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1. INTRODUCTION

Understanding complex biological processes is the key goal
of systems biology (Kitano, 2002). Mathematical mod-
els, in particular based on ordinary differential equations
(ODEs), have been playing an important role in this con-
text (Kholodenko et al., 1999; Kollman et al., 2005). Some
processes can be explained with comparably simple models
(Becker et al., 2010). Others, such as the interplay of
multiple pathways in complex diseases or the functioning
of whole cells, need large models to be described (Karr
et al., 2012; Swainston et al., 2016; Hass et al., 2017).
Due to the advances in experimental and computational
methods, many large-scale models have been developed
in recent years (Khodayari and Maranas, 2017; Fröhlich
et al., 2018; Mazein et al., 2018). As the data acquisi-
tion speed continuously increases (Barretina et al., 2012;
Li et al., 2017) and more sophisticated tools for model
development appear (Todorov et al., 2019), this trend is
likely to persist.

In the past years, computational tools for the creation
and calibration of ODE models have been developed and
have shown to perform well for small- to medium-scale
models (Hoops et al., 2006; Raue et al., 2015; Henriques
et al., 2017). Efficient methods have been developed for
model calibration and uncertainty analysis (Raue et al.,
2013; Ballnus et al., 2017; Villaverde et al., 2019). This
has facilitated the process of model development and cali-
bration. However, many of these methods do not scale well
to large model sizes with thousands of state variables or
parameters. Such limitations have been observed in recent
studies using large-scale models (Fröhlich et al., 2018).
During the establishment of a comprehensive benchmark
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collection (Hass et al., 2019), we experienced that even the
reimplementation of existing models and the reproduction
of published results becomes increasingly difficult with
model size.

In this review, we summarize some of the most com-
mon challenges in (re-)use, simulation and parameter es-
timation for large-scale ODE models, present current ap-
proaches to deal with them and use a recently published
E. coli metabolic model as application example. We do
not cover the topics of model construction or data gener-
ation. Every subsection in the main part of this work first
discusses the general case, covers the application example
in the penultimate paragraph and then concludes with a
short summary.

2. MATHEMATICAL NOTATION

We consider ODE systems of the form

ẋ = f(x, θ, uk) = Sv(x, θ, uk), x(t0) = x0(θ, uk), (1)

in which x denotes the vector of state variables, x0

its initial values, uk a vector of external inputs for an
experimental condition k = 1, . . . , ne, S the stoichiometric
matrix, v(x, θ, uk) the reaction flux vector, and θ ∈ Ω ⊂
Rnθ the unknown parameters of the model, which are
restricted to a biologically plausible region Ω ⊂ Rnθ .
The input vector uk is assumed to capture all differences
between experimental conditions. A steady state of the
model is denoted by

x∗ = lim
t→∞

x(t) (2)

with
lim
t→∞

f(x(t), θ, uk) = Sv(x∗, θ, uk) = 0. (3)

Following the original publication, we assumed a subset of
the reaction flux vector as observable quantities, which we
compared with the measurement data. As measurements
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During the establishment of a comprehensive benchmark

1 These authors contributed equally
2 To whom correspondence should be addressed

collection (Hass et al., 2019), we experienced that even the
reimplementation of existing models and the reproduction
of published results becomes increasingly difficult with
model size.

In this review, we summarize some of the most com-
mon challenges in (re-)use, simulation and parameter es-
timation for large-scale ODE models, present current ap-
proaches to deal with them and use a recently published
E. coli metabolic model as application example. We do
not cover the topics of model construction or data gener-
ation. Every subsection in the main part of this work first
discusses the general case, covers the application example
in the penultimate paragraph and then concludes with a
short summary.

2. MATHEMATICAL NOTATION

We consider ODE systems of the form
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et al., 2018; Mazein et al., 2018). As the data acquisi-
tion speed continuously increases (Barretina et al., 2012;
Li et al., 2017) and more sophisticated tools for model
development appear (Todorov et al., 2019), this trend is
likely to persist.

