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I N F L A M M A T I O N

An anti-inflammatory eicosanoid switch mediates 
the suppression of type-2 inflammation by helminth 
larval products
Marta de los Reyes Jiménez1*, Antonie Lechner1*, Francesca Alessandrini1, Sina Bohnacker1, 
Sonja Schindela1, Aurélien Trompette2, Pascal Haimerl1, Dominique Thomas3, Fiona Henkel1, 
André Mourão4, Arie Geerlof4, Clarissa Prazeres da Costa5, Adam M. Chaker6, Bernhard Brüne7, 
Rolf Nüsing7, Per-Johan Jakobsson8, Wolfgang A. Nockher9, Matthias J. Feige10, Martin Haslbeck11, 
Caspar Ohnmacht1, Benjamin J. Marsland12, David Voehringer13, Nicola L. Harris12, 
Carsten B. Schmidt-Weber1,14, Julia Esser-von Bieren1†

Eicosanoids are key mediators of type-2 inflammation, e.g., in allergy and asthma. Helminth products have been 
suggested as remedies against inflammatory diseases, but their effects on eicosanoids are unknown. Here, we 
show that larval products of the helminth Heligmosomoides polygyrus bakeri (HpbE), known to modulate type-2 
responses, trigger a broad anti-inflammatory eicosanoid shift by suppressing the 5-lipoxygenase pathway, but 
inducing the cyclooxygenase (COX) pathway. In human macrophages and granulocytes, the HpbE-driven induction 
of the COX pathway resulted in the production of anti-inflammatory mediators [e.g., prostaglandin E2 (PGE2) and 
IL-10] and suppressed chemotaxis. HpbE also abrogated the chemotaxis of granulocytes from patients suffering 
from aspirin-exacerbated respiratory disease (AERD), a severe type-2 inflammatory condition. Intranasal treatment 
with HpbE extract attenuated allergic airway inflammation in mice, and intranasal transfer of HpbE-conditioned 
macrophages led to reduced airway eosinophilia in a COX/PGE2-dependent fashion. The induction of regulatory 
mediators in macrophages depended on p38 mitogen-activated protein kinase (MAPK), hypoxia-inducible factor-1 
(HIF-1), and Hpb glutamate dehydrogenase (GDH), which we identify as a major immunoregulatory protein in 
HpbE. Hpb GDH activity was required for anti-inflammatory effects of HpbE in macrophages, and local administration 
of recombinant Hpb GDH to the airways abrogated allergic airway inflammation in mice. Thus, a metabolic enzyme 
present in helminth larvae can suppress type-2 inflammation by inducing an anti-inflammatory eicosanoid switch, 
which has important implications for the therapy of allergy and asthma.

INTRODUCTION
Severe type-2 inflammation, such as in asthma or nasal polyposis, 
represents a major clinical need, which is insufficiently targeted by 
current treatments (1–3). Eicosanoids are bioactive metabolites of 
the polyunsaturated fatty acid (PUFA) arachidonic acid (AA), which 
play major roles in severe and therapy-resistant forms of type-2 in-

flammation (4, 5). However, current therapeutics fail to sufficiently 
modulate eicosanoid pathways (6), resulting in poor clinical efficacy 
against asthma and nasal polyps (3, 7).

Among the eicosanoids, leukotrienes (LTs), formed via the 
5-lipoxygenase (5-LOX) pathway, as well as the cyclooxygenase 
(COX) metabolite prostaglandin D2 (PGD2) are the key drivers of 
type-2 inflammation (8–10). In contrast, prostaglandin E2 (PGE2) 
and prostacyclin (PGI2) can suppress allergic inflammation and asthma 
symptoms (11–14). Recently, eicosanoids have also been suggested 
to participate in the type-2 immune response to helminth parasites 
(15–17).

Infection with helminths, tissue damage, or exposure to allergens 
can trigger type-2 immune responses, which, if not properly con-
trolled, can result in chronic type-2 inflammation (18). However, 
helminths can also counter-regulate type-2 immune responses, e.g., 
by inducing regulatory T cells or by targeting innate effector mech-
anisms, such as interleukin-33 (IL-33), type-2 innate lymphoid cells 
(ILC2s), or M2 macrophages (19–22). Heligmosomoides polygyrus bakeri 
(Hpb) is a natural parasite of mice with particularly potent regulatory 
effects on type-2 immune responses. Products of adult Hpb worms 
can suppress allergic airway inflammation in mice (21, 22), and 
Hpb larvae can interfere with the innate type-2 immune response 
that is initiated early after infection (23). On the basis of their potent 
immunoregulatory potential, helminth products have been sug-
gested as remedies for inflammatory diseases, including allergy and 
asthma (20, 24). However, whether helminth products can modulate 
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eicosanoid pathways and thus interfere with type-2 inflammation 
had not been studied.

RESULTS
Treatment with Hpb larval extract suppresses allergic airway 
inflammation in mice
Hpb larvae modulate innate type-2 immunity (23), and eicosanoids 
are a critical innate component of the type-2 immune response to 
house dust mite (HDM) (8, 13, 25). Thus, we hypothesized that Hpb 
larvae may produce factors that modulate eicosanoid-driven type-2 
inflammation. To mimic a desirable therapeutic application, we ad-
ministered an extract of infective Hpb L3 larvae (HpbE) topically 
(intranasally) during HDM-induced allergic airway inflammation in 
mice (Fig. 1A). Intranasal treatment with HpbE together with HDM 
reduced hallmarks of type-2 inflammation, including airway eosino-
philia, goblet cell hyperplasia, and mucin maturation (Fig. 1, B and C). 
Consistent with increased eosinophil numbers, 15-HETE, a major 
AA metabolite of eosinophils, was increased in bronchoalveolar 
lavage fluid (BALF) of HDM-sensitized mice, and treatment with 
HpbE decreased 15-HETE as well as pro-inflammatory cytokines 
and chemokines (IL-5, IL-6, eotaxin, and RANTES) (Fig. 1D). Hence, 

topical treatment with HpbE could suppress the inflammatory re-
sponse to HDM in the airways.

HpbE-treated macrophages produce reduced LTs 
and modulate allergic airway inflammation via PGE2
Genetic ablation or pharmacological inhibition of eicosanoid path-
ways affects the development of allergic airway inflammation itself 
(8, 13, 26), thus impeding the assessment of HpbE effects in such 
models. However, macrophage transfer experiments can provide 
valuable insights into the role of eicosanoids in allergic airway in-
flammation (12) because macrophages represent particularly plastic 
eicosanoid-producing cells that determine the inflammatory response 
to HDM in the airways (25, 27).

