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Abstract 
Motivation: Intercellular communication plays an essential role in multicellular organisms and several 
algorithms to analyse it from single-cell transcriptional data have been recently published, but the results are often 
hard to visualize and interpret.  
Results: We developed COMUNET (Cell cOMmunication exploration with MUltiplex NETworks), a tool that 
streamlines the interpretation of the results from cell-cell communication analyses.  
COMUNET uses multiplex networks to represent and cluster all potential communication patterns between cell 
types. The algorithm also enables the search for specific patterns of communication and can perform comparative 
analysis between two biological conditions. To exemplify its use, here we apply COMUNET to investigate cell 
communication patterns in single-cell transcriptomic datasets from mouse embryos and from an acute myeloid 
leukemia patient at diagnosis and after treatment.  
Availability and Implementation: Our algorithm is implemented in an R package available from 
https://github.com/ScialdoneLab/COMUNET, along with all the code to perform the analyses reported here. 
 
Contact: antonio.scialdone@helmholtz-muenchen.de  
Supplementary information: Supplementary data are available at Bioinformatics online. 

 
 

1 Introduction  
Single-cell RNA sequencing (scRNA-seq) has been extensively used in 
the last few years to analyse intercellular communication in tissues (see, 
e.g., (Camp et al., 2017; Puram et al., 2017; Zepp et al., 2017; Zhou et al., 
2017; Cohen et al., 2018; Halpern et al., 2018; Skelly et al., 2018; Vento-
Tormo et al., 2018; Kumar et al., 2018; Schiebinger et al., 2019; 
Bonnardel et al., 2019; Sheikh et al., 2019; Caruso et al., 2019; Wang, 
2020)). Several algorithms to perform these analyses have been published 
(for instance, (Vento-Tormo et al., 2018; Rieckmann et al., 2017; Boisset 
et al., 2018; Ramilowski et al., 2015; Caruso et al., 2019; Wang, 2020; 
Efremova et al., 2020)) and they all start from a database of interacting 
molecular partners (e.g., ligand and receptor pairs) to infer, from their 
expression patterns, a list of potential communication pathways between 
cell types.  

While the results of these analyses can reveal important insights into the 
functioning of complex tissues composed of many different cell types, 
their interpretation can still be challenging with the existing algorithms. 

For example, the standard visualization strategies based on graphs or 
heatmaps, are often busy, poorly interpretable and can hinder data-driven 
hypothesis generation. Given the sheer number of potentially 
communicating cell types and interacting partners, it can become 
challenging to identify all the molecules that could mediate the 
communication between a given set of cell types. Moreover, to understand 
the biological relevance of specific interacting molecular partners and the 
cellular communication they generate, it is desirable to be able to 
quantitatively compare cellular communication across different datasets.   

Here we present COMUNET (Cell cOMmunication exploration with 
MUltiplex NETworks), a new tool to visualize and interpret cell-cell 
communication that is based on multiplex networks and addresses all the 
challenges mentioned above. More specifically, COMUNET allows (i) 
unsupervised clustering of interacting partners (eg, ligand-receptor pairs), 
(ii) search for specific patterns of communication and (iii) comparison 
between two biological conditions, aiding the interpretability of the results 
and the identification of promising candidate molecules to follow up on. 
In this paper, we show how COMUNET can perform these tasks on two 
scRNA-seq datasets from mouse embryos and from the bone marrow of 
an acute myeloid leukemia patient. COMUNET can be easily installed and 
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run, since it is available as an R package from 
https://github.com/ScialdoneLab/COMUNET. 

2 Algorithm 

2.1 Multiplex networks 

As a first step, COMUNET uses a multiplex network to represent all 
significant interacting partners (consisting of, e.g., pairs of ligands and 
receptors) that can mediate cell-cell communication identified by an 
algorithm of choice. For the sake of definiteness, in the examples below 
we use CellPhoneDB (Efremova et al., 2020) to find significant 
interacting partners. However, COMUNET can work with any algorithm 
(e.g., ImmProt (Riekmann et al 2017) or any of the other algorithms cited 
in the Introduction) that provides a quantification of the strength/statistical 
significance of the communication between cell types mediated by a given 
pair of interacting partners. This information can be represented in the 
form of a matrix (see Figure 1), which from now on we will refer to as the 
weight matrix. The input of COMUNET is a set of weight matrices, one 
for each pair of interacting partners  (Figure 1).  