In the past years, computational tools for the creation
and calibration of ODE models have been developed and
have shown to perform well for small- to medium-scale
models (Hoops et al., 2006; Raue et al., 2015; Henriques
et al., 2017). Efficient methods have been developed for
model calibration and uncertainty analysis (Raue et al.,
2013; Ballnus et al., 2017; Villaverde et al., 2019). This
has facilitated the process of model development and cali-
bration. However, many of these methods do not scale well
to large model sizes with thousands of state variables or
parameters. Such limitations have been observed in recent
studies using large-scale models (Fröhlich et al., 2018).
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are noise corrupted, we assumed an additive normally
distributed noise model with fixed standard deviation.
Based on this noise model, we used the negative log-
likelihood of observing the data given the parameters θ
as objective function.

3. APPLICATION EXAMPLE

Throughout this manuscript, we use the ODE model
k-ecoli457 by Khodayari and Maranas (2017) as an appli-
cation example. The model describes the dynamics of 3003
biochemical species (metabolites, enzymes and enzyme-
metabolite complexes) using 5239 elementary reactions.
The reactions follow mass action kinetics, yielding 5239
kinetic parameters. Following the work of Khodayari and
Maranas (2017), we used 31 steady state flux distribu-
tions of E. coli including 25 flux distributions grown un-
der aerobic conditions with glucose as carbon substrate,
three flux distributions grown under aerobic conditions
with pyruvate as carbon substrate, two flux distributions
grown under anaerobic conditions with glucose as carbon
substrate, and one flux distribution grown under aerobic
conditions with acetate as carbon substrate. Model and
experimental data were extracted from the supplementary
information of the publication and comprise 12 to 46
measurements for each growth condition, adding up to a
total of 1047 data points. For details on the model and
the experimental data, we refer to original publication
(Khodayari and Maranas, 2017).

Our aim was to use this model as a case study for com-
paring current tools and methods on it. As this turned out
to be more challenging than expected, we decided to sum-
marize the points which imposed the hardest challenges to
us.

4. CHALLENGES AND POSSIBLE APPROACHES

4.1 Model formulation and reusability

The first challenge faced when studying large-scale ODE
models is to actually implement them. Publications some-
times provide the underlying reaction networks, sometimes
the ODEs and their initial conditions, maybe with exe-
cutable code, or only (incomplete) descriptions in form of
written text. Depending on the form of publication, reim-
plementing an ODE model with thousands of reactions
may take days or weeks and can be extremely error prone.

While publishing an ODE model as right hand side
with initial conditions and executable code ensures repro-
ducibility, this does not hold true for reusability. Accord-
ingly, published results can easily be reproduced, but it
might be difficult to use the model for other purposes,
such as a related study. A good and widely used way
to ensure reusability is publishing the model as reaction
network with its kinetics in one of the XML-based formats
SBML (Hucka et al., 2003) or CellML (Miller et al., 2010).
Most of the current toolboxes for model simulation and
parameter estimation support at least SBML and allow for
automated import and translation to an ODE model. De-
pending on the model size, this takes seconds to minutes.
Hence, formulating and publishing a model in SBML will
substantially facilitate its reuse and increase its impact.
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Fig. 1. Schematic overview how a scientific question can be
addressed using a parametric model. Boxes indicate
model, data and tools, arrows indicate actions. Ide-
ally, for all of them standards or best-practices should
be available.

In our considered application example, the stoichiometric
matrix, the reaction fluxes and the ODE were provided
as MATLAB code. Model parameters and state variables
were documented in separate XLS-sheets. This made it
easy to run the simulations from MATLAB directly, but
very challenging to reuse it for other tasks. We tried to
recreate an SBML file from the right hand side using
MOCCASIN (Gomez et al., 2016), which however failed
due to the model size. Hence, we had to reimplement
the right hand side, which took us many days until the
simulations of all experimental conditions were running
correctly. Given an SBML file, running the corresponding
import function would have taken less than an hour.

In summary, the use of existing standards for model formu-
lation is highly beneficial. Ideally, every step from model
formulation over model calibration to the validation of
predictions should be carried out as standardized, and thus
automatable, as possible (Fig. 1). This becomes even more
important for large-scale models, as the reimplementation
effort increases with model size. Publishing an SBML
model on respective databases such as BioModels (Li et al.,
2010) or JWS online (Waltemath et al., 2017) may even
further encourage its reuse and increase its impact.