First, we characterized the eicosanoid profile of HpbE-treated bone 
marrow–derived macrophages (BMDMs) by liquid chromatography–
tandem mass spectrometry (LC-MS/MS). To elicit AA release and 
analyze the full capacity of eicosanoid formation, cells were stimu-
lated with ionophore (A23187). Consistent with the anti-inflammatory 
potential of HpbE, we observed a shift from type-2–inducing me-
tabolites (PGD2 and LTs) to regulatory metabolites (PGE2) after 
treatment with HpbE (Fig. 2A). This shift was most likely a result of 
transcriptional changes in AA-metabolizing enzymes as HpbE induced 
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Fig. 1. Topical treatment with Hpb larval extract (HpbE) modulates type-2 airway inflammation in mice. (A) Experimental model of house dust mite (HDM)–induced 
allergic airway inflammation and intranasal (i.n.) treatment with HpbE. (B) BALF cell counts in mice sensitized (1 g) and challenged (10 g) with HDM ± intranasal treat-
ment with HpbE (5 g), 48 hours after the last challenge and treatment. (C) Representative hematoxylin and eosin (H&E)– or periodic acid–Schiff (PAS)–stained lung tissue 
from mice sensitized to HDM ± treatment with HpbE. Scale bars, 100 m. (D) Concentrations of 15-HETE (LC-MS/MS) or IL-5, IL-6, eotaxin, and RANTES (Bioplex) in BALF 
from mice sensitized to HDM ± treatment with HpbE. Results are pooled from two independent experiments (B and D) or representative of stainings performed for two 
independent experiments (C). Results are presented as means ± SEM; n = 3 to 9 (naïve) or n = 5 to 17 (treated) per group. Statistical significance was determined by 
Kruskal-Wallis test followed by Dunn’s multiple comparison test. *P < 0.05; **P < 0.01; ***P < 0.001.
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Fig. 2. HpbE-treated macrophages produce less LTs and modulate allergic airway inflammation via PGE2. (A) Eicosanoids (LC-MS/MS) produced by mouse bone 
marrow–derived macrophages (BMDMs) after treatment with Hpb larval extract (HpbE) (24 hours) and stimulation with A23187 (10 min). (B) Relative gene expression of 
AA-metabolizing enzymes [quantitative polymerase chain reaction (qPCR)] in mouse BMDM treated with HpbE. (C) Heat map showing major PUFA metabolites (LC-MS/MS) 
produced by human monocyte-derived macrophages (MDMs) ± treatment with HpbE followed by A23187 (10 min). (D) Amounts of major bioactive AA metabolites (LC-MS/MS) 
produced by human MDM ± treatment with HpbE +A23187 (10 min). (E) Relative gene expression of eicosanoid pathway proteins (qPCR) in human MDM ± treatment with 
HpbE. (F) Frequencies of total leukocytes and total numbers of eosinophils in BALF of mice sensitized to HDM + intranasal transfer of HpbE-conditioned or untreated 
BMDM (M) [wild type (wt) or Ptges−/−], 18 hours after the last challenge and transfer. Dashed lines indicate eosinophil prevalence in HDM-sensitized mice. (G) Representative 
H&E-stained lung tissue from mice sensitized to HDM ± intranasal transfer of untreated or HpbE-conditioned BMDM (wt or Ptges−/−). Scale bars, 100 m. Data are presented 
as means ± SEM; n = 8 BMDM from C57BL/6 mice (A and B); n = 10 to 15 MDM from healthy human blood donors (C to E); n = 7 to 9 mice per group (F and G). Statistical 
significance was determined by Wilcoxon test (A to E) or Mann-Whitney test (F). *P < 0.05; **P < 0.01; ***P < 0.001.
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COX-2 (gene: Ptgs2) and microsomal PGE synthase (mPGES-1, gene: 
Ptges) while suppressing 5-LOX (Alox5) and leukotriene C4 synthase 
(Ltc4s) gene expression (Fig. 2B).

To investigate whether the eicosanoid-modulatory effects of HpbE 
could be translated to human macrophages, we treated human 
monocyte-derived macrophages (MDMs) with HpbE and assessed 
their lipid mediator profile after stimulation with A23187. Using an 
LC-MS/MS eicosanoid screen [including 200 different eicosanoids 
and PUFAs (table S1)], we confirmed that HpbE treatment resulted 
in fundamental changes in PUFA metabolites, with the largest 
changes observed for COX metabolites (Fig. 2C and fig. S1, A and B). 
Consistent with mediator profiles of murine BMDM, HpbE triggered 
a shift from pro-inflammatory 5-LOX metabolites (LTB4, LTC4, and 
5-HETE) to PGE2, TXB2, and 12-hydroxyheptadecatrenoic acid 
(12-HHT) (Fig. 2D). It also enhanced the synthesis of the pro-
resolving mediator lipoxin A5 (LXA5) (Fig. 2D). Thus, HpbE induced 
a broad and potentially anti-inflammatory eicosanoid switch.

In line with HpbE-induced transcriptional changes in BMDM, 
human macrophages responded to HpbE by inducing the expression 
of enzymes involved in the biosynthesis of PGE2: COX-2 (PTGS2) 
and mPGES-1 (PTGES) (Fig. 2E). In contrast, HpbE reduced the 
expression of PGD2 synthase (PTGDS) as well as of LT biosynthetic 
enzymes ALOX5, leukotriene A4 hydrolase (LTA4H), and LTC4S and 
the high-affinity receptor for cysLTs [cysteinyl leukotriene receptor-1 
(CYSLTR1)] (Fig. 2E). Together, HpbE triggered a switch from a 
pro-inflammatory 5-LOX–dominated to a type-2–suppressive COX-
dominated eicosanoid profile.

To define the in vivo relevance of the HpbE-driven induction of 
COX metabolites in macrophages, we intranasally transferred BMDM 
from wild-type (wt), COX-2–deficient (Ptgs2−/−), or mPGES-1–
deficient (Ptges−/−) mice during HDM-induced airway inflammation.

Mice that received HpbE-treated wt BMDM during challenges 
with HDM showed reduced eosinophil numbers and airway inflam-
mation as compared to mice that received untreated wt BMDM (Fig. 2, 
F and G). In contrast, transfer of HpbE-treated Ptges−/− BMDM failed 
to reduce eosinophil numbers and eosinophilic airway inflammation 
compared to transfer of untreated Ptges−/− BMDM (Fig. 2, F and G). 
Last, HpbE-treated Ptgs2−/− BMDM transfer led to exaggerated 
HDM-induced airway inflammation (fig. S1C). This suggested that 
macrophage-derived COX metabolites, particularly mPGES-1–derived 
PGE2, can contribute to the anti-inflammatory effects of HpbE in vivo.

