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Abstract:

In systems and computational biology, ordinary differential equations are used for the mecha-
nistic modelling of biochemical networks. These models can easily have hundreds of states and
parameters. Typically most parameters are unknown and estimated by fitting model output to
observation. During parameter estimation the model needs to be solved repeatedly, sometimes
millions of times. This can then be a computational bottleneck, and limits the employment of
such models.

In many situations the experimental data provides information about the steady state of the
biochemical reaction network. In such cases one only needs to obtain the equilibrium state for
a given set of model parameters. In this paper we exploit this fact and solve the steady state
problem directly rather than integrating the ODE forward in time until steady state is reached.
We use Newton’s method — like some previous studies — and develop several improvements to
achieve robust convergence. To address the reliance of Newtons method on good initial guesses,
we propose a continuation method. We show that the method works robustly in this setting and
achieves a speed up of up to 100 compared to using ODE solves.
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1. INTRODUCTION the Cancer Cell Line Encyclopedia (Barretina et al., 2012)
and the Genomics in Drug Sensitivity in Cancer database
Models of biological processes based on ordinary differen-  (Yang et al., 2013)). Instead, many databases provide only
tial equations (ODEs) have led to great contributions in  measurements of a given system in steady state.
the field of systems and computational biology. As in re-

cent years, the speed of data acquisition and the availabil- Tackling such a parameter estimation problem quickly

ity of computational resources have been increasing, more leads to millions of model simulations and solving ODE

detailed, and hence, larger models have been developed systems which describe thousands of chemical species is
(Klipp et al., 2005; Chen et al., 2009; Hass et al., 2017; extremely time-consuming. Hence, despite the use of high

Bouhaddou et al., 2018; Frohlich et al., 2018). Particularly performance computing infrastructures and although sub-
in the field of cancer signaling, large-scale ODE models stantial 1mpr0vemeqts have been made in recent years (see
provide the possibility of gaining insights into complex (Hass et al., 2019; Villaverde et al., 2019) for comparisons),

processes and finding possible targets for new drugs. computation time remains one of the limiting factors in
large-scale modeling. It is therefore desirable to further

In most applications, ODE models have unknown param-  reduce computation time and to circumvent computation-
eters, which need to be inferred from measurement data  ally expensive actions, where possible.

in order to yield meaningful predictions. As this param-
eter estimation problem should not be under-determined,
large-scale models necessitate large-scale data sets. The
acquisition of such data sets is expensive, and therefore,
the most databases do not provide time-resolved data (e.g.

If only steady state data is available, the parameter estima-
tion problem can be addressed without solving the ODE
system but by (1) recasting the optimization problem or by
(2) computing the steady state without ODE solvers. Con-
cept (1) is used by constrained optimization, optimization
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on manifolds or continuous analogues (see (Fiedler et al.,
2016) for an overview). Unfortunately, the convergence of
constrained optimization is often unsatisfactory (Fiedler
et al., 2016; Rosenblatt et al., 2016) and the scalability
of optimization on manifolds and continuous analogues
unclear (Fiedler et al., 2016). Concept (2) is based on
symbolic or direct numerical calculation of the steady
state. Symbolic calculations are the method of choice if
the problem possesses a particular structure (King and
Altman, 1956) or an excess in the degrees of freedom
(Rosenblatt et al., 2016). For more general problems, nu-
merical approaches such as Newton’s method or adapta-
tions can be employed and some commonly used toolboxes
already provide comparable methods (Hoops et al., 2006;
Soetaert, 2009). However, it is a priori not clear whether
these approaches are applicable to a given (large) system.
In particular, radius of convergence of Newton’s method
might be too small to yield a reliable implementation.

In this manuscript, we present a study on reliability of
Newton’s method for this problem type. As application
example we use a published large-scale model with mea-
surement data from a public database. A convergence
analysis is performed where the basic method is compared
to various extensions, e.g. continuation. We illustrate that
Newton’s method should be considered an option when
dealing with steady state data, as it works reliably in many
cases and is in general much faster compared to integrating
the ODEs until steady state.

