis, a Bray–Curtis distance matrix for the
plant community was generated based on Hellinger-transformed
abundance data in VEGAN. Plant diversity was calculated based on
Shannon diversity index in VEGAN.

For univariate analysis, the best predictors of microbial rich-
ness and relative abundances were identified and included in a
final model selection procedure using a machine learning
approach as implemented in the randomForest function of RAN-

DOMFOREST package (Liaw & Wiener, 2002). This approach esti-
mates variable importance while training the random forest
(Breiman, 2001). For this analysis, we included 25 biotic and
abiotic variables, including vegetation and soil parameters as well
as latitude, longitude and altitude (Table S1). We tested spatial
autocorrelation in our data in Random Forest analysis by includ-
ing spatial distance (principal coordinates of neighbourhood
matrix (PCNM) vectors; Borcard & Legendre, 2002), generated
based on a matrix of geographical distances among samples in VE-

GAN. To further test direct and indirect effects of variables, we
built structural equation modelling (SEM) models in the AMOS
software (SPSS) by including predictors based on their impor-
tance in the Random Forest models. In a prior model, all indirect
and direct links between variables were established based on their
correlations. Then, we removed nonsignificant links and variables

or created new links between error terms until a significant model
fit was achieved. Differences between the relative abundance of
the main taxonomic and functional groups across mycorrhizal
types were tested using a nonparametric Wilcoxon rank sum test,
with Benjamini–Hochberg multiple testing correction. To model
these based on EM vegetation cover (Fig. 1), we used beta regres-
sion for proportions (Ferrari & Cribari-Neto, 2004) as imple-
mented in R/BETAREG (Zeileis et al., 2016).

Multivariate models were constructed in permutational multi-
variate analysis of variance (PERMANOVA) (Anderson, 2005)
with the Adonis function of VEGAN (using 103 permutations), fol-
lowing variable selection in forward selection mode based on
Fpseudo-values. PERMANOVA was performed to test discrimina-
tion of the relative abundance of different bacterial phyla and
functional categories across mycorrhizal types. We further visual-
ized taxonomic (OTU) and functional (orthologous gene; OG)
composition of bacteria using global nonmetric multidimen-
sional scaling (GNMDS) in the VEGAN package based on the fol-
lowing options: two dimensions, initial configurations = 100,
maximum iterations = 200, and minimum stress improvement in
each iteration = 10�7. For constructing OG and OTU distance
matrices, the Bray–Curtis dissimilarity was calculated between
each pair of samples. Spatial autocorrelation as well as correlation
in composition of different organism groups was calculated using
the Mantel test. Furthermore, to determine the relative impor-
tance of soil, vegetation and spatial variables (PCNMs) in shap-
ing the composition of microbial taxa and functions, variation
partitioning analysis was used as implemented in varpart function
of VEGAN. To infer direct and indirect effects of mycorrhizal type
at the multivariate level, we used the two first axes from a PCoA
analysis of plant communities as explanatory or response variables
in SEM.