HpbE induces type-2–suppressive cytokines and prevents 
M2 polarization
To investigate whether treatment with HpbE also modified cytokine 
profiles and the polarization of macrophages, we quantified cytokines 
implicated in macrophage polarization and the regulation of type-2 
inflammation. Treatment of human MDM with HpbE resulted in 
the induction of IL-10, IL-1, IL-12, IL-18, IL-27, and tumor necro-
sis factor– (TNF-) (Fig. 3, A and B), all known to modulate M2 
polarization and type-2 immune responses (23, 28–32). However, 
HpbE hardly affected the production of mediators of type-2 inflam-
mation (IL-33 or CCL17) by macrophages (Fig. 3B). The HpbE-
triggered induction of IL-10 and IL-1 also occurred in murine 
BMDM, albeit at 10- to 100-fold lower amplitude as compared to 
human MDM (Fig. 3C).

In addition, HpbE down-regulated the expression of M2 markers 
{ALOX15 [15-lipoxygenase (15-LOX)] and MRC1 (mannose receptor 
C-type 1, MR/CD206)}, but not transglutaminase-2 (TGM2) in human 

MDM, suggesting that it could partially counteract M2 polarization 
(Fig. 3D). Because human and mouse M2 macrophages are defined 
by distinct sets of markers (33), we also investigated the effect of 
HpbE on murine M2 polarization. However, HpbE did not signifi-
cantly affect M2 marker genes (Tgm2, Arg1, Mrc1, Tmed1/St2l, or 
Retnla/Fizz1) in mouse BMDM (Fig. 3E). Together, these data suggest 
that HpbE can broadly modulate the polarization and mediator output 
of human macrophages to induce a regulatory, type-2–suppressive 
phenotype.

HpbE has a unique potential to induce 
type-2–suppressive mediators
For the treatment of complex type-2 inflammatory diseases such as 
allergy, asthma, and nasal polyps, regulation of multiple pathways is 
often superior to targeting single mechanisms. Glucocorticoids 
(GCs), which regulate a broad array of inflammatory pathways, are 
widely used in the treatment of these diseases and still represent the 
first-line therapy for most patients. Thus, we compared the immuno
regulatory effects of HpbE to those of GCs [dexamethasone (Dex) 
and fluticasone propionate (FP)] with a focus on eicosanoid path-
ways and the anti-inflammatory cytokine IL-10. While HpbE triggered 
a shift from pro-inflammatory genes (ALOX5, LTC4S, and PTGDS) 
and 5-LOX metabolites to anti-inflammatory pathways (PTGS2, PTGES, 
PGE2, and IL-10), GCs failed to significantly regulate these pathways 
(fig. S2, A to C).

In human granulocytes [polymorphonuclear leukocytes (PMNs)], 
which also represent an important source of eicosanoids, HpbE and FP, 
but not Dex, induced a similar shift from pro- to- anti-inflammatory 
metabolites of AA or linoleic acid (fig. S2D) (34). Together, this 
suggested that compared to GCs, HpbE is more efficient in inducing 
a regulatory mediator profile that can counteract type-2 inflammation.

During their life cycles, most helminths develop from free-living 
infective larval stages (L1 to L3) via tissue-migratory stages (L4) to 
an adult or juvenile stage (L5). Because larval stages of Schistosoma 
mansoni as well as excretory secretory products of adult (L5) Hpb 
(HES) can induce type-2–suppressive mediators (35, 36), we com-
pared S. mansoni– or HES-elicited effects on eicosanoids and IL-10 
to those of HpbE. An extract of S. mansoni larvae (SmE) failed to 
induce a shift from 5-LOX to COX metabolism and was less potent 
in triggering IL-10 production as compared to HpbE (fig. S3, A and B). 
Similarly, adult-stage HES failed to induce the COX pathway or IL-10 
(fig. S3, C and D). In addition, extracts of L4 and L5 stages of Hpb 
did not show any induction of PGE2 and exhibited only minor sup-
pressive effects on cysLTs as compared to L3 stage extract (HpbE) 
(fig. S3E). In contrast to L3 extract, L4 and L5 extracts did not induce 
type-2–suppressive cytokines (IL-1 and IL-10; fig. S3E).

As changes in the microbiota contribute to the suppression of 
type-2 inflammation by Hpb infection (37), we further identified HpbE-
associated bacteria by aerobic or anaerobic culture of plated HpbE 
followed by MS and assessed whether a mix of HpbE-associated bacteria 
would exert similar effects as HpbE. However, COX metabolites, IL-10, 
and COX pathway genes remained unaffected by treatment with HpbE-
associated bacteria (fig. S3, F and G). To further exclude that the 
HpbE-triggered induction of regulatory mediators was due to lipo-
polysaccharide (LPS) contamination, we additionally quantified medi-
ator profiles of macrophages treated with LPS at the concentration 
present in HpbE (60 ng/ml). However, LPS alone failed to signifi-
cantly induce COX metabolites (fig. S3H). Together, this suggested 
that HpbE has a unique immunoregulatory profile, which is distinct 
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from GCs and somatic extracts from S. mansoni larvae or more ma-
ture stages of Hpb as well as from Hpb-associated bacteria.

HpbE modulates eicosanoid production and chemotaxis 
of human granulocytes
Next, we determined whether HpbE would also affect the PUFA 
metabolism of human granulocytes by LC-MS/MS analysis. To limit 
apoptosis and mimic an inflammatory setting, granulocytes were 
cultured in the presence of granulocyte-macrophage colony-stimulating 
factor (GM-CSF), which resulted in 40 to 50% viability after 24 hours. 
Treatment with HpbE reduced neutrophil viability but had no effect 
on the viability of eosinophils (fig. S4A). We confirmed that neutro-
phils and eosinophils show abundant expression of transcripts for 
LT biosynthetic enzymes (ALOX5, LTA4H, and LTC4S) at baseline 
(38), allowing them to synthesize high amounts of LTs upon ionophore 
stimulation (Fig. 4, A to E, and fig. S4B). In line with the profiles 
observed for macrophages, granulocytes showed an induction of COX 
metabolites (particularly 12-HHT and TXB2) after treatment with 
HpbE (Fig. 4, A and B, and fig. S4C). Furthermore, the abundance 
of 5-LOX metabolites was reduced by HpbE treatment in ionophore-
stimulated mixed human granulocytes as well as in purified eosinophils 

(Fig. 4, A and C). Similar to HpbE-driven changes in AA metabolism 
genes in macrophages, transcripts for enzymes involved in the synthesis 
of pro-inflammatory mediators (ALOX5, LTA4H, and PTGDS) were 
down-regulated, whereas PTGS2 and PTGES were induced by HpbE 
in human granulocytes (Fig. 4, D and E).