2. METHODS
2.1 The parameter estimation problem

The goal of the parameter estimation procedure is to
find a parameter vector ¢ that minimizes the difference
between the computed output of the model and the obser-
vations. This can be formulated as function minimization
problem: Find ¢* = argmin E(¢), where E(¢) quantifies
the distance between model prediction and experimental
observations, e.g.:

E(6) = |lg(x, @) — yl|>, where @ solves & = F(z, ).
Here y represents the observations, and g is some trans-
formation of the solution. Typically ¢ is a subset and/or
a linear combinations of the states in x. The dynamics of
x are described by the vector field F(x,¢) derived from
the process of interest. The function E(¢) is minimized
through an iterative procedure that can schematically be
written as follows:

Start with some initial parameter vector ¢.
Repeat until the error is small:

e Compute E(¢)
e Obtain an incremental change A¢
e Update: ¢ := ¢ + A¢

In order to compute F(¢) we in general need to solve
& = F(z,¢). However, if the observations y are only
obtained in steady state, we do not actually need the
transient behaviour z(t), but can instead just solve the
algebraic problem F(z,¢) = 0.

2.2 Newton’s method

We want to solve the algebraic problem F(z,¢) = 0 with
respect to x for some given parameter vector ¢. A standard
solution technique is the iterative Newton’s method:

2" =g — J(z", ) F (2", ¢)

Here z™ is the approximation of the solution after n-
iterations and J(x, ¢) is the Jacobi matrix of the system

function F, ie. J;; = 9F The method only works if
0

Ox
the initial guess x" is sufficiently close to the solution.
For a given problem, the method has a certain radius of
convergence. Below we suggest a series of modifications to
extend this radius.

2.8 Dampening

A common technique to improve the stability of Newton’s
method is to reduce the step length by a factor ~:

a" = a" —yJ (2", ¢) T F (2", ¢)

In this study, we considered an adaptive scheme, where
is reduced by a factor of 4 if the error is not decreasing, and
conversely increased by a factor of 10 if the error is reduced
(without exceeding v = 1). These values were chosen by
trial and error, but the performance was not very sensitive
to the exact choice.

2.4 Improved initial guess

We can exploit the fact that we are solving a series of
similar problems to construct a better initial condition.
If we have previously solved F(xzg, ¢o) = 0, we now want
to solve F(x1,¢1) = 0 where presumably ¢o and ¢; are
close. Instead of using xg as the initial guess for the new
problem, we do a Taylor expansion in the parameter space
to construct a better guess:

F(xo + Az, ¢ + Ap) = F(xo,do) + %(xo, $o) Az

where Az = 20 —2guess (to be computed) and A¢ = ¢o —
¢1 (given). We compute Az (and thus xguess) by requiring
the right hand side to be zero. Since F(xg,¢9) = 0 the
system to solve becomes:

oF oF

%(‘T()v Po) Az = *%(1’0, $0)Ad

Thus we obtain a potentially much better initial guess
at the cost of one linear solve plus one evaluation of the
Jacobian with respect to ¢, i.e. g—g.
2.5 Continuation

Dampening often improves the convergence properties, but
as we will see in the result section it does not always work.
A drawback of the approach is that only the step length is
modified, but not the search direction. To improve upon
this performance we have implemented the method of
numerical continuation. The basic idea is to transform the



34 Glenn Terje Lines et al. / IFAC PapersOnLine 52-26 (2019) 32-37

Fig. 1. The initial guess zy can potentially be quite bad
for the problem F(z,¢1) = 0, but still work quite
well for the easier problem F(z, ¢, ). In that case, the
intermediate solution z, can instead be used as an
initial guess.

current problem, F(z1,¢1) = 0, to a problem more similar
to the previous problem, F(z, ¢g) = 0, of which we know
the solution.