Results

Microbial richness and abundance

Our analyses revealed 10 325 fungal OTUs (304 248 reads) and
29 813 bacterial OTUs (7022 893 reads). Among abiotic vari-
ables, soil pH and d15N (an integrator of the N cycle) showed the
strongest correlation with the EM : AM plant abundance ratio
(based on basal area). Soil C : N ratio was strongly correlated with
the proportion of coniferous EM trees (Fig. S3). Plant diversity
correlated to coniferous EM abundance ratio (r = 0.423,
P < 0.001) but not to the EM : AM plant abundance ratio
(P > 0.05). Total microbial biomass was positively associated
with tree species richness (r = 0.471, P < 0.001) and the propor-
tion of deciduous EM trees (r = 0.203, P = 0.023), but negatively
with the proportion of coniferous trees (EM: r =� 0.240,
P = 0.007; AM: r =� 0.341, P < 0.001; Fig. S3). Microbial
biomass (P > 0.1) was not different but the B : F ratio was rela-
tively lower (R2adj = 0.197, P < 0.001) in EM ecosystems, espe-
cially in coniferous sites (Fig. 1). Random Forest analysis revealed
that plant diversity, functional and mycorrhizal traits were the
major determinants of absolute microbial biomass, whereas the
B : F ratio was positively related to soil d15N and pH (Fig. 2).
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Bacterial taxonomic richness was most strongly determined by
soil pH (unimodal association; peak at pH 5–6; R2adj = 0.455,
P < 0.001; Fig. 2), with the effect of vegetation traits remaining
of secondary importance (R2adj = 0.027; Fig. 2). Nevertheless,
bacterial richness was highest in habitats dominated by N-fixing
plants independently of soil pH (R2adj = 0.076, P = 0.0005) and
lowest in coniferous EM-dominated ecosystems (R2adj = 0.218,
P < 0.001; Figs 2, S4). In a similar way to fungi, plant
pathogenic bacteria were relatively more abundant in AM-domi-
nated plots (0.358, P < 0.001; Fig. S5). Nevertheless, N-fixing
bacteria were more abundant in EM habitats (r = 0.527,
P < 0.001), where soil N is bound mostly in organic material.
Nitrogen-fixing plants had no effect on relative abundance of N-
fixing or denitrifier soil bacteria (P > 0.1). SEM models indicated
that EM relative abundance (basal area basis) had a direct

negative effect but additional indirect negative effects on fungal
richness through enhancing soil C : N ratio (Fig. S4). Of fungal
functional groups, the relative abundance and richness of all
guilds (except EM fungi) declined with increasing EM domi-
nance (Fig. 1). When excluding mycorrhizal fungi (both AM
and EM) from the analysis, differences in these groups became
weaker but remained significant (Fig. S6). As fungal pathogens
in current databases (e.g. UNITE) mostly comprise agricultural
plant pathogens, we excluded croplands from these analyses, but
the strong negative correlation between pathogens and EM : AM
ratio remained (r =�0.626, P < 0.001), indicating that the
observed pattern for plant pathogens (Fig. 1) was not driven
solely by this potential bias. Spatial vectors had little effect com-
pared with other variables on microbial richness and relative
abundance (Fig. S7).
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r2 0.239
p<0.001
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Fig. 1 Functional guild composition of soil
bacteria (% relative to fungi) and fungal
functional guild relative abundance in
relation to ectomycorrhizal (EM) dominance.
Data points show the relative abundance of
bacteria and fungi (and fungal guilds) in each
plot. EM dominance corresponds to the
percentage of EM vegetation estimated on a
basal-area basis. Values on the x-axis were
rescaled and the relative abundances on the
y-axes were scaled from 0 to 1 for better
visualization.
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Microbial composition

Bacterial community composition also was strongly driven by soil
pH (PERMANOVA: F1,143 = 61.8, R2adj = 0.302, P = 0.001;
Figs 2, S8) but not by mycorrhizal type or other environmental
variables. By contrast, fungal composition was determined
mainly by mycorrhizal type both directly (PERMANOVA:
F1,143 = 7.37; R2adj = 0.049, P = 0.001; Fig. S4) and indirectly via
reduced soil pH in EM habitats (Figs S3, S4). Except for Umbe-
lopsidomycetes (Mucoromycota molds) and Agaricomycetes
(Basidiomycota), relative abundance of most fungal higher-level
taxa increased with AM tree dominance (Fig. 3). SEM analyses
suggested that EM fungal relative abundance and richness drive
those of bacteria and saprotrophs (Figs 2, S3). Mantel test and
variation partitioning analysis revealed weak spatial autocorrela-
tion in our data. (Fig. S9).