Eicosanoid-driven granulocyte recruitment represents a key event 
in type-2 inflammation (5, 8). Thus, we studied how HpbE would 
affect granulocyte recruitment in a clinically relevant setting of type-2 
inflammation, in which AA metabolites play a major role. We col-
lected granulocytes and nasal polyp secretions from patients suffering 
from aspirin-exacerbated respiratory disease (AERD) and assessed 
the effects of HpbE on the migration of patient granulocytes toward 
nasal polyp secretions ex vivo. Pretreatment of AERD granulocytes 
with HpbE resulted in a marked reduction in cell recruitment, an 
effect not achieved by FP or the cysLT1R antagonist montelukast 
(MK), which is commonly used to treat AERD symptoms (Fig. 4F). 
In keeping with the suppression of granulocyte chemotaxis, HpbE 
reduced surface expression of chemotactic receptors [C-C chemokine 
receptor type 3 (CCR3) and PGD2 receptor 2 (CRTH2)] on human 
eosinophils (Fig. 4G). To investigate whether COX metabolites re-
leased by HpbE-treated human macrophages could affect granulocyte 
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recruitment, we performed chemotaxis assays in the presence of 
conditioned medium from MDM treated with HpbE and the non-
selective COX inhibitor indomethacin. Conditioned medium from 
HpbE-treated human macrophages reduced granulocyte chemotaxis, 
and indomethacin partially restored cell recruitment (Fig. 4H). Thus, 
either directly or by acting on macrophages, HpbE can suppress the 
chemotaxis of granulocytes, including those from patients experi-
encing severe type-2 inflammation.

HpbE induces IFN-, IL-10, and an anti-inflammatory 
eicosanoid switch in human PBMCs
To test whether the regulatory potential of HpbE extended to type-2 
cytokines, we analyzed IL-4, IL-5, and IL-13 expression in human 
peripheral blood mononuclear cells (PBMCs) after treatment with 

HpbE. Type-2 cytokines were hardly affected by HpbE, which instead 
triggered a marked induction of interferon- (IFN-) and IL-10 (fig. S5, 
A and B). In line with eicosanoid modulation in macrophages and 
granulocytes, HpbE treatment of PBMCs also triggered the synthesis 
of prostanoids (PGE2 and TXB2) while decreasing 5-LOX metabolites 
(5-HETE and LTB4) (fig. S5C). However, in contrast to macrophages 
and granulocytes, HpbE-treated PBMCs produced high amounts of 
12-/15-LOX metabolites (fig. S5C), which can be metabolized into 
pro-resolving mediators (39). The modulation of IL-10 and eicosanoids 
in PBMCs was entirely dependent on CD14+ monocytes, as CD14− 
PBMCs produced low amounts of these mediators with no apparent 
regulation by HpbE (fig. S5D). Thus, HpbE acted predominantly on 
monocytes/macrophages to induce a regulatory and potentially 
pro-resolving eicosanoid profile.
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The HpbE-induced regulatory eicosanoid switch depends 
on HIF-1 and the COX pathway
To identify mechanisms by which HpbE could trigger the production 
of type-2–suppressive mediators, we genetically or pharmacologically 
targeted regulatory pathways and studied eicosanoid profiles and 
macrophage polarization. Because hypoxia-inducible factor-1 (HIF-1) 
is a positive regulator of the COX pathway (40), we first assessed the 
effect of HpbE on HIF-1 activation and COX-2 expression in BMDM. 
After treatment with HpbE, nuclear translocation of HIF-1 and 
expression of COX-2 were increased (Fig. 5A). In contrast to wt 
BMDM, HIF-1–deficient BMDM (HIF-1fl/flxLysMCre) failed to 
up-regulate TXB2 and PGE2 in response to HpbE, whereas the sup-
pression of (PGD2 and LTB4) remained intact (Fig. 5B). In addition, 
HIF-1–deficient BMDM showed a reduced HpbE-driven induction of 
IL-6, TNF-, and IL-10 as well as of the M2 markers Tgm2 and Arg1 
(Fig. 5, C and D). Expression of Mrc1 and Retnla was generally higher 
in BMDM lacking HIF-1, but HpbE down-regulated Mrc1 expres-
sion regardless of HIF-1 (Fig. 5D). Thus, the induction of type-2–
suppressive mediators in BMDM was largely dependent on HIF-1.

Because HIF-1 is positively regulated by the mitogen-activated 
protein kinase (MAPK) p38, we studied the involvement of p38 sig-
naling in the induction of type-2–suppressive mediators by HpbE. 
In human MDM, p38 was phosphorylated upon treatment with HpbE, 
correlating with the induction of COX-2 (Fig. 5E). A p38 inhibitor 
(VX-702) abrogated the induction of IL-10, IL-1, and PGE2 synthetic 
enzyme transcripts (PTGS2 and PTGES) (Fig. 5, F to H). In line with 
HIF-1–dependent regulation in murine BMDM, a pharmacological 
inhibitor of HIF-1 (acriflavine) attenuated the HpbE-induced ex-
pression of IL-10, IL-1, and COX pathway enzymes in human MDM 
(Fig. 5, F to H). However, p38 and HIF-1 were not responsible for 
the modulation of the 5-LOX pathway, which was still active in the 
presence of inhibitors (Fig. 5H).

To investigate whether the HpbE-triggered production of IL-10 
and IL-1 occurred downstream of the COX pathway, we studied 
whether COX inhibitors could modify the induction of these cyto-
kines in MDM. A nonselective COX inhibitor (indomethacin), but 
not a selective COX-2 inhibitor (CAY10404), reduced the induction 
of IL-10, IL-1, and PTGES (Fig. 5, F to H, and fig. S6, A and B). In 
contrast, the HpbE-triggered expression of COX-2 was reduced both 
by indomethacin and by selective inhibition of COX-2, suggesting 
that COX-2 metabolites could drive an autocrine feedback loop to 
promote COX-2 expression (Fig. 5H and fig. S6B).

