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Abstract: The parameters of dynamical models of biological processes always possess some
degree of uncertainty. This parameter uncertainty translates into an uncertainty of model
predictions. The trajectories of unmeasured state variables are examples of such predictions.
Quantifying the uncertainty associated with a given prediction is an important problem for
model developers and users. However, the nonlinearity and complexity of most dynamical
models renders it nontrivial. Here, we evaluate three state-of-the-art approaches for prediction
uncertainty quantification using two models of different sizes and computational complexities.
We discuss the trade-offs between applicability and statistical interpretability of the different
methods, and provide guidelines for their application.
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1. INTRODUCTION

Many biological processes are modelled using systems
of ordinary differential equations (ODEs). These ODE
models usually have unknown parameters that can be
estimated from data. If parameter estimates are available,
it is possible to simulate the model and thus obtain the
time courses of its state variables, e.g., concentrations of
biochemical species.

Model simulations allow for the generation of a broad
spectrum of model predictions, e.g. the response of a
biological process to perturbations. However, if the pa-
rameter values are estimated and subject to uncertainties,
the model predictions are also uncertain. The assessment
of the prediction uncertainties is crucial and a variety
of methods have been proposed (see (Cedersund, 2016;
Kaltenbach et al., 2009) for an overview). However, for
non-linear ODE models with dozens or hundreds or pa-
rameters, the quantification of prediction uncertainties is
still challenging.

In this study, we compare available methods for the
assessment of prediction uncertainties. We consider non-
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linear ODEs with partial observations which are subject
to substantial measurement noise. For this challenging
problem class, we assess the prediction uncertainties of
state variables. As state variables encode the information
about the dynamics of the systems, the prediction of them
is of key interest.

The manuscript is structured as follows: In Section 2, we
describe three methods for quantifying prediction uncer-
tainty and the metrics used for their evaluation. In Section
3, we assess their suitability to dynamic systems biology
models. Finally, we discuss the results and provide some
guidelines in Section 4.

2. METHODS

In this work we consider dynamic models described by
nonlinear ODEs of the following form:

T = f(m,@,t), x(tO) = I0(0)7
y:g(x,ﬂ,t), (1)

in which z(t) € R™ is the state vector at time ¢ with initial
conditions xo(0), y(t) € R™ is the output vector at time
t, f and g are possibly nonlinear functions, and 6 € R™ is
the unknown parameter vector. To calibrate model (1) we
need to estimate 6.

We assume that the measurements of the outputs y are
noise-corrupted, yx(t;) = yr(t;) + ex(t;) for k = 1,...n,
and ¢ = 1,...n;, with normally distributed measurement
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noise € (t;) ~ N(0,0%(t;)). The maximum likelihood esti-
mation of the parameters is than obtained by minimizing
the negative log-likelihood function:

IR ) Gi(t:) — ye(t:) \*
Juil = 5 > llog (27 (oic(t:))) + (W) ]

k=1 i=1
(2)
subject to the bounds 8% < § < V. Here n; is the number
of measurement time points, y(¢;) is the k' component
of the model output vector at the i** time point, and
Jx(t;) and o (t;) are the corresponding measurement and
standard deviation, respectively.

Subsections 2.1-2.3 describe the uncertainty prediction
methods considered in this paper. Subsection 2.4 defines
the metrics used for comparing the performance of the
methods.

2.1 Uncertainty propagation with the Fisher Information
Matriz (FIM)

The Fisher information matrix (FIM) provides informa-
tion about the parameter uncertainty and practical iden-
tifiability. For a set of n; measurements it can be calculated

as
o~ () o (Qutt) )"
i=1
where % are the sensitivities of the observables with

respect to the parameters, and W is a diagonal matrix
with W,Sg = 1/02(t;). The Cramér-Rao theorem (Cramér,
2016) states that, if § is an unbiased estimate of 6 (i.e.
E(0) = 0), the inverse of the FIM is a lower bound estimate
of the covariance matrix,

Cov(0) > FIM~*(d) (4)

The covariance matrix provides information about vari-
ability of estimates of individual parameters and of param-
eter pairs across different realizations of the experimental
data. It is defined as:

Cov() =E {(e - é) (é . é) T} - (5)

var(fy) - cov(fy,0,,)

(6)

cov(Ony,01) -+ var(,,)
If the FIM is invertible, it is possible to approximate the
uncertainty in the state trajectories by error propagation
from the parameter estimates (Geler et al., 2012) as

dx(t NOR
Cov|z(t)] = %COV(@)%) (7)
In the FIM-based method the predicted value of the ;P
state at time ¢; is obtained by simulating the model with

the optimal parameter vector 6, that is
2§ (t;) = z;(ti,0) (8)

where we have made explicit the dependency on 6. The
predicted state vector is P (t;). In this work we performed
parameter estimation using the MATLAB version of the
MEIGO toolbox (Egea et al., 2014).

