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Abstract: Mixed effect modeling is widely used to study cell-to-cell and patient-to-patient
variability. The population statistics of mixed effect models is usually approximated using Dirac
mixture distributions obtained using Monte-Carlo, quasi Monte-Carlo, and sigma point methods.
Here, we propose the use of a method based on the Cramér-von Mises Distance, which has been
introduced in the context of filtering. We assess the accuracy of the different methods using
several problems and provide the first scalability study for the Cramér-von Mises Distance
method. Our results indicate that for a given number of points, the method based on the
modified Cramér-von Mises Distance method tends to achieve a better approximation accuracy
than Monte-Carlo and quasi Monte-Carlo methods. In contrast to sigma-point methods, the
method based on the modified Cramér-von Mises Distance allows for a flexible number of points
and a more accurate approximation for nonlinear problems.
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1. INTRODUCTION

Cell-to-cell and patient-to-patient variability are ubiqui-
tous and highly relevant phenomena. Cell-to-cell variabil-
ity has a pronounced effect on the response to perturba-
tions (Altschuler and Wu, 2010) and is considered as one
of the major challenges in cancer therapy (Dagogo-Jack
and Shaw, 2018). Patient-to-patient variability influences
the processing of drugs and the response to treatments
(Willmann et al., 2007).

Nonlinear mixed effects models (MEMs) are widely used
to capture cell-to-cell (Karlsson et al., 2015; Llamosi
et al., 2016; Frohlich et al., 2018) and patient-to-patient
variability (Tornoe et al., 2004; Willmann et al., 2007;
Bastogne et al., 2009). These models provide a hierarchical
description of populations (Pinheiro, 1994). Variability
is encoded in parameter values, which are composed of
fixed effects and random effects. The fixed effects are
the same for the whole population, while the random
effects vary between individuals. The biological process,
e.g. cell signaling or pharmacokinetics, is encoded by a
nonlinear function describing the dependence of outputs
on parameters.

To simulate MEMs, the parameters of individual cells /
patients are sampled and the nonlinear function is evalu-
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ated for these sampled parameters. The sampling essential
yields a Dirac mixture distribution, which is simply a
collection of Dirac components which can be weighted.
To obtain robust estimates for the population statistics,
e.g. mean and standard deviation, a substantial number
of Monte-Carlo (MC) samples is required, causing a sig-
nificant computational demand. To reduce the required
number of samples, alternative Dirac mixture distributions
can be employed. One alternative is the used of quasi
Monte-Carlo (QMC) methods. However, to the best of
our knowledge, this has not been published. In contrast
to standard MC methods, QMC methods such as Sobol
(Sobol, 1967) and Halton (Halton, 1964) are based on
low discrepancy sequences (Niederreiter, 1978). The use
of low discrepancy sequences reduces the randomness and
improves the robustness and convergence order.

Sigma point (SP) methods are an alternative to MC
methods (Julier et al., 1995; Julier and Uhlmann, 2004;
Menegaz et al., 2011; Lerner, 2002; van der Merwe, 2004;
Charalampidis and Papavassilopoulos, 2011). These meth-
ods aim to approximate mean and covariance matrix of the
parameters by sampling deterministically (van der Merwe,
2004). Then the approximated mean and covariance ma-
trix of outputs are computed by propagating the samples
through the model(Filippi et al., 2016; Loos et al., 2018). A
problem is that the error is difficult to control for nonlinear
models. Besides, for most SP methods, the number of
samples is fixed or follows a certain formula, which makes
it hard to flexibly improve the accuracy.
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In this study, we propose the approximation of population
statistics with Dirac mixture distributions constructed
by minimizing a modified Cramér-von Mises Distance
(CMD). The use of the CMD has been proposed in
the context of state estimation, also known as filtering
(Gilitschenski and Hanebeck, 2013). Here, we provide a
first scalability analysis for CMD methods as well as a
comparison with MC, QMC and SP methods for the
analysis of nonlinear MEMs.

2. METHODS
2.1 Mized effect models

We consider nonlinear MEMs as defined by Lindstrom and
Bates (1990). The mixed effects parameter vector ¢ is a
linear combination of fixed effects 8 and random effects b,

¢=AB+ Bb, b~ N(0,D) (1)

with design matrices A and B, and covariance matrix D.
The response vector y is given by

y=[f(6,X)+e e~N(0A) (2)
with a usually nonlinear function f, depending on the
mixed effects parameter vector ¢ and the matrix of covari-

ates X. Measurement noise is denoted by e and follows a
multi-variate normal distribution with covariance matrix

A.