Because the transcription factor nuclear factor B (NF-B) and 
the kinases phosphatidylinositol 3-kinase (PI3K), protein kinase A, 
and PTEN can regulate eicosanoid pathways, we additionally assessed 
the contribution of these mechanisms to the induction of type-2–
suppressive mediators by HpbE. Inhibition of NF-B (by BAY 11-7085) 
reduced PGE2, IL-10, and IL-1 production as well as gene expression of 
PGE2 synthetic enzymes and IL-10 in HpbE-treated human MDM 
(fig. S6, C and D). In contrast, inhibitors of PI3K, protein kinase A, or 
PTEN did not interfere with the induction of PGE2, IL-10, or IL-1 
(fig. S6E). Thus, the HpbE-driven induction of type-2–suppressive 
mediators largely depended on the activation of p38 MAPK, HIF-
1, NF-B, and the COX pathway.

TLR2, dectin-1, and dectin-2 contribute to the induction 
of the COX pathway by HpbE
To further elucidate the upstream mechanisms underlying prostanoid 
and cytokine modulation by HpbE, we blocked IL-1 or pattern recog-

nition receptors [PRRs; Toll-like receptor 2 (TLR2), dectin-1, and 
dectin-2], which had all been previously linked to helminth-driven 
immunoregulation (15, 23, 41, 42). Blockade of IL-1 in MDM af-
fected the HpbE-driven modulation neither of IL-10 nor of eicosanoid 
pathways (fig. S7A). However, neutralizing antibodies against TLR2, 
dectin-1, or dectin-2 reduced the induction of PGE2 synthetic en-
zymes by HpbE, whereas the modulation of IL-10 or 5-LOX was not 
affected (fig. S7, A and B). This suggested that TLR2, dectin-1, and 
dectin-2 contributed to the induction of the COX pathway but not 
to other immunoregulatory effects by HpbE.

Glutamate dehydrogenase is a major immunoregulatory 
protein in HpbE
As the above-defined mechanisms did not provide a molecular ex-
planation for the immunoregulatory effects of HpbE, we further char-
acterized its active components. Heat inactivation of HpbE attenuated 
the induction of prostanoids, IL-10, and IL-1 in MDM as well as 
the HpbE-driven suppression of granulocyte recruitment (Fig. 6, 
A and B). In addition, the induction of IL-10 by HpbE was abrogated 
if the extract was pretreated with proteinase K (Fig. 6C). This sug-
gested that the induction of type-2–suppressive mediators by HpbE 
was largely dependent on heat-labile and proteinase K–digestible 
molecules, most likely proteins.

To identify immunoregulatory proteins present in HpbE, we frac-
tionated the extract by size exclusion chromatography and identified 
active fractions based on the capacity to induce the COX metabolite 
TXB2 as well as IL-10 (Fig. 6, D and E). We then identified proteins 
present in active and non-active fractions by MS. Hpb glutamate 
dehydrogenase (GDH) was uniquely present in active fractions of 
HpbE, qualifying it as an immunoregulatory candidate (Fig. 6F and 
table S2). An inhibitor of GDH (bithionol), which is also used as an 
anti-helminthic, reduced the HpbE-triggered induction of prostanoids 
and IL-10 in a dose-dependent manner without affecting cell viability 
(Fig. 6, G and H, and fig. S8A). In line with the unique anti-inflammatory 
properties of L3 (HpbE) versus L4 and L5 extracts (fig. S3E), HpbE 
showed higher GDH activity as compared to L4 and L5 preparations 
(fig. S8B).

To further validate Hpb GDH as a major immunoregulatory com-
ponent of HpbE, we generated monoclonal antibodies specific for 
Hpb GDH [i.e., not cross-reactive with mammalian (human/mouse) 
GDH] (fig. S9A). Administration of an anti-Hpb GDH antibody 
(clone 4F8), but not an isotype control antibody, resulted in a dose-
dependent reduction of the HpbE-induced production of IL-10 and 
PGE2 in human MDM (Fig. 6I and fig. S9B).

Recombinant Hpb GDH reduces allergic airway  
inflammation in mice
Last, we developed a strategy for the recombinant production of 
Hpb GDH, allowing us to directly assess immunoregulatory effects 
of the protein in vitro and in vivo. Recombinant Hpb GDH was 
active, and its activity was partially inhibited by bithionol (fig. S9C). 
In human MDM, treatment with Hpb GDH induced PGE2 and 
IL-10, but reduced cysLT production, thus recapitulating key anti-
inflammatory effects of total HpbE (Fig. 7A).

To validate the use as a potential therapeutic enzyme in vivo, mice 
were treated intranasally with Hpb GDH during HDM-induced allergic 
airway inflammation. Administration of Hpb GDH attenuated the 
HDM-triggered eosinophil infiltration and airway inflammation as 
well as goblet cell hyperplasia and mucin maturation (Fig. 7, B and C).
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eicosanoid enzymes in MDM treated with HpbE ± inhibitors of p38 (VX-702), COX (indomethacin), or HIF-1 (acriflavine). Dotted lines indicate expression in untreated 
cells. Data are pooled from at least two independent experiments and presented as means ± SEM; n = 5 to 9. Statistical significance was determined by two-way ANOVA 
(A to D), Wilcoxon test (E), or Friedman test (F to H). *P < 0.05; **P < 0.01; ***P < 0.001.
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DISCUSSION
Searching for new approaches to target eicosanoids in type-2 in-
flammation, we identified an extract of a parasitic nematode (HpbE) 
and its active component Hpb GDH. HpbE showed broad immuno-
regulatory effects in various myeloid cell types and when administered 

topically to the airways of allergen-sensitized mice. In a human ex vivo 
setting of type-2 inflammation, HpbE effectively reduced the che-
motaxis of granulocytes toward nasal polyp secretions. The effects 
of HpbE on the chemotaxis of granulocytes from patients with AERD 
were particularly notable because this disease is characterized by an 
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aberrant AA metabolism and AA signaling as well as GC-resistant 
type-2 inflammation (5).