4.2 Availability of measurement data and link to the model

The next challenge, which concerns measurement data,
is two-fold. As firstly, large-scale models usually possess
many unknown parameters, large data sets are required to
ensure that the model calibration problem is not underde-
termined. At least as many data points as model parame-
ters should be used to ensure the theoretical possibility of
determining the model parameters. In practice, substan-
tially more data points may be needed. Hence, if possible,
already published data may be used or prior information
about reaction kinetics implemented, e.g. from databases
like BRENDA (Schomburg et al., 2013) or SABIO-RK
(Wittig et al., 2012). In the considered application exam-
ple, about 1000 data points were used for more than 5000
parameters. Consequently, most of the model parameters
could not be determined, which may have substantial
drawbacks on the quality of model predictions.
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are noise corrupted, we assumed an additive normally
distributed noise model with fixed standard deviation.
Based on this noise model, we used the negative log-
likelihood of observing the data given the parameters θ
as objective function.

3. APPLICATION EXAMPLE

Throughout this manuscript, we use the ODE model
k-ecoli457 by Khodayari and Maranas (2017) as an appli-
cation example. The model describes the dynamics of 3003
biochemical species (metabolites, enzymes and enzyme-
metabolite complexes) using 5239 elementary reactions.
The reactions follow mass action kinetics, yielding 5239
kinetic parameters. Following the work of Khodayari and
Maranas (2017), we used 31 steady state flux distribu-
tions of E. coli including 25 flux distributions grown un-
der aerobic conditions with glucose as carbon substrate,
three flux distributions grown under aerobic conditions
with pyruvate as carbon substrate, two flux distributions
grown under anaerobic conditions with glucose as carbon
substrate, and one flux distribution grown under aerobic
conditions with acetate as carbon substrate. Model and
experimental data were extracted from the supplementary
information of the publication and comprise 12 to 46
measurements for each growth condition, adding up to a
total of 1047 data points. For details on the model and
the experimental data, we refer to original publication
(Khodayari and Maranas, 2017).

Our aim was to use this model as a case study for com-
paring current tools and methods on it. As this turned out
to be more challenging than expected, we decided to sum-
marize the points which imposed the hardest challenges to
us.

4. CHALLENGES AND POSSIBLE APPROACHES

4.1 Model formulation and reusability

The first challenge faced when studying large-scale ODE
models is to actually implement them. Publications some-
times provide the underlying reaction networks, sometimes
the ODEs and their initial conditions, maybe with exe-
cutable code, or only (incomplete) descriptions in form of
written text. Depending on the form of publication, reim-
plementing an ODE model with thousands of reactions
may take days or weeks and can be extremely error prone.

While publishing an ODE model as right hand side
with initial conditions and executable code ensures repro-
ducibility, this does not hold true for reusability. Accord-
ingly, published results can easily be reproduced, but it
might be difficult to use the model for other purposes,
such as a related study. A good and widely used way
to ensure reusability is publishing the model as reaction
network with its kinetics in one of the XML-based formats
SBML (Hucka et al., 2003) or CellML (Miller et al., 2010).
Most of the current toolboxes for model simulation and
parameter estimation support at least SBML and allow for
automated import and translation to an ODE model. De-
pending on the model size, this takes seconds to minutes.
Hence, formulating and publishing a model in SBML will
substantially facilitate its reuse and increase its impact.
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In our considered application example, the stoichiometric
matrix, the reaction fluxes and the ODE were provided
as MATLAB code. Model parameters and state variables
were documented in separate XLS-sheets. This made it
easy to run the simulations from MATLAB directly, but
very challenging to reuse it for other tasks. We tried to
recreate an SBML file from the right hand side using
MOCCASIN (Gomez et al., 2016), which however failed
due to the model size. Hence, we had to reimplement
the right hand side, which took us many days until the
simulations of all experimental conditions were running
correctly. Given an SBML file, running the corresponding
import function would have taken less than an hour.

In summary, the use of existing standards for model formu-
lation is highly beneficial. Ideally, every step from model
formulation over model calibration to the validation of
predictions should be carried out as standardized, and thus
automatable, as possible (Fig. 1). This becomes even more
important for large-scale models, as the reimplementation
effort increases with model size. Publishing an SBML
model on respective databases such as BioModels (Li et al.,
2010) or JWS online (Waltemath et al., 2017) may even
further encourage its reuse and increase its impact.