The estimate of the uncertainty of the prediction about
state x; at time ¢; is the standard deviation,

e (t:) = 1/ Covyjlzr(t:)), 9)

with Covj;[2P(t;)] denoting the jth diagonal element of
the covariance matrix Cov[z?(t;)].

This is the same approach that Gutenkunst et al. (2007)
called Linear Covariance Analysis (LCA). Its caveats are
that confidence intervals estimated from the FIM are
always symmetric. This might violate constraints (e.g.
positivity bounds) and can be overly optimistic if non-
linearities are present, since they rely on a linearisation
of the models. Furthermore, if the FIM is not invertible,
as happens if there are unidentifiable parameters, this
approach cannot be applied in principle. To approximate
the results, the Moore-Penrose pseudoinverse of the FIM
(Shahmohammadi and McAuley, 2019) can be employed.
This is the solution used in this work.

2.2 Prediction Posterior (PP)

In Bayesian parameter estimation, the (parameter) poste-

ror p(DI6)p(6)

p(D)
is considered, in which p(f) denotes the prior, p(D|0)
denotes the likelihood of the data D given the parameters
and p(D) denotes the marginal probability. The posterior
p(0] D) encodes the available information about the param-
eters 6 given the experimental data D and the prior infor-
mation p(f). Accordingly, the information about a model
prediction h(6) is encoded in the prediction posterior,

MMD%j/MM@MMDMG

p(0|D) = (10)

(11)

As the posterior distributions are in general not available
in closed-from, sampling methods are used to assess their
properties. Most widely used are Markov chain Monte
Carlo methods (MCMC) which construct a sequence of
points. For this study, we employed an adaptive paral-
lel tempering algorithm (Miasojedow et al., 2013) imple-
mented in the MATLAB parameter estimation toolbox
PESTO (Stapor et al., 2017). This algorithm combines
the sampling from tempered posterior distributions with
a local adaptation to enhance the sampling efficiency. The
method yields samples from the posterior distribution,
{G(k)}le, which can be used to assess parameter uncer-
tainties. The evaluation of the predictions for the sampled
parameters, {h(*) = h(e(k))}le, yields a sample from the
prediction posterior. This can be used to assess the mean
prediction as well as the prediction uncertainties.

The mean prediction of the state variable x; at time point

ti is
1 S
Prpy — (2)
zl(t;) = 5 g h
k=1

for h(0) = z;(t;,0). As a measure of the uncertainty, we
consider the distance between the 0.5th- and the 99.5th-
percentile of the sample of prediction, x?er:OB(ti) and
l‘ger=99.5

(12)

(t;), yielding

ep(ti) _ xper=99.5(ti) _ xper=0.5(ti).

J J J (13)
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We note that the computationally demanding step is the
sampling of the parameter posterior distribution. The
evaluation of parameter and prediction uncertainties is
very efficient.

2.3 Ensemble Consensus (ENS)

As an alternative to established approaches we consider an
ensemble approach for uncertainty analysis as presented
in (Villaverde et al., 2015), where an ensemble of models
was built with different parameter vectors obtained from
calibrations. By simulating the models in the ensemble an
envelope of predictions is obtained, the mean of which is
considered as the ensemble prediction. A measure of the
dissensus among model outputs is used as a proxy for the
prediction uncertainty.

The parameter vectors included in the ensemble are ob-
tained from optimization runs. To this end it is necessary
to store not only the final optimum, but also other good
parameter vectors evaluated during the optimization. As
in the FIM method, we used the MATLAB version of the
MEIGO toolbox (Egea et al., 2014) for parameter estima-
tion, performing several optimizations in order to obtain
a diverse ensemble. A parameter vector is accepted in the
ensemble if its objective function value falls below a given
threshold. To facilitate a statistical interpretability, we
consider the same threshold as used in profile calculation
(Raue et al., 2009). This objective function threshold is
the negative log-likelihood function at the optimal point
plus 1/2 times the a percentile of the x2-distribution,
Jun(0*) + A, /2. We choose a confidence level of o = 0.01.

The ensemble prediction and the uncertainty are mathe-
matically defined as follows. Let us denote the prediction
of the dynamic state z; at time ¢; made by the k" model
parameterisation in the ensemble as zf (t;). The average
prediction of all models is an array of dimensions n; X ng,

the elements of which are:
1 I

2B(t;) = — > al(t)
Mm

where n,, is the number of parameter vectors in the
ensemble. This average, xf (t;), is the ensemble prediction.