The nonlinear function f can have different forms, de-
pending on the application. In systems and computational
biology as well as pharmacology, f is frequently the so-
lution operator to ordinary differential equations (ODEs)
projected to a set of observables (Karlsson et al., 2015;
Llamosi et al., 2016; Frohlich et al., 2018). The ODEs
often describe the dynamics of biochemical reaction net-
works with time-dependent concentration ¢, stoichiometric
matrix S and reaction fluxes v(c, ¢),

C(ta ¢) = SU(C(t7 ¢)a ¢)5 C(Oa ¢) = CO(¢)' (3)
Measurements provide information about properties of
this network,

y(t,¢) = h(c(t, ¢),0) + e (4)
with h denoting the observation function which depends on
the experimental device. In the case of a scalar observable
y observed at time points tx, k = 1,..., K, this yields the
nonlinear function

1(6.X) = [he(tr,0), 6), . h(cltr, 8).0) ", (5)
where the h depends on the solution of the ODE (3).

2.2 FEvaluation of statistical moments of response vectors

We considered Dirac mixture distributions to evaluate the
statistical moments of the response vector, in particular its
mean E[y] and covariance Cly]. For MEMs, these methods
use a set of random effects b, i = 1,...,n, for which
the corresponding mixed effects ¢(?) and responses y(*) are
evaluated. The estimators of the mean and covariance are

p=>"w f(e®) (6)

i=1

5= wl(F6) - BN -BT. ()

with weights wg) and wg ) In the following, we outline the

considered methods.

Remark: As measurement noise has no influence on the
mean (E[y] = E[h]) and an additive influence on the
covariance (Cly] = C[h] + A, when the weights sum up
to 1), it can be handled analytically. For the purpose
of this study, we set it to zero (A = 0) to avoid that
approximation errors are hidden.

Monte Carlo (MC) methods are the most commonly
used approaches to determine integrals over probability
distributions, such as statistical moments. The random
effects b can be obtained by randomly sampling a
multi-variate normal distribution N (0, D). The weights
are wl) = wl¥) = 1

MC methods yield unbiased results. However, this comes
at the cost of reduced computational efficiency. It is well
known that estimates obtained using small sample sizes n
possess a large variance and that the convergence rate is
only O(n~'/2). If the number of samples 7 is limited, e.g.
due to the computational complexity of model simulation,
even biased approaches might be beneficial.

Quasi Monte Carlo (QMC) methods address prob-
lems of MC methods by using low discrepancy sequences.
These sequences are more regular than random samples
used by MC methods (Fig. 1a). This improves the conver-
gence rate to O(n~1) (Caflisch, 1998). The points of the
sequence are used in the same way as MC samples.

In this study, we consider Halton and Sobol sequences. As
these sequences are defined on the unit cube, we trans-
formed them to representative sequences for the standard
multi-variate normal distribution using the corresponding
cumulative distribution function. The application of the
Mahalanobis transform — using the matrix square-root of
D — to these sequences yields samples for the random
effects b") with the desired covariance. The Halton and
Sobol sequences performed similar (Fig. 2), therefore we
only show results for Halton sequences.

Sigma point (SP) methods aim to improve the approx-
imation accuracy achieved for small sample sizes. There-
fore, the sequences are designed such that they yield the
exact statistical moments of the normal distribution up
to a particular order. This ensures good approximation
properties if f is close to linear in the region of interest.

In contrast to MC and QMC methods, SP methods use

non-uniform weights w;(f) and wg). The weights of mean

and covariance might differ (w,(f) # wg)) and can be
negative for some points. Furthermore, the number of
points n is usually rather small, ensuring computational
efficiency. However, a continuous refinement of the SP
approximation is not possible as only certain numbers of
sample points are feasible.

In this study, we consider six different SP methods (Julier
et al., 1995; Julier and Uhlmann, 2004; Menegaz et al.,
2011; Lerner, 2002; van der Merwe, 2004; Charalampidis
and Papavassilopoulos, 2011). These are in our opinion
the most widely used SP methods. The methods differ in
the number of points n, or their locations and/or weights
(Fig. 1b). For details on the selection of the point locations,
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Fig. 1. Illustration of MC, QMC and SP methods in two dimensions. (a) Random sequence used by the MC
method, and Halton and Sobol sequence used by QMC methods: (left) sequences in the unit cube, and (right)
transformed sequences to approximate standard normal distribution. As a reference, level sets of the standard
normal distribution are shown as gray contour lines. (b) Point distributions and weights for different SP methods.
Positive point weights are indicated by a circle, negative weights by a diamond. The absolute values of the weights
is encoded by the marker size (small markers for small absolute values, and large markers for large absolute values).
Among others, it is possible for Charalampidis method to have different sample sizes: n = #~, where 6 can be any
integer and L is the dimension.

we refer to the original publications. An overview over the = This method constructs a representative set of points by
SP methods is provided in Table 1. minimizing the modified CMD,

In this study, we propose CMD methods for the ap-
proximation of statistical moments of nonlinear MEMs. min CMD(m(l), o ,m(”)). (8)
{m@
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Fig. 2. Absolute difference between true moments
(mean and covariance) and sample moments.
The results of MC and QMC methods for the stan-
dard normal distribution are depicted. The interval
between the 5th and the 95th percentile of the errors
across 1000 realizations are depicted.