Each weight matrix is interpreted as an adjacency matrix of a directed 
weighted graph, where the entries are the edge weights. For each node 
(representing cell types), the difference between the weighted in- and out-
degree, !, is calculated and encoded in the color of the node.  

If the pair of interacting partners is a ligand-receptor pair, a positive value 
of ! indicates that the node (cell type) is mostly communicating by 
producing and secreting the ligand (“sending” node); conversely, a 
negative ! marks nodes that communicate mainly by receiving signals 
through the receptor (“receiving node”). The arrows of the graph start at 
the sending nodes (which expresses the ligand) and point to the receiving 
nodes (which expresses the receptor), while the thickness of an edge 
indicates the edge weight.  

In case no directionality is specified for the pair of interacting partners A 
and B (i.e., as for adhesion molecules), the arrows start at the node 
expressing partner A and poins to the node expressing partner B. The 
graphs built from the matrices are then stacked together as layers of a 
multiplex network (Figure 1).  

2.2 Dissimilarity measure 

Once the pairs of interacting partners are represented as layers in a 
multiplex network, COMUNET calculates pairwise dissimilarities 
between them.  

Given two layers " and #, their dissimilarity $%,'  is defined as: 

 

with  

 

where (),*%  is the weight of the directed edge between nodes + and , in the 

layer ", - is the total number of nodes, .%  is the set of edges in the layer 

", |.% ∪ .'| is the cardinality of the union of all edges in layers " and 

#. This definition of dissimilarity can be seen as a modified version of the 
Jaccard similarity index (Jaccard, 1912) between the sets of edges in the 
two layers that also takes into account the weights and directionality of the 
edges. 

 

Fig.	1.	Schematic	representation	of	COMUNET	workflow.	Once	the	weight	matrices	
for	a	set	of	 interacting	partners	(e.g.,	 ligands-receptor	pairs)	are	estimated	with	an	
algorithm	 of	 choice	 (e.g.,	 CellPhoneDB),	 COMUNET	 represents	 them	 as	 layers	 in	 a	
multiplex	network,	where	nodes	are	cell	types	(indicated	with	A,	B,	C).	Each	node	is	
colored	based	on	the	difference	between	the	weighted	in-	and	out-degree	(indicated	

with	 !),	 in	 such	 a	 way	 that,	 in	 the	 case	 of	 ligands/receptors,	 the	 nodes	 that	
preferentially	send	signals	are	red,	while	the	nodes	that	preferentially	receive	signals	
are	 blue.	Next,	 COMUNET	 calculates	 pairwise	dissimilarities	 between	 layers	 in	 the	
multiplex	 network	 and	 can	 perform:	 clustering	 of	 layers,	 to	 reveal	 interacting	
partners	 sharing	 similar	 communication	 patterns;	 search	 of	 interacting	 partners	
showing	a	specific	communication	pattern;	comparison	of	communication	patterns	
between	two	biological	conditions.	
	
	
	
	

2.3 Clustering of interacting partners  

In this step, COMUNET identifies pairs of interacting partners with 
similar patterns of intercellular communication and organizes them into 
clusters (Figure 1). 