4.2 Availability of measurement data and link to the model

The next challenge, which concerns measurement data,
is two-fold. As firstly, large-scale models usually possess
many unknown parameters, large data sets are required to
ensure that the model calibration problem is not underde-
termined. At least as many data points as model parame-
ters should be used to ensure the theoretical possibility of
determining the model parameters. In practice, substan-
tially more data points may be needed. Hence, if possible,
already published data may be used or prior information
about reaction kinetics implemented, e.g. from databases
like BRENDA (Schomburg et al., 2013) or SABIO-RK
(Wittig et al., 2012). In the considered application exam-
ple, about 1000 data points were used for more than 5000
parameters. Consequently, most of the model parameters
could not be determined, which may have substantial
drawbacks on the quality of model predictions.
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The second challenge consists in linking the existing ex-
perimental data to the model simulations. Meta-data, e.g.
experimental conditions, are required and data processing,
such as data normalization, must be taken into account by
introducing scaling factors or measurement offsets, when
observable quantities of the system should be modelled
appropriately. Often, such crucial information is missing
in public data sets and the data mapping gets increasingly
harder the larger the data set is.

Ideally, this challenge would be addressed by using stan-
dard formats for observable quantities of the model, for-
mulation of measurement data and combining this in-
formation for parameter estimation. Unfortunately, such
standards are currently missing. The XML-based formats
SBRML (Dada et al., 2010) and SED-ML (Waltemath
et al., 2011) were designed for these tasks. However,
SBRML was not adopted by the scientific community and
SED-ML is primarily designed for experimental descrip-
tion, but seems to be missing some features for parameter
estimation (e.g., a high-level definition of noise models and
parameter priors). Therefore, most parameter estimation
toolboxes have their own specific formats, which makes it
hard to switch between the toolboxes for different tasks.
Community efforts, such as PEtab (Weindl et al., 2019),
exist to tackle this problem, but are not yet applicable to
a wide range of models and data types, and it is unclear
if they are going to be adopted by the community.

In the case of our application example, we reimplemented
the 31 experimental conditions, ran simulations, collected
the experimental data, and compared them to the model
output. Despite a good documentation from the authors,
this took – also due to the high computation time –
several days. During this process, we found two flipped
minus signs in the formulation of the observed metabolic
fluxes (as confirmed by the authors). The authors had fixed
them correctly in their parameter estimation code, but had
described it neither in the publication nor in the provided
code. This illustrates that handcrafted solutions are likely
to produce errors and should therefore be avoided.

Currently, SED-ML is the most promising candidate for
providing experimental conditions and observable quan-
tities in a simulation-ready format and should therefore
be considered an option. However, standards which allow
the formulation of a parameter estimation problem are
missing and currently being developed. Thus, a detailed
documentation of the parameter estimation problem is
probably the best way to ensure an easy reproduction and
reuse of published results.

4.3 Efficient simulation of ODE models

A key challenge is achieving an efficient and reliable
simulation of the model. During model calibration or
uncertainty analysis, this has to be done thousands or
even millions of times. As in many projects, computation
time is the limiting factor, an efficient model simulation
is urgently needed. Due to their size, large-scale models
are often more prone to numerical artifacts or simulation
failures. Because of these numerical problems, measures
must be taken to ensure not only an efficient but also a
robust model simulation.
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Fig. 2. Analysis of model simulation. A) Comparison of
computation times using the MATLAB based ODE
solver ode15s and the solver package AMICI, called
from MATLAB but based on C/C++ code (for sim-
ulation conditions taken from the original publica-
tion). B) Comparison of ODE solver robustness for
the original model implementation and two modifi-
cations (rounded entries in the stoichiometric matrix
and enforced positivity of states) for 500 randomly
sampled parameter vectors in vicinity of the reported
parameter vector. C) Scaling behaviour of compu-
tation time for the objective function gradient (one
experimental condition) using either finite differences,
forward sensitivities or adjoint sensitivities after fixing
different numbers of parameters.

The first step consists in choosing the most appropriate
approach for simulation: If time series data is to be
simulated, the ODE must be solved, which is typically
done by numerical integration with implicit solvers. For
the study of steady state data, the model can either be
simulated to a late time point until some norm of the right
hand side undergoes a previously chosen threshold, or root
finding algorithms, such as Newton’s method, can be used.