In case of failure, we then solve the simpler problem
F(z*,¢*) = 0, where ¢* is some average between ¢y and
@1 (see Figure 1).

The closer to ¢°, the simpler the problem, but also further
from what we want to solve. The step size is controlled with
8¢5 = ¢p %03, We found that § = 1/2, i.e. ¢* = /P
to be a good compromise. If the new problem also fails,
we repeat the process. In case of convergence we retry
the harder problem, but now with a better initial guess.
Pseudo code of the algorithm is shown in the appendix.

2.6 Implementation

The methods were implemented within the AMICI frame-
work (Frohlich et al., 2018), which provides an interface to
the SUNDIALS library (Hindmarsh et al., 2005). Models
specified in SBML are transformed into native C++ code.
In particular it generates code for the Jacobian of F' needed
for Newton’s method (derivation with respect to x) and the
Jacobian needed for the improved initial guess (derivation
with respect to ¢). The benchmarking code is available at
http://doi.org/10.56281/zenodo.2641916.

2.7 Model & Data

As a challenging benchmarking problem we consider
the large-scale model of cancer signalling introduced by
Frohlich et al. (2018). The model is among the largest
ODE models ever developed in systems biology, with 1228
states and 4234 parameters. In the original study, the
authors used a simulation approach to compute the steady
state. The parameter optimization was computationally
demanding and required the use of high performance
computing infrastructure, rendering an acceleration using
more efficient numerical methods important.

For the evaluation of the methods, we consider a subset
of the data used by Frohlich et al. (2018). From the

Table 1. Performance of ODE solver using

Teq as the initial value and an adaptive time

stepping scheme and then integrating until
steady state.

w | % fails | CPU (s)
0.01 0 0.887
0.05 0 1.124
0.10 0 1.301
0.20 0 1.463
0.50 0 2.150
1.00 0 3.393

total of 5281 conditions we selected the 94 conditions
corresponding to the control experiments.

3. RESULTS
3.1 Radius of convergence

In order to systematically evaluate and compare the dif-
ferent approaches we have constructed a series of prob-
lems with increasing difficulty. A parameter vector (¢)
describing the experimental data was first obtained from
a previous fitting to observational data (Schmiester et al.,
2019). A total of 94 conditions were tested. These are
included in the model as a separate constant parameter
vector k: @ = F(x,¢,k). In each of these 94 cases an
equilibrium solution (zeq) was first obtained by solving
the corresponding ODE problem until steady state. The
methods were then tested by using this equilibrium as
the initial guess for Newton’s method. The problems were
made progressively more challenging by perturbing the
parameter vector away from the original steady state:

be = ¢ - 10°

where € was drawn uniformly from the interval [—pu, p].
Thus p sets the potential size of the perturbation. For
example, with p = 1, each component of ¢, will lie between
0.1 and 10 times of the corresponding value of the original
parameter vector, corresponding to a large perturbation.

For reference, we have included the performance of the
ODE solver (Table 1). Here we used zeq as the initial value
and then integrated until steady state. An adaptive time
stepping scheme was used, and from the time consumption
we can see that the problems that are close to the un-
perturbed original (small values of p) require significantly
less work compared to the cases where the initial value is
further from steady state (larger values of p). Also note
that we were able to compute the steady state in all cases
(0% failure).

Table 2 shows the performance of Newton’s method in
the most basic form. There is a dramatic decrease in time
consumption compared to solving the ODEs to steady
state, with Newton’s method being more than a factor
of 100 faster. This was achieved by using KLU (Davis and
Natarajan, 2010) as the linear solver. We also tried an
iterative method (BiCGStab, Van der Vorst (1992)) but
for this problem size it was not competitive, being at least
a threefold slower. Contrary to the impressive reduction in
CPU time, we see from the failed column that the method
is not very robust. For moderately large perturbations the
failure rate is over 50%.
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Table 2. Performance of Newton’s method with

no dampening using the KLU linear solver.