Of note, although HpbE is derived from a murine parasite, it showed 
largely overlapping anti-inflammatory effects on eicosanoids and 
granulocyte activation in human cells ex vivo and in mice in vivo. 
HpbE likely affected granulocytes directly (e.g., by modulating 
eicosanoids and chemotactic receptors) as well as indirectly by in-
ducing granulocyte-regulatory factors such as PGE2 in macrophages. 
Although other cell types can also contribute to eicosanoid production 
during allergic airway inflammation, we focused on macrophages as 
a particularly plastic, long-lived, and thus therapeutically accessible 
source of these mediators. The macrophage pool in inflamed airways 
consists of resident and infiltrating monocyte-derived cells, which 
develop into alveolar macrophages under the control of GM-CSF and 
transforming growth factor–1 (TGF-1) in the lung microenviron-
ment (43, 44). Thus, although the BMDM and MDM used in this 
study may not entirely reflect airway macrophages, they likely rep-
resent a relevant model for infiltrating, inflammatory monocytes, 
which crucially contribute to allergic airway inflammation (27).

When treated with HpbE or Hpb GDH, monocytes and macro-
phages produced high amounts of regulatory prostanoids, which can 
modulate type-2 immune responses by activating a regulatory macro-
phage phenotype and limiting type-2 cytokine production (12, 45, 46). 
In contrast, eicosanoid pathways that typically drive type-2 inflam-
mation (5-LOX/LTs and PTGDS/PGD2) were suppressed by treatment 

with HpbE or Hpb GDH. HpbE also triggered the production of TXB2, 
a mediator involved in platelet and vascular function as well as tissue 
repair. Thus, in addition to modulating type-2 inflammation, helminth-
induced eicosanoids may limit bleeding and tissue damage. Given 
the broad eicosanoid-modulatory potential of HpbE and Hpb GDH, 
it appears unlikely that only one metabolite or receptor is responsible 
for their anti-inflammatory effects. Transfer of HpbE-conditioned wt, 
but not Ptges−/−, BMDM reduced eosinophilic airway inflammation 
as compared to transfer of untreated BMDM of the same genotype, 
suggesting that macrophage-derived PGE2 may contribute to HpbE-
driven immunoregulation. In addition, the exaggerated allergic airway 
inflammation observed after transfer of HpbE-conditioned Ptgs2−/− 
BMDM supports a role for macrophage-derived COX metabolites, 
including PGE2, in the anti-inflammatory effects of HpbE. However, 
because we only obtained limited numbers of Ptgs2−/− BMDM and 
could thus not transfer untreated cells of this genotype, the strong 
inflammation observed after transfer of HpbE-conditioned Ptgs2−/− 
BMDM may also be due to COX-2 deficiency per se. Transfer of 
Ptges−/− BMDM led to reduced HDM-induced airway inflammation 
regardless of HpbE conditioning. Thus, when transferred into an 
inflammatory environment, mPGES-1/COX-2–deficient BMDM may 
respond differently as compared to wt BMDM. Of note, when trans-
ferred into the airways during HDM challenge, untreated wt BMDM 
tended to increase eosinophilic inflammation compared to HDM-
sensitized mice without BMDM transfer, possibly due to HDM-induced 

0

2

4

6 **

PGE2

0

200

400

600

800

**

IL-10

0

*

200

400

600

800

cysLTs
A

C

Hematoxylin &
eosin (H&E)

B
C

on
c.

(n
g/

m
l)

Co
nc

.(
pg

/m
l)

1000
Control

Hpb GDH

0

20

40

60

80

Fr
eq

ue
nc

y
of

to
ta

l

*** *
Naïve
Hpb GDH
HDM
HDM
+ Hpb GDH

Eosinophils

*** P = 0.07

Ce
ll

nu
m

be
r

8 × 105

6 × 105

4 × 105

2 × 105

0

***

8 × 105

6 × 105

4 × 105

2 × 105

0

1 × 106

Total leukocytes% Eosinophils

(PAS)

Naïve Hpb GDH HDM HDM + Hpb GDH

Fig. 7. Recombinant Hpb GDH induces anti-inflammatory mediators in human macrophages and suppresses allergic airway inflammation in mice. (A) Amounts 
of eicosanoids (LC-MS/MS/EIA) or IL-10 (ELISA) in human MDM ± treatment with recombinant Hpb GDH (5 g/ml) (24 hours) ± A23187 (10 min). (B) BALF cell counts in 
mice sensitized (1 g) and challenged with HDM (10 g) ± intranasal treatment with Hpb GDH (10 g), 48 hours after the last challenge and treatment. (C) Representative 
H&E- or PAS-stained lung tissue from mice sensitized to HDM ± treatment with Hpb GDH. Scale bars, 100 m. Results are pooled from at least two independent experiments 
(A and B) or representative of stainings performed for two independent experiments (C). Results are presented as means ± SEM for MDM from n = 7 to 9 healthy human 
blood donors or n = 9 to 10 mice per group. Statistical significance was determined by Friedman test (A) or Kruskal-Wallis test followed by Dunn’s multiple comparison 
test (B). *P = 0.05; **P = 0.01; ***P < 0.001.

 at H
elm

holtz Z
entrum

 M
unchen - Z

entralbibliothek on M
ay 15, 2020

http://stm
.sciencem

ag.org/
D

ow
nloaded from

 

http://stm.sciencemag.org/


de los Reyes Jiménez et al., Sci. Transl. Med. 12, eaay0605 (2020)     22 April 2020

S C I E N C E  T R A N S L A T I O N A L  M E D I C I N E  |  R E S E A R C H  A R T I C L E

11 of 14

chemokine production by the transferred macrophages (47). In com-
bination with the COX-dependent reduction of human granulocyte 
chemotaxis, the BMDM transfer data support an important role for 
macrophage-derived COX metabolites in the modulation of granu-
locyte responses during type-2 inflammation.

To achieve therapeutic efficacy in allergy, asthma, or nasal polyposis, 
the modulation of multiple eicosanoid pathways (e.g., cysLTs, PGD2, 
and PGE2) may be favorable, as targeting single pathways has failed 
to provide a substantial clinical benefit (7, 48). Although the 5-LOX 
pathway represents a key drug target in multiple chronic diseases, 
there are currently no known drugs that work by simultaneously 
preventing LT generation and inducing anti-inflammatory eicosanoids. 
The regulatory eicosanoid switch triggered by HpbE and its active 
component Hpb GDH thus represents a key asset compared to current 
anti-inflammatory drugs.

Given that nematode larvae (Caenorhabditis elegans and Nippostrongylus 
brasiliensis) had been reported to induce LT production and eosinophil 
recruitment (16, 47), the LT-suppressive effects of HpbE were unex-
pected. However, our findings suggest that distinct helminth species 
and stages may differentially affect eicosanoid pathways and thus 
either promote or suppress type-2 inflammation. The regulated LT 
response induced by Hpb products may explain why Hpb is not rap-
idly expelled by a LT-dependent type-2 immune response as ob-
served for N. brasiliensis (17).