This is done by performing hierarchical clustering of the dissimilarity 
matrix of layers (by default, the “hclust” R function with the “average” 
agglomeration method is used) and the results can be visualized as a 
heatmap or a UMAP plot (McInnes et al., 2018). The number of clusters 
is estimated using the “cutreeHybrid” R function (package 
dynamicTreeCut, version 1.63-1(Langfelder et al., 2008)) with 
“deepSplit” equal to 0 and default “minClusterSize” equal to 6. For each 
cluster, a graph that represents the “average” pattern is built by averaging 
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Fig.	2.	Application	of	COMUNET	to	datasets	from	mouse	embryos	and	cancer.	A.		We	used	COMUNET	to	identify	clusters	of	interacting	partners	in	published	scRNA-
seq	data	from	E6.5	mouse	embryo.	The	dataset	includes	5	cell	types:	extraembryonic	visceral	endoderm	(exVE),	trophectoderm	(TE),	mesoderm	(Mes),	embryonic	visceral	
endoderm	(emVE),	and	epiblast	 (EPI).	Eight	clusters	of	 	 interacting	partners	were	 identified,	each	corresponding	to	a	specific	communication	pattern,	whose	average	
representation	 is	 depicted	 in	 the	 squares.	 	 In	 particular,	 Cluster	 3	 represents	 communication	 from	 the	 emVE	 to	 EPI	 and	 Mes,	 Lefty1:Tdgf1	 being	 a	 representative	
ligand:receptor	pair	included	in	this	cluster.	B.	As	an	example	of	pattern	search,	using	the	same	scRNA-seq	data	of	panel	A,	we	searched	for	the	interacting	partners	showing	
the	pattern	of	communication	depicted	in	the	top	left:	i.e.,	a	signal	originating	from	the	extraembryonic	visceral	endoderm	and	received	by	all	other	embryonic	tissues,	
which	corresponds	to	the	adjacency	matrix	shown	in	the	top	right.	COMUNET	returned	a	list	of	interacting	partners	sorted	by	increasing	dissimilarity	with	the	specified	
pattern	(bottom	left).	The	bottom	right	panel	illustrates	the	graphs	corresponding	to	some	selected	pairs	of	interacting	partners.	C.	We	applied	COMUNET	to	a	published	
scRNA-seq	dataset	from	the	bone	marrow	of	an	AML	patient	at	diagnosis	(d0)	and	after	treatment	(d29)	to	find	differences	in	communication	patterns	between	the	two	
time	points.	TNFSF13:FAS	and	CCL5:CCR5	are	examples	of	interacting	pairs	with	a	dramatic	change	of	communication	patterns	between	d0	and	d29.	

		

3.2 Human Acute Myeloid Leukemia dataset 
There is growing evidence that communication between different cell 
types in a tissue is altered in diseases like cancer. For instance, it is known 
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the adjacency matrices and the! (see section 2.1) of the nodes of all the 
graphs in the cluster. (Figure 1, Figure 2A). 

2.4 Cell-cell communication pattern search 

For a more supervised analysis, it is useful to retrieve all pairs of 
interacting partners that show a specific communication pattern. To this 
aim, our algorithm classifies the pairs of interacting partners based on their 
similarity to a user-specified intercellular communication pattern. 

A pattern of interest is defined with a binary adjacency matrix, 1 indicating 
the presence of an edge and 0 the absence. The adjacency matrices of the 
layers are also binarized based on the presence/absence of the edges and 
then the dissimilarities with the user-specified adjacency matrix are 
calculated (see section 2.2). The output is a list of pairs of interacting 
partners sorted by increasing dissimilarity with the user-specified pattern.  
(Figure 1, Figure 2B, Suppl Table 2) 

2.5 Comparative analysis 

Given the results of a cell-cell communication analysis of two datasets 
including the same cell types, COMUNET can estimate the differences in 
the intercellular communication patterns between corresponding 
interacting partners in the two datasets. First, the results are represented as 
multiplex networks, as described above; then, pairwise  dissimilarities 
between the shared layers (e.g., layers representing the same pairs of 
interacting partners) of the two datasets are calculated (see Section 2.2). 
The pairs of interacting partners are then sorted by decreasing 
dissimilarity, i.e., from those that change the most across the two datasets 
to those that remain unaltered. (Figure 1, Figure 2C, Suppl Table 3). 

 

3 Results 
Below, we apply COMUNET to scRNA-seq datasets from two different 
publications to show how the clustering, the pattern search and the 
comparative analysis can help extract biologically relevant information 
from a cell-cell communication analysis performed with CellPhoneDB 

(Vento-Tormo et al., 2018; Efremova et al., 2020). In the first example, 
we used COMUNET to characterize the cellular communication patterns 
in a mouse embryo dataset, and in the second example we found the 
changes in cellular communication in the bone marrow of a leukemia 
patient between time of diagnosis and after treatment.  