Table 1. Properties of SP and CMD meth-
ods. The references, number of points n (for
an L-dimension random effect vector) and
moments of Gaussian distribution which are
matched precisely are listed.

Method Numjber of Exact

points moments

Julier et al. (1995) 2L + 1 1st, 2nd

Julier and Uhlmann (2004) 2L + 1 1st, 2nd

Menegaz et al. (2011) L+1 1st, 2nd

Lerner (2002) 202 +1 1st, 2nd

van der Merwe (2004) 2L + 1 1st, 2nd
Charalampidis and

Papavassilopoulos (2011) o 1st, 2nd

CMD flexible 1st

The modified CMD has been introduced by Gilitschenski
and Hanebeck (2013) and is based on a local cumulative
distribution function (Hanebeck and Klumpp, 2008). It
measures the discrepancy between a Dirac mixture distri-
bution and a multi-variate standard normal distribution.
To samples with a given covariance matrix, the Maha-
lanobis transform is applied to the solution of (8) to obtain

bW i=1,...,n

To the best of our knowledge, CMD methods are not
widely used and have not been applied in MEMs. Yet,
CMD methods possess several advantageous properties:
(1) CMD methods allow — similar to MC and QMC
methods — for any discrete number of samples (Fig. 3a),
which enables a control of approximation accuracy; and
(2) they provide robust approximations at low sample
sizes.

CMD methods consider the distribution and not partic-
ular moments. Accordingly, even for linear models the
mean might be off. To address this problem, we enforced
a zero mean by estimating only n — 1 points and set-
ting m() = > Qm() Furthermore, we generalized
CMD methods by Gilitschenski and Hanebeck (2013) to
allow for non-uniform weights. Due to page limitations,
the derivation of the generalized CMD method is pro-
vided in the open-source MATLAB toolbox SPToolbox:
https://doi.org/10.5281 /zenodo.3350335.
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Fig. 3. Location of point sets obtained using the
CMD method with the sample size n = 5, n = 9,
n =16, n = 20.

2.8 Implementation

We implemented the MC, QMC, SP and CMD methods in
the SPToolbox. For the construction of Sobol and Halton
sequences, the MATLAB built-in functions sobolset and
haltonset are used.

To solve optimization problem (8), we employ particle-
swarm optimization algorithm PSwarm (Vaz and Vicente,
2009) and multi-start local optimization algorithm im-
plemented in the open-source MATLAB toolbox PESTO
(Stapor et al., 2018). The local optimization is performed
using the MATLAB function fmincon. This optimizer is
provided with analytical gradients obtained by differenti-
ating the objective function with respect to the optimiza-
tion variables. The starting points for the optimization are
obtained using latin hypercube sampling. The sampling
and the optimization used for the locations with lower
bounds = —3 and upper bound = 3, as this regime
contains for standard normal distribution more than 99%
of the probability mass.

3. RESULTS
We provide an assessment of the different methods using

two test problems:

e Quadratic function (M1): y; = ¢7 for i = 1,2
with ¢ = B8+ b, 3 =1[0,0]T and b ~ N(0, I5)

e Hill-type function (M2): y; = % fori=1,2
with ¢ = 8+ b, 8=0,0]7 and b ~ N (0, I5)

and two application problems. The first application prob-
lem is a model of a conversion reaction model (M3):

e Conversion reaction model (M3): y = x5

1= —e®1xy + eP2 1o, x21(0) =2
Fo = ez — eP2 g, 22(0) =0
with ¢ = 8+ b, 8 = [0,0.3]7 and b ~ N(0, I)



204 Dantong Wang et al. / IFAC PapersOnLine 52-26 (2019) 200-206

(@) (b)
200

60

0
0 20 40 2 3 4 5
Sample size Dimension
——1 =2 n=20
L=4 n=25
——1=5 n=32

non-uniform weight, L = 2

Fig. 4. Scalability of the CMD method. Average
computation time per converged start for (a) different
number of points and (b) different dimensions is
depicted.

Conversion reactions are common motives in biological
processes. The second application example is a model
for JAK-STAT signaling (M4) based on Swameye et al.
(2003). This model is widely used for method evaluation
(Raue et al., 2009; Hass et al., 2016; Frohlich et al.,
2016) and possesses 9 state variables, 16 parameters and 3
observables. We assume that 5 parameters differ between
cells.