(14)

In (Villaverde et al., 2015) a dissensus-based metric was
used for quantifying uncertainty. The dissensus measures
the variability in the predictions made by the ensemble
models about a state, and is thus an indication of the
uncertainty of the prediction of said state. Here we use
for that purpose the width of the 99th-percentile interval
of the ensemble (13), which gives similar results as the
dissensus-based metric.

2.4 Assessment metrics

In this work we perform a comparative study using iden-
tification problems with synthetic data, where the actual
solutions are known. To quantify the agreement between
the predictions made by each method and the actual
states, we use the sample correlation coefficient:

oty (@ (i) — af)(x(t:) — T5)

_fj)z

pa:j =
VI (b () — )2 S (a (1)

(15)

where x? (t;) is the prediction of a particular method for

state x; at time t;, x;(¢;) is the actual value, and :1?5 and
T; are their averages along all time points. The overall
correlation coefficient for a model, p,, is the average of the
. S fotee o — L N
correlation coefficients of the states, p, = o > i1 P
To quantify the agreement between the uncertainty esti-

mated by each method and the actual error we use
e = oty (ef(ti) =€) (ej(ti) — )
e; pu—
V() — D20 (e (t:) — )2
where e’; (t;) is the uncertainty regarding the value of state

x; at time ¢; estimated by the method, e;(t;) is the actual
error made by the method, that is, the difference between
p

the prediction and the actual state value, e;(t;) = 2% (t;) —

zj(t;), and e} and €; are their averages along all time
points. Again, as an aggregate metric we use the average,

1 Ng
Pe = 7o Zj:l Pe; -

(16)

3. CASE STUDIES AND RESULTS

In this manuscript we evaluate the uncertainty analysis
methods using two case studies with synthetic data. The
knowledge of the true parameter values and state tra-
jectories facilitates an in-depth analysis of the different
methods. Table 1 displays the main features of the mod-
els, table 2 summarizes the results using the assessment
metrics defined in Subsection 2.4, and table 3 shows the
computation times.

Table 1. Properties of the considered case stud-
ies: number of parameters (ng), state variables
(ng), and measured outputs (n,).

ng Nz Ny
a-pinene 5 5 5
JAK/STAT 27 25 20

Table 3. Approximate computation times, in
hours, needed by each method and case study.
For the FIM method, the computation time
corresponds to the optimization used to obtain
the optimum. For the ENS method it includes
all the optimization runs used to obtain the
parameter vectors in the ensemble. For PP it
includes the sampling time, which was per-
formed with parallel tempering.

FIM ENS PP
a-pinene 0.05 0.3 1.5
JAK/STAT 35 40 350

8.1 Model for isomerization of a-pinene

Our first example is taken from Box et al. (1973). It is
a small and relatively simple problem that is intended to
serve as a sanity check of the different methods. It should
be noted that all the states in this model are measured,
which is an unusual feature in biological applications.

All methods can be easily applied to this model. Since all
parameters are identifiable, the FIM is invertible and the
FIM-based method can be directly applied. To apply the
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Table 2. Correlations of predictions and true states (p,) and between prediction uncertainty
quantified by each state and actual prediction error (p.), for all methods and case studies. For
the prediction uncertainties, correlations for the 99%, 95%, and 68% percentiles are shown; the
results do not vary for the FIM method and the differences are relatively small for PP and ENS,
showing that the metric is robust with respect to the choice of the confidence level. The values

shown are the mean + the standard deviation for each state.

FIM PP ENS
a-pinene Pz 0.9983 +0.0036  0.9983 +0.0036  0.9983 £ 0.0036
Pegy  0.8069 £0.2506  0.8264 + 0.2068  0.8406 £ 0.1877
Pegs  0.8069 £0.2506  0.8235+0.2118  0.8364 £ 0.2140
Pegs  0.8069 £ 0.2506  0.8227 £0.2139  0.8043 £ 0.2693
JAK/STAT Pz 0.9256 +0.1216  0.9007 +0.1151  0.9392 £ 0.1111
Pegg  0.7586 £0.3068  0.8730 £ 0.1809  0.8314 £ 0.2642
Pegs  0.7586 £0.3068  0.8748 +0.1801  0.8206 £ 0.2694
Pegs  0.7586 £ 0.3068  0.8757 £0.1765  0.8095 & 0.2518
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Fig. 1. Dispersion of the parameter values in the ensembles (ENS method).