3.1 E6.5 mouse embryo 

We took scRNA-seq data from a mouse embryo at the E6.5 stage from 
(Nowotschin et al., 2019) (Figure 2A, Suppl Fig 1). Around this stage 
gastrulation is starting, with signalling between cell types that begin to 
define where and when the first organs will arise (Tam and Loebel, 2007). 
As an example, the external layer of cells called visceral endoderm, in 
addition to being responsible for nutrient uptake and transport, determines 
the direction of the anterior-posterior axis and the region of epiblast where 
mesodermal cells will differentiate, through some mechanisms and 
signalling pathways that are still not fully understood (Stower and 
Srinivas, 2018). On  this dataset, including 5 different cell types, we ran 
CellPhoneDB and then the clustering algorithm of COMUNET, which 
finds 8 clusters of interacting partners (see Figure 2A and Suppl. Table 1). 
These clusters classify the interacting partners according to the pattern of 
communication they might generate between the different cell types and 
offer an overview of the main communication patterns present in the data. 

As an example, if we consider the ligands/receptor pairs in cluster 3, they 
are responsible for signalling that originates preferentially from the 
embryonic visceral endoderm (emVE) and is directed to other cell types 
(Figure 2A, Suppl Fig 1). Indeed, this cluster includes LEFTY1-TDGF1 
(Figure 2A, Suppl Fig 1, Suppl Table 1), which are part of the Nodal 
signalling that regulates expression of mesodermal genes in the epiblast 
(Tam and Loebel, 2007).  

In addition to this unsupervised analysis, all interacting partners having a 
specific communication pattern can be identified. For example, in Figure 
2B and Suppl Table 2, we show how a list of all interacting partners that 
might be responsible for signalling from the extra-embryonic visceral 
endoderm to all the other cell types can be easily obtained. At the top we 
found Igf2, which is known to promote embryonic growth (DeChiara et 
al., 1991), and its receptor Igf2r, which attenuates Igf2 signalling (Brown 
et al., 2009). 
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that in healthy bone marrow, hematopoietic stem cells stay in close contact 
with niche cells, including endothelial cells, megakaryocytes and 
adipocytes (Asada et al., 2017; Behrmann et al., 2018), which regulate 
their proliferation state (Bruns et al., 2014; Itkin et al., 2016; Ambrosi et 
al., 2017). In hematological malignancies as well as solid cancers, the 
normal control mechanisms executed by the niche cells are disrupted, such 
that a novel tumor-specific communicational landscape dominates the 
tissue. Tumor cells can actively recruit the niche cells from their 
environment (e.g. fibroblasts, mesenchymal stem cells, T-cells, or 
macrophages) and receive growth factors secreted by the niche, to evade 
from the immune response or to metastasise (Behrmann et al., 2018; Yuan 
et al., 2016). In order to investigate the alteration of communication 
patterns in cancer, it is crucial to have a tool that can perform the 
communication comparison between conditions, such as before and after 
treatment. 

In this example, we used the data from (van Galen et al., 2019) to show 
how COMUNET can find differences in communication patterns between 
two datasets. This publication includes a scRNA-seq data of a bone 
marrow sample of a 74 years old newly diagnosed female patient with 
Acute Myeloid Leukemia (AML) (#328) at diagnosis (day 0) and after 
Azacitidine-Venetoclax-C1D27 treatment (day 29). At both timepoints, 
the bone marrow of this patient contains both normal hematopoietic cells, 
as well as tumor cells (HSC-like, progenitor-like, monocyte-like, and 
cDC-like) (Suppl Fig 2). We compared the communication patterns in the 
two samples and revealed that 6 pairs of interacting partners dramatically 
change their pattern of communication upon treatment. Among those we 
found TNFSF13:FAS and CCL5:CCR5, two pairs of ligands/receptors 
that are known to play a role in AML and other cancers (Chapellier et al., 
2019; Gmeiner et al., 2015; Brenner et al., 2016; Mollica Poeta et al., 
2019; Aldinucci and Colombatti, 2014) (Figure 2C, Suppl Fig 2, Suppl 
Table 3). In AML, TNFSF13, secreted by normal myeloid cells, supports 
proliferation and apoptosis resistance of tumor cells (Chapellier et al., 
2019). In solid cancers, inflammatory chemokines such as CCL5 together 
with their receptors have been shown to attract neutrophils and monocytes 
at the tumor site and reprogram them, leading to altered immune response 
(Mollica Poeta et al., 2019). This signaling might be relevant for the 
immune response and survival of a subset of tumor cells in this patient 
after treatment. 