An approach to improve the efficiency of implementations
is the use of compiled languages. Mature toolboxes for
ODE solving or root finding are available (Hindmarsh
et al., 2005; Zhang and Sandu, 2011) and should be con-
sidered, unless a custom implementation is unavoidable.
Often, those toolboxes can be interfaced from high-level
languages, such as R (Soetaert et al., 2010), MATLAB, or
python (Fröhlich et al., 2017b), to facilitate their usage.
This may decrease computation time by orders of magni-
tude.

Improving robustness is often model specific and highly
challenging. Generally, the output of solver diagnostics is
helpful to spot numerical issues in the case of simulation
failures. During ODE integration, entries in the state vec-

tor, such as concentrations, which are physically required
to be positive, may become negative if inappropriate error
tolerances are used. In these cases, it may help to enforce
positivity of the state vector or slightly adapt the reaction
kinetics, if an adapted model is still appropriate. If New-
ton’s method is used, it may happen that the Jacobian of
the right hand side is singular and can not be factorized.
To avoid singularity of the Jacobian matrix as far as
possible, the system size should be reduced by exploiting
conservation laws, which is done automatically in some
of the common toolboxes (e.g., COPASI) or described in
Vallabhajosyula et al. (2006).

We simulated the application example using the ODE
solver toolbox AMICI (Fröhlich et al., 2017b), which
provides a MATLAB, python and C++ interface to the
ODE solver CVODES (Serban and Hindmarsh, 2005) from
the SUNDIALS package. As Newton’s method was not
applicable due to singular Jacobians, we refactored the
code for identifying the steady state from the original
publication, which integrates the ODE until the maximum
norm of the right hand side undergoes a threshold. Us-
ing AMICI, we achieved an average speed-up of about
a 200-fold when compared with the original MATLAB
implementation (Fig. 2A). As the stoichiometric matrix of
the model contained non-integer entries, slightly negative
states caused problems when exponentiated with these
non-integer numbers. Hence, we tested the influence on
numerical stability of either adapting the stoichiometrix
matrix by rounding these entries – which results only in
an approximation of the original model – or enforcing pos-
itivity of the states, by setting negative states to zero, by
running model simulation and gradient evaluation for 500
randomly sampled parameters (Fig. 2B). Particularly for
gradient computation, reliability was markedly improved.
Yet, likelihood computation often failed, if no steady state
could be identified for the given parameter vector.

Generally, achieving an efficient and robust model sim-
ulation is a major issue. Using mature toolboxes with
customizable settings and solver diagnostics may help to
reduce computation time and increase robustness.

4.4 Objective function and gradient computation

Given observables and measurement data, an objective
function can be computed and optimized. As many op-
timization algorithms require the gradient of the objective
function to work, their efficiency depends on the accu-
racy and the computation time of the objective function
gradient. For large-scale models, gradient calculation is
a major challenge, as it is computationally substantially
more expensive than a usual model simulation.

Standard methods, such as finite differences and forward
sensitivities, scale with the product of the dimensions of
the state vector and the parameter vector, which makes
them computationally prohibitive for large-scale models.
This problem can be solved by using adjoint sensitivity
analysis, which only needs to solve the original ODE, the
ODE of the adjoint state (which has the same size), plus
one-dimensional quadratures for each model parameter.
For large-scale models, this can reduce the computational
burden by two or three orders of magnitude (Fröhlich
et al., 2017a). If only steady state data is considered,
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computing steady state sensitivities can be an alternative.
Those can be obtained by directly differentiating Equa-
tion 3 with respect to the model parameters, which yields

0 = ∇xf(x
∗, θ, uk)∇θx

∗ + ∂θf(x
∗, θ, uk), (4)

and computing∇θx
∗ by factorizing the Jacobian of f . This

approach has the potential to even outperform adjoint
sensitivity analysis, but it is only applicable if the Jacobian
can be factorized.