The implementation of all models is provided in the
SPToolbox.

To compute the ground truth of the statistical moments for
the test and application problems, we used MC sampling
with 100,000 points. Since outputs for the application
examples are multi-dimensional, average values of absolute
differences to true mean and true variance were computed.

3.1 Fvaluation and extension of the CMD method

As the calculation of random effects in the CMD method
requires the solution of an optimization problem, the scal-
ability of the approach is unclear. To assess it, we evalu-
ate the average computation time per local optimization
(Villaverde et al., 2018), which is the overall computation
time divided by the number of local optimization runs
achieving the best objective function value. We found
that the computation time scales roughly linearly with the
number of points n (Fig. 4a) and linearly with the dimen-
sion of the random effect vector (Fig. 4b). Accordingly,
the computation time required for optimization increases
substantially with both problem dimensions. As an alter-
native to multi-start local optimization, we also considered
the particle-swarm optimization algorithm PSwarm (Vaz
and Vicente, 2009). For low numbers of CMD points,
the optimization results of multi-start local optimization
and PSwarm were comparable. For large particle numbers
PSwarm did not achieve the same cost function values as
multi-start local optimization (for 50 CMD points, multi-
start: 0.00088, PSwarm: 0.0051).

Non-uniform weighting of the points was considered to
reduce the number of points. Therefore, we optimized
points and weights together, using analytically derived
expressions for the gradients. We found that point lo-
cations change (see Fig. 3 vs. 5) and that points close

3
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1 1

Fig. 5. Location of weighted CMD points with sample
size n = 5 and n = 8. The values of the weights are
encoded by the marker size.
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Fig. 6. Influence of rotation angle for problem
MZ2. (a) Absolute difference between true mean and
variance and the approximations obtained using the
CMD method with rotated point sets. (b) Box plot
showing the variability induced by the rotation.

to the center of the distributions tend to have higher
weights (Fig. 5). The value of the modified CMD improved
marginally by introducing the weights (for n = 8: uniform
CMD = 0.0261 and non-uniform CMD = 0.0236). This im-
provement comes at a substantially increased computation
time (Fig. 4a).

An analysis of the optimization problem (8) reveals that
the optimal point is not unique. Optimized point prop-
erties can be swapped and the point sets can be rotated
around the origin without changing the objective function
values. While points swaps can not have any influence on
the approximation of the moments, the rotation angle can
have an influence when f is nonlinear. However, our analy-
sis shows that the standard deviation of the approximation
error was smaller than its mean (Fig. 6a,b), suggesting
that the effect is not too important. As the point sets
are structured, the approximation error shows a periodic
behavior. The period length depends on the number of
points (Fig. 6a).
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Fig. 7. Assessment of the approximation accuracy for test and application problems. The absolute difference
between approximated moments and ground truth is depicted: (upper) mean and (lower) covariance.

3.2 Approximation properties of Dirac mizture distributions for MEM of heterogeneous cell and patient populations in

To assess the approximation accuracy of the MC, QMC,
SP and CMD methods, we applied them to the test
and application problems. For the MC, QMC and CMD
methods, as well as the SP method by Charalampidis
and Papavassilopoulos (2011), multiple point numbers
were considered to study the convergence rates. For all
problems we determined the absolute differences of mean
and variance compared to the ground truth. As each point
requires an evaluation of the output, the computation time
increases linearly with the number of points. Hence, a
high approximation accuracy with a low point number is
desirable.

For M1, the mean computed by the SP methods is exact
(by construction), and the CMD method outperforms the
Halton QMD method. For M2-M4, the CMD method with
uniform weights achieves a better accuracy than the Hal-
ton QMC method and SP methods (Fig. 7). In addition,
compared to the Halton method, CMD methods show
(1) similar or better convergence rates and (2) smaller
confidence intervals. The latter implies an improved sta-
bility of the approximation and an independence from
the rotation angle. CMD methods with uniform and non-
uniform weighting achieve similar accuracy.

4. DISCUSSION

In this study, we perform an evaluation of MC, QMC,
SP and CMD methods. For CMD methods — which are
not commonly applied for MEMs — we perform a first
scalability study and assess the influence of non-uniform
weights and rotation angles.

Our results show that compared to the SP methods, CMD
methods are more flexible since a continuous refinement
is possible, and possess a better accuracy when the model
is highly nonlinear. Compared to MC and QMC methods,
CMD methods have better convergence and lower vari-
ance, especially for more complicated models, e.g. ODE
models in systems biology. Non-uniform weighting does
not seem to provide a substantial benefit. Overall, our
results demonstrate the potential usage of CMD methods

systems biology and systems medicine.
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