To potentially harness the eicosanoid-modulatory effects of HpbE 
and Hpb GDH, we chose a topical administration in a model of HDM-
induced allergic airway inflammation, where the central role of pros-
tanoids and LTs is well documented (6, 8, 12). Intranasal treatment 
with HpbE or Hpb GDH attenuated hallmarks of HDM-induced 
type-2 inflammation. This was in line with previous studies, showing 
that Hpb infection or treatment with excretory secretory products 
from the Hpb adult stage (“HES”) can suppress allergic inflammation 
by modulating type-2 cytokine responses (21, 35, 49). However, in 
comparison to HES, HpbE and Hpb GDH showed a distinct po-
tency to induce PGE2 and IL-10, which can act in concert to induce 
regulatory macrophages and suppress type-2 inflammation (12). 
HpbE appeared to preferentially target early, innate immune mech-
anisms (e.g., granulocyte recruitment), whereas HES can modulate 
adaptive type-2 immune responses, e.g., by inducing regulatory 
T cells (19). HpbE or Hpb GDH may thus be particularly suited to 
target eicosanoids and myeloid cells as crucial innate components of 
type-2 inflammation.

Recently, protein components of HES (HpARI and Hp-TGM) 
have been identified as major immunoregulatory factors (21, 50). 
Particularly, HpARI and the hookworm protein AIP-2 were shown 
to have potent allergy-suppressive effects (20, 21), but their effects 
on eicosanoids have not been studied. Using fractionation and MS, 
the enzyme Hpb GDH was identified as a major immunoregulatory 
candidate in HpbE. Recombinant Hpb GDH could recapitulate all 
major anti-inflammatory effects of total HpbE in vitro and in vivo, sug-
gesting a potential use as a therapeutic enzyme. However, because 
Hpb GDH only shows 60% identity to human GDH (fig. S10), immuno-
genicity may represent a limitation to its clinical development as a 
new biotherapeutic. Thus, future studies should assess whether treat-
ment with Hpb GDH results in the generation of neutralizing antibodies 
and design strategies to reduce the immunogenicity of the protein.

In addition, it will be important to define the mechanism of ac-
tion by which Hpb GDH exerts its effects on eicosanoid pathways. 
Several PRRs (TLR2 and dectin-1/2) participated in the induction 

of PGE2 synthetic enzymes by HpbE. As TLR2 and dectins bind to 
carbohydrate structures, the full immunoregulatory potential of HpbE 
might rely on co-factors (e.g., carbohydrates or glycoproteins), which 
may act in concert with Hpb GDH or promote its activity. On the 
basis of its sequence, the natural, worm-derived Hpb GDH may also 
be O-glycosylated, which may result in recognition by C-type lectins 
and contribute to the immunoregulatory activities of HpbE. This 
would be in line with a recent study, showing dectin-dependent in-
duction of PGE2 in dendritic cells by Schistosoma egg antigens (15). 
However, recombinant Hpb GDH from Escherichia coli, which is 
most likely not glycosylated, was also immunologically active, sug-
gesting that glycosylation is not the major factor determining its 
immunoregulatory activity.

In keeping with anti-inflammatory roles for myeloid NF-B and 
HIF-1 in airway inflammation (51, 52), both transcription factors 
contributed to the HpbE-triggered induction of type-2–suppressive 
mediators (PGE2, IL-10, and IL-1). In addition, p38 MAPK, which 
mediated the induction of COX metabolites, had previously been 
implicated in the modulation of macrophage activation by a protein 
from a filarial nematode (AvCystatin) (53). However, if and how 
Hpb GDH may be involved in the activation of p38 MAPK, NF-B, 
or HIF-1 pathways remains to be studied.

Last, because eicosanoids represent important mediators in severe 
and therapy-resistant type-2 inflammatory diseases (5, 54, 55), their 
broad anti-inflammatory modulation by HpbE may represent a promis-
ing future therapeutic approach. The identification of Hpb GDH as 
a major eicosanoid-modulatory component of HpbE provides a basis 
for the development of a new helminth-based therapeutic enzyme 
with a unique immunoregulatory profile.

MATERIALS AND METHODS
Study design
The aim of this study was to investigate if and how helminth products 
could modulate eicosanoid pathways to regulate type-2 inflammation. 
We characterized eicosanoid profiles of multiple myeloid cell types 
after treatment with helminth preparations by LC-MS/MS and se-
lected the most promising candidates (HpbE and its active component 
Hpb GDH) for in vivo and ex vivo testing. To define in vivo effects 
of HpbE, Hpb GDH, or HpbE-conditioned macrophages, we treated 
mice intranasally with HpbE or recombinant Hpb GDH or trans-
ferred HpbE-conditioned macrophages during experimental HDM 
allergy and assessed type-2 inflammation by differential cell counts, 
histology, and multiplex cytokine analysis. All readouts were per-
formed by a blinded experimenter. For the human part of our study, 
healthy volunteers (total n = 15) and AERD patients (n = 6) (Caucasian 
men and women) were recruited. Sample sizes, replicates, and sta-
tistical methods are specified in the figure legends. Primary data are 
reported in data file S1.

Mice
C57BL/6J mice were bred and maintained under specific pathogen–
free conditions at the École Polytechnique Fédérale de Lausanne 
(EPFL) or at the Centre Hospitalier Universitaire Vaudois (CHUV). 
Alternatively, BALB/c and C57BL/6J mice were obtained from Charles 
River Laboratories (Sulzfeld, Germany). Unless stated otherwise, 6- to 
12-week-old mice of both sexes were used. All animal experiments 
were approved by the local authorities (Swiss Veterinary Office or 
Regierung von Oberbayern).
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Hpb infection and preparation of larval extract
Infective stage-three larvae (L3) of Hpb were obtained from the eggs 
of Hpb-infected mice as previously published (56). For preparation 
of Hpb larval extract (HpbE), L3 larvae were homogenized in two 
cycles at 6000 rpm for 60 s in a Precellys homogenizer using Precellys 
tough micro-organism lysing kits VK05 (Bertin Pharma). Remaining 
debris were removed by centrifugation (20 min, 14,000 rpm, 4°C). 
When indicated, heat-inactivated HpbE (HpbE 90°C) was prepared 
by heating at 90°C overnight.