In our application example, the Jacobian was singular and
the threshold we used for the norm of the right-hand
side was too rough to rely on the approach via steady
state sensitivities. Following the original implementation,
we first identified a time point t∗ for the steady state x∗ for
each experimental condition by integrating the ODE until
the right hand side became small. Then, we used the exper-
imental data together with the time point t∗ for adjoint
sensitivity analysis. We compared the computation time
needed to calculate a gradient of the objective function at
the nominal parameter value (Fig. 2C). We found that ad-
joint sensitivity analysis outperformed forward sensitivity
analysis by a factor of more than 250 and was 1200 times
faster than using finite differences. However, the adjoint
method only worked reliably after we ensured positivity of
the entries in the state vector or rounded the entries in the
stoichiometric matrix to integer values (Fig. 2B).

If gradients are needed for parameter estimation of a large-
scale model, adjoint sensitivity analysis is currently the
most efficient method. If only steady state data is used,
steady state sensitivities may be considered, as those do
not only yield the gradient, but also make it possible
to compute the FIM, which can be valuable for specific
optimization or uncertainty analysis strategies.

4.5 Parameter optimization

Parameter estimation for ODE models is a difficult task,
as those often yield non-convex and multi-modal objective
functions. However, for large-scale models it becomes
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tor, such as concentrations, which are physically required
to be positive, may become negative if inappropriate error
tolerances are used. In these cases, it may help to enforce
positivity of the state vector or slightly adapt the reaction
kinetics, if an adapted model is still appropriate. If New-
ton’s method is used, it may happen that the Jacobian of
the right hand side is singular and can not be factorized.
To avoid singularity of the Jacobian matrix as far as
possible, the system size should be reduced by exploiting
conservation laws, which is done automatically in some
of the common toolboxes (e.g., COPASI) or described in
Vallabhajosyula et al. (2006).

We simulated the application example using the ODE
solver toolbox AMICI (Fröhlich et al., 2017b), which
provides a MATLAB, python and C++ interface to the
ODE solver CVODES (Serban and Hindmarsh, 2005) from
the SUNDIALS package. As Newton’s method was not
applicable due to singular Jacobians, we refactored the
code for identifying the steady state from the original
publication, which integrates the ODE until the maximum
norm of the right hand side undergoes a threshold. Us-
ing AMICI, we achieved an average speed-up of about
a 200-fold when compared with the original MATLAB
implementation (Fig. 2A). As the stoichiometric matrix of
the model contained non-integer entries, slightly negative
states caused problems when exponentiated with these
non-integer numbers. Hence, we tested the influence on
numerical stability of either adapting the stoichiometrix
matrix by rounding these entries – which results only in
an approximation of the original model – or enforcing pos-
itivity of the states, by setting negative states to zero, by
running model simulation and gradient evaluation for 500
randomly sampled parameters (Fig. 2B). Particularly for
gradient computation, reliability was markedly improved.
Yet, likelihood computation often failed, if no steady state
could be identified for the given parameter vector.

Generally, achieving an efficient and robust model sim-
ulation is a major issue. Using mature toolboxes with
customizable settings and solver diagnostics may help to
reduce computation time and increase robustness.

4.4 Objective function and gradient computation

Given observables and measurement data, an objective
function can be computed and optimized. As many op-
timization algorithms require the gradient of the objective
function to work, their efficiency depends on the accu-
racy and the computation time of the objective function
gradient. For large-scale models, gradient calculation is
a major challenge, as it is computationally substantially
more expensive than a usual model simulation.

Standard methods, such as finite differences and forward
sensitivities, scale with the product of the dimensions of
the state vector and the parameter vector, which makes
them computationally prohibitive for large-scale models.
This problem can be solved by using adjoint sensitivity
analysis, which only needs to solve the original ODE, the
ODE of the adjoint state (which has the same size), plus
one-dimensional quadratures for each model parameter.
For large-scale models, this can reduce the computational
burden by two or three orders of magnitude (Fröhlich
et al., 2017a). If only steady state data is considered,
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computing steady state sensitivities can be an alternative.
Those can be obtained by directly differentiating Equa-
tion 3 with respect to the model parameters, which yields

0 = ∇xf(x
∗, θ, uk)∇θx

∗ + ∂θf(x
∗, θ, uk), (4)

and computing∇θx
∗ by factorizing the Jacobian of f . This

approach has the potential to even outperform adjoint
sensitivity analysis, but it is only applicable if the Jacobian
can be factorized.