ENS method we built an ensemble with 4000 parameter
vectors obtained through optimization. The PP method
was applied with 100000 samples. Identifiability leads to
low dispersion in the parameter values included in the
ensemble; as seen in Fig. 1, as well as in the PP samples
(Fig. 2).

Fig. 3 shows the results of the FIM, PP, and ENS ap-
proaches, which are in general qualitative agreement. The
prediction uncertainties are relatively small. Computation
times range from a few minutes (FIM) to less than two
hours (PP), as shown in table 3.

3.2 Model for JAK/STAT pathway

Our second example is the model of the JAK2/STAT5
signaling pathway presented by Bachmann et al. (2011)

and included in the benchmark collection by Hass et al.
(2019). It is larger than the a-pinene case study, and only
partially observed, i.e. not all of its states are directly
measured. This hampers parameter identifiability, which
leads to a large dispersion in the values of the parameters.
Fig. 1 shows the range of parameter values for the 5000
vectors included in the ensemble, and Fig. 2 shows the
40000 samples considered in the PP method. It can be
seen that for some parameters a wide range of values is
consistent with a good fit to the data. This in turn leads
to a decrease in the accuracy of the predictions. As can
be seen in table 2, the correlations between the actual
time-courses of the states and the predictions made by
the model are smaller than in the a-pinene case for all
methods, although they are nonetheless still p, > 0.90.
The correlations between uncertainty and actual error
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are smaller than in the a-pinene example for the FIM
method, similar for ENS, and higher for PP (p. > 0.75
in all cases). Unidentifiability also entails that the FIM
is not invertible; as mentioned in Subsection 2.1, we
calculated the FIM-based uncertainties using the Moore-
Penrose pseudoinverse (Shahmohammadi and McAuley,
2019). Table 3 shows the computation times, which are
considerably larger (in the order of days) than for the
a-pinene case study. Fig. 4 depicts the predictions and
uncertainties estimated by all methods for a representative
subset of states.

4. DISCUSSION AND CONCLUSIONS

In this paper we have compared three different approaches
for uncertainty quantification in dynamic biological mod-
els. Specifically, the methods considered here estimate
the uncertainty of the time-dependent state variables. We
found that several factors can be taken into account when
choosing a method for a specific problem.

In regard to accuracy, it should be noted that the FIM-
based method is strictly local, and uses a linearization
around a single point. It captures symmetric confidence
intervals and is for the finite sample case expected to give
inaccurate results in the presence of strong nonlinearities.
Furthermore, if the model has unidentifiability issues the
FIM cannot be inverted and a pseudoinverse has to be
used. This was the case for the second case study analysed
here, and is a very common scenario in systems biology
models. To calculate the pseudoinverse it is necessary to
specify a threshold, and the results can be affected by it.
The PP and ENS approaches do not share these limitations

of the FIM. In the case studies considered here, the three
methods showed good agreement for the simplest example,
the a-pinene model. For the other larger and more complex
(nonlinear) model, more differences appeared. For this case
study, PP and ENS yielded more accurate estimations
of the uncertainty of the predictions than FIM. Yet, the
confidence intervals often did not cover the true trajectory.
This might be due to conceptual limitations or technical
problems (e.g. convergence of the MCMC sampler for PP).

Another consideration is computational cost. In this re-
gard, the FIM-based method is the cheapest one, since it
only requires one successful optimization in order to find
an optimal parameter vector. The most expensive one is
the PP approach, which can become very expensive for
large models. The computational cost of ENS is interme-
diate between FIM and PP.

Overall, our results suggest a trade-off between compu-
tational scalability, on the one hand, and accuracy and
rigour on the other. At one end of the trade-off there
is the FIM method, which should be chosen only if the
other approaches are computationally too expensive for
the problem under consideration. At the other end there
is the PP method. The ENS approach has a lower compu-
tational cost than PP, but PP provides a clearer statistical
interpretation than ENS. The question of how to build the
ensemble — i.e. how many vectors should be included in it,
and which threshold should be chosen for their inclusion
— is worthy of further investigation. If the ensemble does
not contain sufficient diversity, there is a risk of underes-
timating uncertainty.
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An alternative method for uncertainty quantification, is
the prediction profile likelihood (Kreutz et al., 2012; Hass
et al., 2016), which has not been considered in the present
paper. We are currently assessing this method and we plan
to present this ongoing work in the short term. Future
work will also include the consideration of larger and
computationally more demanding examples.