The number of Newton steps among the con-

verged cases are reported in the last column

(CPU times and nl-steps, are median numbers
for individual solves).

w | % fails | CPU (s) | nl-steps
0.01 3.9 0.004 4
0.05 24.5 0.005 4
0.10 42.3 0.006 5
0.20 63.0 0.006 5
0.50 92.0 0.008 7
1.00 99.7 0.012 9

Table 3. Performance with dampening.

u | % fails | CPU (s) | nl-steps
0.01 0.0 0.005 4
0.05 0.1 0.006 4
0.10 0.0 0.006 5
0.20 0.7 0.008 8
0.50 11.6 0.011 12
1.00 49.8 0.019 23

Table 4. Performance of combined improved
initial guesses and dampening.

u | % fails | CPU (s) | nl-steps
0.01 0.5 0.004 3
0.05 0.3 0.004 3
0.10 0.3 0.005 4
0.20 3.5 0.007 5
0.50 47.7 0.013 13
1.00 96.0 0.044 40

For Table 3 the same problems were run again but now
with the dampening scheme described above. This method
copes much better with the large perturbations, only ap-
proaching 50% failure rate for the most extreme perturba-
tion (u = 1). This robustness comes at the cost of more
Newton iterations, and consequently longer computation
times. However, the increase is not dramatic, being around
a doubling for the most challenging cases.

In Table 4 we see the performance of combining dampening
with the technique to improve the initial guess as described
above. The basic idea here was to exploit the fact that
we are solving a problem that is close to some known
related problem to which we know the solution. Comparing
with the failure rates of Table 3, we can conclude that
this approach is not sound when the two problems are in
fact not close. However, for small perturbations (¢ < 0.1)
we see a typical reduction of one Newton iteration. The
method requires an extra linear solve, so the overall time
consumption is only moderately reduced for these cases
(third column).

Finally, in Table 5 we see the performance using the
continuation method instead of dampening. This achieved
the best results so far in terms of failure rate, but it comes
with a hefty computational price, approaching the times
used by the ODE solver for very large perturbations. For
small perturbations we observe a substantial reduction in
computation time.

Figure 2 compares the failure rates of the three main
variants graphically. Clearly, a lot is gained by applying

Table 5. Performance using the continuation

method instead of dampening. The last column

(# steps) shows how many separate Newton
problems are solved for each case.

u | % fails | CPU (s) | nl-steps | # steps
0.01 0.0 0.004 4 1
0.05 0.0 0.006 4 1
0.10 0.0 0.007 5 1
0.20 0.1 0.233 110 3
0.50 0.7 0.817 519 11
1.00 8.0 1.558 856 19
1001 Basic

Damped
801 —— Combined

60 A

401

Failure rate

20

0.05 01 0.2 0.5 1.0
u

0.01

Fig. 2. Comparison of failure rates for the undamped
Newton (Basic), damped Newton (Damped) and the
method using improved initial guess combined with
damping (Combined).
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Fig. 3. Comparison of the number of Newton iteration used
for the different methods.

dampening. The continuation was, despite excellent con-
vergence properties in general, not competitive and so left
out of the following plots (but see Section 3.3 below). Fig-
ure 3 compares the number of Newton iterations required
by each method and shows the superior performance of
the combined approach on the moderately hard problems
(1 < 0.1). This is echoed in Figure 4 which compares the
CPU times.

3.2 Performance along a given parameter trajectory
To assess the performance in a setting better reflecting

the requirements for parameter estimation, the parameter
changes in this section are taken from an actual optimiza-
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—— Combined

CPU time
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Fig. 4. Solve times for the different methods, mean over
all 94 conditions.