Microbial functions

Plant nutrient-acquisition strategies affected the relative abun-
dance and composition of microbial functional genes. Bacterial

and fungal carbohydrate-active enzyme (CAZyme) profiles
showed remarkable differences among habitats with different
mycorrhizal types for both bacteria (F1,143 = 23.6,
R2adj = 0.116, P = 0.001) and fungi (F1,143 = 16.2,
R2adj = 0.090, P = 0.001). These differences among mycorrhizal
types were particularly pronounced in coniferous EM plots
compared with any AM plots (Figs 3, S4). In spite of reduced
taxonomic richness, the diversity of bacterial (Mantel r = 0.445,
P = 0.001); and fungal (r = 0.586, P < 0.001) CAZyme genes
increased significantly with increasing EM dominance (Figs 2a,
S1). Bacterial functional gene composition was determined
mainly by soil pH (F1,143 = 61.81, R2adj = 0.302, P = 0.001)
and dominance of conifers (F1,143 = 23.65, R2adj = 0.141,
P = 0.001), with lower importance of mycorrhizal type
(F1,143 = 13.77, R2adj = 0.088, P = 0.001). Bacterial OGs related
to inorganic ion transport and metabolism were relatively more
abundant in EM-dominated plots (R2adj = 0.276, P < 0.001;
Fig. 3). Unlike in bacterial OGs (P > 0.1), plant mycorrhizal
type was the strongest determinant of fungal OG composition
(F1,143 = 20.2, R2adj = 0.124, P = 0.001; Figs 2, S5), with d15N
(F1,143 = 27.3, R2adj = 0.165, P = 0.001) as an important
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edaphic predictor. Fungal OG richness was significantly higher
in EM- than AM-dominated plots (R2adj = 0.201, P < 0.001).
Of the main fungal OG categories, inorganic ion transport and
metabolism significantly increased with AM dominance, whereas
replication and recombination increased with EM dominance
(Fig. 3).

Discussion

Microbiome diversity

Our study demonstrates that the composition of microbial taxa
and functional genes consistently differs among ecosystems
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Fig. 3 The distribution of microbial taxa and functional genes differ across habitats with different plant nutrient-acquisition strategies and the dominant
vegetation type. The figure shows the relative abundance of (a) major prokaryotic phyla (classes for Proteobacteria), (b) eukaryotic phyla and the
functional gene categories of (c) bacteria and (d) fungi in arbuscular mycorrhizal (AM)- and ectomycorrhizal (EM)-dominant plots. Letters denote
significant differences at the 0.05 probability level on the basis of Kruskal–Wallis tests corrected for multiple testing. Jittered points and bars represent
individual relative abundances per sample, whereas bars represent the mean of relative abundances per category. Values on the y-axes are the square root
of relative abundances. The error bars represent SEs.
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dominated by plants with different nutrient-acquisition strate-
gies, especially mycorrhizal type. Plant–soil feedbacks involving
soil-inhabiting microorganisms contribute to the substantial dif-
ferences in ecosystem processes such as soil carbon (C) and nutri-
ent cycling among forest stands dominated by different tree
species (Waring et al., 2015) and mycorrhizal types (Phillips
et al., 2013; Tedersoo & Bahram, 2019). In particular, we found
that nonfungal eukaryotes and saprotrophic fungi are more
enriched in AM habitats. This is in line with higher decomposi-
tion rates in AM ecosystems (Tedersoo & Bahram, 2019) and
implies strong competitive interactions of EM fungi with free-liv-
ing saprotrophs (B€odeker et al., 2016), bacteria and potentially
other soil microbes. Of decomposer organisms, only saprotrophic
Agaricomycetes were relatively more common in EM forests, par-
ticularly EM coniferous ecosystems, compared with AM-domi-
nated habitats (Figs 1, S6), which reflects the production of low-
quality litter by conifers (Cornelissen et al., 2001).

Ectomycorrhizal plants generally accumulate recalcitrant litter
with a high C : N ratio (Lin et al., 2017; Sasse et al., 2017), which
has strong direct effects on the soil microbiome (Bahram et al.,
2018). Our model suggests that coniferous EM plants are the
major drivers of an increase in soil C : N ratio and decrease in
pH, which in turn reduce the richness of bacteria, archaea, several
protist groups and the bacteria-to-fungi (B : F) ratio (Fig. S3).
The strong effect of pH on soil bacterial richness corroborates
previous reports and validates our analyses (Rousk et al., 2010;
Bahram et al., 2018). Due to differences in physiology, capacity
to withstand H+ stress and nutrient stoichiometry (Rousk et al.,
2010), bacterial decomposition pathways dominate over those of
fungi in soils with high pH and low C : N ratio (Waring et al.,
2013; Bahram et al., 2018).