Finally, we would like to emphasize that in addition to
the parameters often the model structure is also unknown.
In this case, the uncertainty analysis should also take
the topological uncertainties into account, using concepts
such as model averaging (Frohlich et al., 2019). A detailed
assessment of this methods would also be helpful, but it is
however beyond the scope of this contribution.

REFERENCES

Bachmann, J., Raue, A., Schilling, M., Béhm, M.E.,
Kreutz, C., Kaschek, D., Busch, H., Gretz, N., Lehmann,
W.D., Timmer, J., et al. (2011). Division of labor by
dual feedback regulators controls JAK2/STATS5 signal-
ing over broad ligand range. Molecular Systems Biology,
7(1), 516.

Box, G., Hunter, W., MacGregor, J., and Erjavec, J.
(1973). Some problems associated with the analysis of
multiresponse data. Technometrics, 15(1), 33-51.

Cedersund, G. (2016). Prediction uncertainty estimation
despite unidentifiability: an overview of recent develop-
ments. In Uncertainty in Biology, 449-466. Springer.

Cramér, H. (2016). Mathematical Methods of Statistics
(PMS-9), volume 9. Princeton university press.

Egea, J.A., Henriques, D., Cokelaer, T., Villaverde, A.F.,
MacNamara, A., Danciu, D.P., Banga, J.R., and Saez-
Rodriguez, J. (2014). MEIGO: an open-source software
suite based on metaheuristics for global optimization in
systems biology and bioinformatics. BMC' Bioinformat-
ics, 15(1), 136.

Frohlich, F., Loos, C., and Hasenauer, J. (2019). Scalable
inference of ordinary differential equation models of
biochemical processes. In G. Sanguinetti and V.A.
Huynh-Thu (eds.), Gene Regulatory Networks: Methods
and Protocols, volume 1883 of Methods in Molecular
Biology, chapter 16, 385-422. Humana Press, 1 edition.

Geier, F., Fengos, G., Felizzi, F., and Iber, D. (2012). Ana-
lyzing and Constraining Signaling Networks: Parameter

Estimation for the User. In X. Liu and M.D. Betterton
(eds.), Computational Modeling of Signaling Networks,
volume 880 of Methods in Molecular Biology, 23-40.
Humana Press, Totowa, NJ.

Gutenkunst, R., Casey, F., Waterfall, J., Myers, C., and
Sethna, J. (2007). Extracting falsifiable predictions from
sloppy models. Annals of the New York Academy of
Sciences, 1115(1), 203-211.

Hass, H., Kreutz, C., Timmer, J., and Kaschek, D. (2016).
Fast integration-based prediction bands for ordinary
differential equation models.  Bioinformatics, 32(8),
1204-1210. )

Hass, H., Loos, C., Raimindez-Alvarez, E., Timmer, J.,
Hasenauer, J., and Kreutz, C. (2019). Benchmark prob-
lems for dynamic modeling of intracellular processes.
Bioinformatics, btz020.

Kaltenbach, H.M., Dimopoulos, S., and Stelling, J. (2009).
Systems analysis of cellular networks under uncertainty.
FEBS letters, 583(24), 3923-3930.

Kreutz, C., Raue, A., and Timmer, J. (2012). Likelihood
based observability analysis and confidence intervals for
predictions of dynamic models. BMC Systems Biology,
6(1), 120.

Miasojedow, B., Moulines, E., and Vihola, M. (2013).
An adaptive parallel tempering algorithm. Journal of
Computational and Graphical Statistics, 22(3), 649-664.

Raue, A., Kreutz, C., Maiwald, T., Bachmann, J.,
Schilling, M., Klingmiiller, U., and Timmer, J. (2009).
Structural and practical identifiability analysis of par-
tially observed dynamical models by exploiting the pro-
file likelihood. Bioinformatics, 25(15), 1923-1929.

Shahmohammadi, A. and McAuley, K.B. (2019). Sequen-
tial model-based a-optimal design of experiments when
the fisher information matrix is noninvertible. Industrial
& Engineering Chemistry Research, 58(3), 1244-1261.

Stapor, P., Weindl, D., Ballnus, B., Hug, S., Loos, C.,
Fiedler, A., Krause, S., Hrof}, S., Frohlich, F., and
Hasenauer, J. (2017). PESTO: Parameter estimation
toolbox. Bioinformatics, 34(4), 705-707.

Villaverde, A.F., Bongard, S., Mauch, K., Miiller, D.,
Balsa-Canto, E., Schmid, J., and Banga, J.R. (2015).
A consensus approach for estimating the predictive
accuracy of dynamic models in biology. Computer
Methods and Programs in Biomedicine, 119(1), 17-28.