HDM-induced allergic airway inflammation and intranasal 
treatment with HpbE or Hpb GDH
Eight-week-old female C57BL/6J mice were sensitized on day 0 by bilat-
eral intranasal instillations of HDM extract from Dermatophagoides 
farinae [1 g of extract in 20 l of phosphate-buffered saline (PBS); 
Stallergenes SA] and challenged on days 8 to 11 with 10 g of the 
same extract dissolved in 20 l of PBS. Control animals received the 
same amount of PBS. HpbE treatment (5 g of Hpb extract in 20 l of 
PBS) was performed intranasally before sensitization and challenges, 
and Hpb GDH treatment (10 g of protein in 20 l of PBS) was 
performed intranasally before challenges. In the absence of HpbE or 
Hpb GDH treatment, the mice received 20 l of PBS. Three days after 
the last challenge, the airways of the mice were lavaged five times 
with 0.8 ml of PBS. Aliquots of cell-free BALF were frozen immedi-
ately with or without equal volumes of methanol. Viability, yield, 
and differential cell count of BAL cells were performed as described 
before (57).

Human blood and tissue samples
PBMCs or PMNs were isolated from the blood of healthy human 
donors or patients with AERD. Nasal polyp tissues were obtained 
during polypectomy of patients suffering from chronic rhinosinusitis 
with nasal polyps. Nasal polyp secretions were obtained from cultured 
nasal polyp tissues as described previously (6). All blood and tissue 
donors participated in the study after informed written consent. Blood 
and tissue sampling and experiments including human blood cells 
were approved by the local ethics committee at the University clinic 
of the Technical University of Munich (internal reference: 422/16).

Macrophage cultures
MDMs or BMDMs were generated by culture in the presence of human 
or murine recombinant GM-CSF (10 ng/ml) (Miltenyi Biotec) and 
human recombinant TGF-1 (2 ng/ml) (PeproTech) as previously 
described (6, 58). On day 6, cells were harvested and used for fur-
ther experiments. More detailed procedures can be found in the 
Supplementary Materials.

Eicosanoid and cytokine analysis
Eicosanoids were quantified by LC-MS/MS similar to a previously 
published method (47). Cytokines were quantified using commercially 
available multiplex assays or enzyme-linked immunosorbent assay 
(ELISA) kits according to the manufacturer’s instructions. More 
detailed procedures can be found in the Supplementary Materials.

Chemotaxis assays
PMNs were resuspended to a concentration of 1 × 106 cells/ml in the 
presence of human GM-CSF (100 ng/ml; Miltenyi Biotec) and stimu-
lated overnight with HpbE (10 g/ml). When mentioned, PMNs were 
pretreated with 1 M FP (Sigma-Aldrich), 10 M MK (Cayman 

Chemical), or conditioned medium from MDM stimulated overnight 
with Hpb extract (10 g/ml) ± 100 M indomethacin for 1 hour. 
Nasal polyp secretions or a chemokine cocktail [RANTES (2 ng/ml), 
IL-8 (20 ng/ml; Miltenyi Biotec), and LTB4 (2 ng/ml; Cayman Chemical)] 
was placed in the lower wells of a chemotaxis plate (3 m pore size; 
Corning). After mounting the transwell unit, 2 × 105 PMNs were 
added to the top of each well and migration was allowed for 3 hours 
at 37°C, 5% CO2. The number of cells migrating to the lower well 
was counted microscopically. In some experiments, manual counting 
was validated by flow cytometry.

Statistical analysis
All statistical analyses for biological data were performed using 
GraphPad Prism (GraphPad Software Inc.). Where two groups were 
compared, statistical significance was determined by Wilcoxon-Mann-
Whitney test. Where more than two groups were compared, Kruskal-
Wallis followed by Dunn’s multiple comparisons test, Friedman test 
(paired samples), or two-way analysis of variance (ANOVA) (unpaired 
samples) was used. Heat maps were generated using MetaboAnalyst 
version 3.0 (McGill University), a free online tool for metabolomics 
data analysis.

SUPPLEMENTARY MATERIALS
stm.sciencemag.org/cgi/content/full/12/540/eaay0605/DC1
Supplementary Materials and Methods
Fig. S1. PUFA metabolites produced by human MDM in response to treatment with HpbE and 
impact of HpbE-treated Ptgs2−/− BMDM on eosinophilic airway inflammation.
Fig. S2. HpbE has stronger eicosanoid-modulatory effects than glucocorticosteroids.
Fig. S3. HpbE has a distinct potential to induce type-2–suppressive mediators compared to 
other helminth products or helminth-associated bacteria.
Fig. S4. Viability and LTA4H expression in human eosinophils and neutrophils and PUFA 
metabolites produced by human PMNs in response to treatment with HpbE.
Fig. S5. HpbE induces a regulatory eicosanoid and cytokine profile in mixed and isolated CD14+ 
human PBMCs.
Fig. S6. Effect of COX-2, NF-B, PI3K, PTEN, or PKA inhibition on HpbE-driven modulation of 
cytokines and eicosanoid pathways.
Fig. S7. Effect of neutralizing antibodies against PRRs (TLR2 and dectin-1/2) or IL-1 on 
HpbE-driven modulation of eicosanoids and IL-10 in human MDM.
Fig. S8. Bithionol does not affect cell viability and L3 stage HpbE shows a higher GDH activity 
as compared to L4 or L5 extracts.
Fig. S9. Newly generated monoclonal antibodies recognize Hpb GDH, clone 4F8 reduces 
HpbE-induced PGE2 and IL-10 production, and bithionol partially inhibits activity of 
recombinant Hpb GDH.
Fig. S10. Sequence of Hpb GDH is distinct from human GDH and contains potential predicted 
glycosylation sites.
Table S1. LC-MS/MS panel of PUFAs and PUFA metabolites.
Table S2. Proteins present in active fractions of HpbE identified by MS.
Table S3. Primer sequences for qPCR.
Table S4. Reagents and resources.
Data file S1. Primary data.
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diseases.
These results suggest that helminth products have the potential to broadly modulate pathways in type-2 immune 
and the helminth protein glutamate dehydrogenase alleviated inflammation in a house dust mite model of asthma.
They found that helminth larvae modulated eicosanoids in human macrophages and granulocytes. Both the larvae 

, could have added beneficial anti-inflammatory effects.Heligmosomoides polygyrus bakeriimmunity, the helminth 
 investigated whether factors from a known mediator of type-2et al.targeting difficult. De los Reyes Jiménez 

Type-2 immunity in allergy and asthma is driven by nonredundant pathways, sometimes making therapeutic
Tamping down type-2 inflammation
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