Although bacterial functional and taxonomic composition was
relatively insensitive to factors other than pH, both functional
and taxonomic diversity of fungi responded strongest to mycor-
rhizal type and plant diversity. Biotrophic fungal guilds such as
plant pathogens, AM and EM mutualists are intimately associ-
ated with living plants and thus exhibited stronger and more
specific plant interactions compared with most bacteria. Our
analyses also indicate that the effect of mycorrhizal type on soil
communities may depend strongly on other vegetation parame-
ters, as reflected by large differences between deciduous and
coniferous EM-dominated ecosystems.

Functional genes

The distribution of overall functional gene categories was similar
in EM and AM ecosystems, except ligninolytic carbohydrate-ac-
tive enzymes (CAZymes) that were more abundant and family-
rich in EM habitats, which we attribute to the accumulation of
recalcitrant litter and high abundance of saprotrophic Agari-
comycetes with efficient ligninolytic weaponry (Nagy et al.,
2017). Although other OGs were generally represented at similar
abundance, EM and AM ecosystems differed substantially in
gene composition of bacterial vs fungal origin. Most gene families
are fundamental to signalling, cellular growth and both metabolic
and anabolic processes that are required equally for functioning

by various functional guilds of the microbiome. Conversely, bac-
terial and fungal degradation and nutrient cycling pathways
exhibit great differences in emission of gases (NH4, NO3, CH4)
and intracellular vs extracellular biopolymer degradation (Bugg
et al., 2011; Frey-Klett et al., 2011).

The relatively greater B : F ratio in AM habitats explains the
higher proportion of bacterial genes related to nutrient and C
cycling, which is consistent with the more dynamic and leaky
nutrient cycling in AM ecosystems (Tedersoo & Bahram, 2019).
Although our metagenomics data cannot be used to infer produc-
tion and efficiency of specific enzymes, we advocate that bacterial
and fungal pathways of the seemingly redundant functions may
differentially affect soil nutrient fluxes and C cycling (Caspi
et al., 2011). In situ measurements of soil processes integrated
with proteome and transcriptome analyses will provide deeper
insights into quantitative functional differences among plant
nutrient acquisition strategies (Tedersoo & Bahram, 2019).
Overall, the relative abundance and diversity of N-fixing plants
and N-fixing bacteria showed weak association with the diversity
and composition of bacterial and fungal gene functions, indicat-
ing the more prominent role of mycorrhizal types and other vege-
tation parameters in driving these patterns.