Table 6. Performance of the dampened Newton
method along a given parameter trajectory
from optimization using Ipopt from Schmiester
et al. (2019). For the first initial guess the
ODE problem was solved to steady state, in
subsequent steps the previous solution was
used as the initial guess for the new problem.
Summary of 150 steps with 94 conditions each,
totalling to 14100 problems. Mean solve time

reported.
% fails | CPU (s) | nl steps
0.46 | 0.004272 3.2

tion run (Schmiester et al., 2019). The search consisted
of 150 steps, and again 94 conditions, yielding a total of
14100 problems to be solved. As above, we computed the
first initial guess by solving the ODE problem to steady
state. In subsequent steps the previous solution was used
as the initial guess for the new problem. Overall, the steps
were quite small and we decided to not use the more robust
but slower approaches for this problem, but instead rely
on the damped-Newton method. Table 6 shows the results.
The method found the solution in most cases, and it did
so efficiently and with few iterations.

3.3 Computing the initial steady state

As seen above, Newton’s methods works very well if a good
initial guess is provided. The bottleneck is to compute
the first initial guess. For this we have relied on solving
the ODE problem until steady state. When using the
multi start method in the parameter optimization this
computation must be done for each run. Here we report
on the use of the continuation method as an alternative.

A total of 16 cases were considered. One of these was
picked as the base case and the steady state was computed
by solving the ODE problem in the usual way. Two ap-
proaches to compute the remaining 15 steady states were
then compared: the ODE approach and the continuation
method. Table 7 shows the performance. Clearly, the con-
tinuation method is superior.

4. DISCUSSION AND CONCLUSION

We have seen that computing the steady state solutions of
large-scale ODE models by solving the corresponding equi-

Table 7. Performance of the continuation
method. Numbers are collected from 15 cases,
where each case consists of 94 conditions. Last
column shows the CPU time spent using ODE

solves.
# sub problems | # steps | CPU time ODE
Mean 2.2 63.8 0.0478 65.8
Median 1 42 0.030 3.04
Max 21 340 0.263 2474
Min 1 9 0.00616 1.52

librium equation F'(z) = 0 can be done quite successfully
using Newton’s method. This is not an obvious result and
can not be expected to hold in general. However, for the
given model structure and over a large set of parameter
values we observed quite a robust performance, especially
with the suggested improvements.

Our study of one of the largest published ODE models
revealed that the method is especially well suited in
connection with parameter estimation where we have
a series of related problems, only separated by some
moderately sized step A¢ in the parameter space. In this
case, a good initial guess can be obtained by simply using
the previous steady state or by computing an improved
initial guess as described in Section 2.5. Along a typical
parameter trajectory only 2-3 Newton iterations were
sufficient in this case.

The CPU time for all considered approaches is dominated
by the linear solves. Accordingly, the approaches share
the scaling behaviour of the linear solver. While numerical
integration for the ODE has the same scaling properties,
the required number of linear solves is usually much higher
and so is the computation time.

The biggest challenge was to arrive at the initial steady
state. For this, one can rely on the fallback method, i.e. to
solve the ODE system, but we found that the method of
continuation was very useful here.

A drawback with not solving the ODE problem is that the
computation of the gradient of the cost function might
become a lot more costly. When we just solve the problem
as an algebraic system of equations, techniques such as
adjoint sensitivity analysis are not readily available. How-
ever, an extension of the method to obtain gradients also
in this case is conceivable and is something that we will
pursue in future work.
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Appendix A. THE CONTINUATION ALGORITHM

Below is pseudo code for the continuation algorithm. The
Newton function takes as input a parameter vector and an
initial guess and returns the solution of the equilibrium
problem if it converges, which is indicated with the second
return argument.

// struct to hold latest parameter
// with known steady-state:
memory{P,x} := (PO, x0)

done = False
P := P1 // a new dynamic parameter
do
[x, converged] := Newton(P, memory.x)
if !converged then
stack.put (P)
P := mean(P, memory.P, gamma)
done := ||stack.top() - memory.P|| < tol

else if stack.size() > O then
memory{P,x} := (P, x)
P := stack.pop()

else
done = True

while !done

if stack.size() > O then
Failed to find a steady-state for P1