In our application example, the Jacobian was singular and
the threshold we used for the norm of the right-hand
side was too rough to rely on the approach via steady
state sensitivities. Following the original implementation,
we first identified a time point t∗ for the steady state x∗ for
each experimental condition by integrating the ODE until
the right hand side became small. Then, we used the exper-
imental data together with the time point t∗ for adjoint
sensitivity analysis. We compared the computation time
needed to calculate a gradient of the objective function at
the nominal parameter value (Fig. 2C). We found that ad-
joint sensitivity analysis outperformed forward sensitivity
analysis by a factor of more than 250 and was 1200 times
faster than using finite differences. However, the adjoint
method only worked reliably after we ensured positivity of
the entries in the state vector or rounded the entries in the
stoichiometric matrix to integer values (Fig. 2B).

If gradients are needed for parameter estimation of a large-
scale model, adjoint sensitivity analysis is currently the
most efficient method. If only steady state data is used,
steady state sensitivities may be considered, as those do
not only yield the gradient, but also make it possible
to compute the FIM, which can be valuable for specific
optimization or uncertainty analysis strategies.

4.5 Parameter optimization

Parameter estimation for ODE models is a difficult task,
as those often yield non-convex and multi-modal objective
functions. However, for large-scale models it becomes
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even more challenging, since the parameter space is high
dimensional and therefore harder to explore, and since the
objective function and its gradient are more expensive to
compute. Yet, ODE models need calibration to produce
meaningful outputs.

It has shown to be efficient to exploit as much prior knowl-
edge about the problem structure as possible. Among oth-
ers, estimating parameters in logarithmic scale (Hass et al.,
2019) generally improves the convexity of the objective
function and optimizer performance. Moreover, due to the
specific form of the objective function, observation specific
parameters such as scaling or measurement noise parame-
ters can be computed analytically for a given model sim-
ulation, which also increases optimizer performance (Loos
et al., 2018; Schmiester et al., 2019). In comparative stud-
ies of optimization strategies, meta-heuristics combined
with local searches or naive multi-start local optimization
have shown to be well suited for this class of problems
(Raue et al., 2013; Villaverde et al., 2019). Concerning
sub-strategies for local optimization, those using derivative
information and hence exploiting the smoothness of the
problem have shown to outperform derivative-free meth-
ods (Schälte et al., 2018).

Khodayari and Maranas (2017) found their reported pa-
rameter vector by a particularly tailored genetic algorithm.
We used this vector and sampled parameters in a box of ±3
around it after a log10-transformation. Starting from these
initial guesses, we tested different optimization strategies:
a multi-start local optimization with 500 starts using for
local optimization either the gradient-based interior-point
algorithm of the MATLAB routine fmincon, a MATLAB
implementation of the gradient-free Dynamic Hill Climb-
ing (De La Maza and Yuret, 1994), and 10 starts of the
global, gradient-free genetic algorithm from the toolbox
MEIGO (Egea et al., 2014) without local searches (which
could however have been combined with gradient-based
methods). To our surprise, none of the employed methods
was able to find a parameter vector which gave an equally
good fit as the reported parameters, although the gradient-
based algorithm fmincon came closest to it (Fig. 3). Ad-
mittedly, it could not improve the fit when started at the
nominal parameters, in contrast to DHC, which however
turned out inferior to fmincon when started at randomly
sampled guesses. Finally, the purely derivative-free genetic
algorithm provided the poorest fit.

Overall, this indicates that parameter estimation meth-
ods which are tailored to the problem tend to perform
best. Apart from this, it confirms the known finding that
derivative-based methods often outperform derivative-free
methods on smooth objective functions, especially if gra-
dients can be computed efficiently. Despite the use of ac-
curate gradients, parameter optimization tends to become
harder the larger the considered model is.