Pathogens and plant community dynamics

According to the Janzen–Connell hypothesis, density-dependent
accumulation of plant species-specific antagonists regulates
species abundance and promotes diversity (Bagchi et al., 2014;
Mariotte et al., 2018). Yet, EM fungi may interfere with the gen-
eral Janzen–Connell model (Dickie et al., 2005; Chen et al.,
2019), as reflected in often conspecific monodominant EM-dom-
inated systems compared to more species-rich mixed AM-domi-
nated systems. Ectomycorrhizal associations could counteract
negative density-dependent mechanisms through positive plant–
soil feedbacks that favour the aggregation of conspecific individu-
als rather than a diverse plant community (Bever et al., 2010; Peh
et al., 2011; Johnson et al., 2018). In line with this, recent experi-
mental studies indicate that AM trees experience greater antago-
nisms from their associated soil microbiota compared with EM
trees (Bennett et al., 2017; Teste et al., 2017; Kadowaki et al.,
2018). Our metabarcoding results complement the idea of
pathogen protection and suppression as a key mechanism driving
positive plant–soil feedbacks in EM systems, demonstrating that
putative plant pathogens are on average 2.6-fold more abundant
in AM-dominated ecosystems, especially in AM deciduous forests
(Fig. 1). However, we did not find support for the effect of this
mechanism on plant community and diversity, as EM basal area
showed rather weak, or even positive correlation in the case of
coniferous EM, to plant diversity. Other mechanisms also may
be important in promoting positive EM plant–soil feedbacks,
such as extensive common EM mycelial networks redistributing
nutrients and promoting EM seedlings (McGuire, 2007; Kad-
owaki et al., 2018), and EM fungi trapping EM-dominated sys-
tems in a N-limitation feedback loop that reinforces the
dominance and obligatory nature of the EM symbiosis (Franklin
et al., 2014). Our results support the importance of the latter to
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some extent, specifically in coniferous EM-dominated systems
that were related to higher C : N and lower B : F ratios, soil d15N
and pH (Fig. S3), as well as the greater relative abundance of EM
fungi representing the dominant fungal functional guild
(Fig. S4). Although our results need greater empirical support,
we suggest that the negative plant-soil feedback in AM systems
compared to positive or neutral soil feedback in EM systems
(Bennett et al., 2017; Teste et al., 2017; Kadowaki et al., 2018)
may be attributed to four nonexclusive mechanisms: species-
specific damage by pathogens (Mariotte et al., 2018), a relatively
greater ability of EM fungi to physically protect their hosts from
the soil environment (Kadowaki et al., 2018), direct antagonistic
effects of EM mycelium against antagonists and competitors, and
the maintenance by EM fungi of unfavourable acidic and low-
nutrient soil conditions for many microbial groups including
pathogens (Figs 1, S3). In mixed EM–AM forests, these contrast-
ing mechanisms driving a collection of positive, neutral and nega-
tive plant–soil feedbacks may generate complex microsites
supplying regeneration niches for various species and promoting
overall plant diversity (Mariotte et al., 2018).

Global implications

We demonstrated that mycorrhizal type may be one of the
strongest predictors of soil microbiome diversity and functioning
across contrasting soil and vegetation types at the regional scale,
specifically in temperate and boreal ecosystems. At large geo-
graphical scales, the effects of vegetation parameters on bacterial
and fungal composition are less pronounced, perhaps due to the
interplay of other predictors such as climatic variables and histor-
ical factors including dispersal limitation (Tedersoo et al., 2014;
Maestre et al., 2015; Bahram et al., 2018; Delgado-Baquerizo
et al., 2018). Modelling from regional to global scales demon-
strates that climatic factors and land use play additional impor-
tant roles in determining the distribution of mycorrhizal types
and that EM vegetation may enhance soil C storage
(Soudzilovskaia et al., 2019). Alternatively, litter decomposition
potential was proposed as a key driver of mycorrhizal type distri-
bution globally (Steidinger et al., 2019). However, for our stud-
ied temperate/boreal region, our SEM models suggest that
mycorrhizal type affects both relative and absolute abundances of
soil saprotrophs and bacteria as well as genes related to decompo-
sition, not vice versa. The directionality is important, because
both mycorrhizal fungi and pathogens determine plant establish-
ment success at a landscape scale, which further shapes the habitat
for particular saprotrophic groups. The local influential variables
such as soil and vegetation parameters and as well as climatic vari-
ables on larger scales have strong implications for the potential
effects of global change on vegetation type, soil microbial diver-
sity and the processes governed by these (Soudzilovskaia et al.,
2019). Ectomycorrhizal vegetation, which is patchily distributed
in tropical ecosystems and limited by rainfall, may suffer
strongest from extended drought periods and atmospheric pollu-
tion (Terrer et al., 2016; Tedersoo, 2017; Jo et al., 2019).

To conclude, our results suggest that shifts in the balance
between EM–AM vegetation may alter the soil microbiome

structure and function in temperate and boreal ecosystems. How-
ever, it remains unclear to what extent these functional differ-
ences among plant nutrient-acquisition strategies can be
extrapolated to arctic and tropical ecosystems, because differences
among mycorrhizal types on soil chemistry and ecosystem pro-
cesses are somewhat weaker at low latitudes (Keller & Phillips,
2019; Soudzilovskaia et al., 2019). We certainly need controlled
experiments to test the interactions of soil pH and temperature
with mycorrhizal type effects on soil microbiome structure and
functioning and to what extent these effects are bidirectional.
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