4.6 Uncertainty analysis

Large-scale models possess many degrees of freedom and
therefore, parameters are often underdetermined. Badly
determined (i.e., non-identifiable) parameters can (but do
not need to) lead to large uncertainties in model predic-
tions. As uncertainty analysis is computationally highly
demanding, this is probably the greatest challenge to date

Fig. 4. Spectral decomposition of the FIM. Vertical ticks
indicate spectral values, the histogram shows their
distribution.

which has to be faced when working with large-scale mod-
els. Various methods exist in this field, and generally, the
methods which yield more insight, such as profile likeli-
hoods or Markov-chain Monte Carlo (MCMC) sampling,
are computationally more expensive. Profile likelihoods
have to be computed for each parameter (which yields
a linear scaling) and for every profile, many (local) op-
timization problems have to be solved, which in turn are
more expensive the larger the model is. MCMC sampling
methods try to explore the whole parameter space, which
means more function evaluations are needed to create a
representative sample in high dimensions. Generally, their
scaling behavior is hard to assess, although for particular
posterior distributions estimates can be derived, which
generally suggest a polynomial scaling in the parameter
dimension. Therefore, profile likelihoods and MCMC sam-
pling often become prohibitive for large-scale models.

Different approaches for this problem exist: For pro-
file computation, cheaper methods have been developed,
which try to circumvent optimization (Stapor et al., 2018)
by integrating a continuous analogue of the profile opti-
mality condition. Furthermore, profiles can be computed
directly for model predictions (Kreutz et al., 2012), which
may be beneficial if model predictions are less numerous
than model parameters. Yet, if parameter optimization
does not work reliably, these methods are not applicable,
as they need an optimization result for initialization. Con-
sequently, cheaper and less accurate methods are mostly
used, such as evaluating the variance in ensemble predic-
tions (Henriques et al., 2017), analyzing the variance of
the optimized parameters or gradients, using local approx-
imations such as the Fisher information matrix (FIM), or
splitting the data in different training and validation sets
and applying cross-validation (Fröhlich et al., 2018), if the
data set is large enough.

For our application example, profile likelihoods and
MCMC sampling were computationally too expensive.
Hence, we computed the FIM at the reported parameter
value based on forward sensitivity analysis (see, e.g., Raue
et al. (2013)) and computed its spectral decomposition.
After rescaling the matrix with the inverse of the largest
eigenvalue, we set a cut-off at 10−15, which corresponds
roughly to the numerical precision of MATLAB. This

yielded 675 identifiable (and hence 4564 non-identifiable)
directions in parameter space (Fig. 4).

Overall, uncertainty analysis is probably the most chal-
lenging task for large-scale models. Mainly simple ap-
proximations are available, which is a highly problematic
situation, as large-scale models are expected to suffer more
from uncertainties than smaller-scale models. Probably,
uncertainties of predictions should be inferred directly
rather than going via parameter uncertainties. For this
purpose, splitting the available data into different com-
binations of training and validation sets and performing
cross validation is probably the most practicable method
at the moment.

5. SUMMARY AND CONCLUSION

Large-scale modelling with ODEs is a rapidly growing
field, which comes with new challenges. In this review,
we summarized the most recurrent problems and showed
currently available approaches to deal with them, which
we illustrated on a recent application example. For many
problems, no general solutions exist. More models with
measurement data, collected in public data bases using
standards, are needed to perform further studies.

Leaving aside the even more complicated task of network
inference, parameter optimization and uncertainty analy-
sis are currently the key challenges for large-scale models,
for which no satisfactory approaches exist. Due to the
high computation times, toolboxes suitable for computing
clusters are necessary and have recently been developed
(Penas et al., 2017; Schmiester et al., 2019). Moreover,
new approaches have to be explored, such as transferring
the concept of mini batching from the field of deep learn-
ing (Goodfellow et al., 2016) to optimization or MCMC
sampling (Seita et al., 2018) of ODE models.

As methods which are tailored to a problem class tend to
outperform black box solutions and since parameter esti-
mation of ODE models is a bounded field, accounting for
the specific structure can lead to substantial improvements
(Schmiester et al., 2019; Fröhlich et al., 2018). Studies
have to be performed, which aim at a better understand-
ing of the properties of this problem class, such as how
non-identifiable parameters translate into uncertainties of
model predictions.

First steps have been taken to facilitate the study of this
new field. Now, we have to deepen our understanding of
the problems at hand. Hopefully, this will enable the devel-
opment of novel strategies to tackle the existing challenges
and lead to a substantially improved understanding of
complex biological questions in the future.
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Fröhlich, F. et al. (2018). Efficient parameter estimation
enables the prediction of drug response using a mech-
anistic pan-cancer pathway model. Cell Systems, 7(6),
567–579.
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