 

4 Discussion 
In this paper, we introduced COMUNET, a powerful tool for visualization 
and analysis of intercellular communication. Starting from the output 
generated by any algorithm that estimates the likelihood or strength of 
cellular communication, COMUNET represents the pattern of cell 
communication mediated by each pair of interacting molecules as layers 
in a multiplex network and calculates the dissimilarity between them. 
Based on this dissimilarity, COMUNET clusters the pairs of interacting 
partners based on the pattern of intercellular communication that they can 
mediate. This facilitates the visualization of the results and gives an 
overview of the cell types that are involved in the communication, in 
addition to the molecules that could be responsible for it. Furthermore, 
COMUNET can prioritise the molecules that are more likely to mediate 
the communication between a set of specific cell types.  

We showed how COMUNET can perform these two tasks in a dataset 
from mouse embryos, where we classified the communication patterns in 
eight different clusters and we were able to easily retrieve a list of potential 
mediators for signalling originating from extra-embryonic visceral 
endoderm. 

A comparison of cellular communication between two different conditions 
is often necessary to understand the role of signalling molecules. 

COMUNET can perform such a comparison, to identify the changes in 
communication and the molecules that are responsible for them. We 
showed this in a dataset from an acute myeloid leukemia bone marrow 
before and after treatment and we were able to single out molecules that 
were previously linked with important processes like apoptosis resistance 
and immune response in cancer. 

These examples show how COMUNET significantly increases our ability 
to go beyond a simple descriptive study of cellular communication and 
helps generate hypotheses on the role of communication and identify 
candidate genes for validation. 

Another feature of COMUNET, is the possibility to use it on the output 
generated by any algorithm that quantifies intercellular communication. 
This is particularly important given the rapid pace at which new, refined 
algorithms for cellular communication are being developed and holds true 
irrespective of the kind of data used to infer communication, including, 
for instance, single-cell proteomics data (Labib and Kelley, 2020), which 
can be even more informative on cellular communication than RNA-seq. 

 

5 Data and code availability 
COMUNET is available as an R package from 
https://github.com/ScialdoneLab/COMUNET . In this GitHub 
repository, a comprehensive tutorial is provided with all the code and the 
data to reproduce the analyses shown in this paper. 

 

Authors’ contributions 

MS and AS designed research; MS implemented the method; MS and AS 
interpreted the results; MS and AS wrote the paper; AS supervised the 
study. 

Acknowledgements 
We thank Jonathan Fiorentino, Gabriele Lubatti and Frank Ziemann for useful 
discussions and comments on the tutorials.  
 
Conflict of Interest: none declared. 

References 
Aldinucci,D. and Colombatti,A. (2014) The inflammatory chemokine CCL5 and 

cancer progression. Mediators Inflamm., 2014, 292376. 
Ambrosi,T.H. et al. (2017) Adipocyte Accumulation in the Bone Marrow during 

Obesity and Aging Impairs Stem Cell-Based Hematopoietic and Bone 
Regeneration. Cell Stem Cell, 20, 771–784.e6. 

Asada,N. et al. (2017) Complexity of bone marrow hematopoietic stem cell niche. 
Int. J. Hematol., 106, 45–54. 

Behrmann,L. et al. (2018) Acute Myeloid Leukemia and the Bone Marrow Niche-
Take a Closer Look. Front. Oncol., 8, 444. 

Boisset,J.-C. et al. (2018) Mapping the physical network of cellular interactions. 
Nat. Methods, 15, 547–553. 

Bonnardel,J. et al. (2019) Stellate Cells, Hepatocytes, and Endothelial Cells Imprint 
the Kupffer Cell Identity on Monocytes Colonizing the Liver Macrophage 
Niche. Immunity, 51, 638–654.e9. 

Brenner,A.K. et al. (2016) A Subset of Patients with Acute Myeloid Leukemia Has 
Leukemia Cells Characterized by Chemokine Responsiveness and Altered 
Expression of Transcriptional as well as Angiogenic Regulators. Front. 
Immunol., 7, 205. 

Brown,J. et al. (2009) Keeping IGF-II under control: lessons from the IGF-II-
IGF2R crystal structure. Trends Biochem. Sci., 34, 612–619. 

Bruns,I. et al. (2014) Megakaryocytes regulate hematopoietic stem cell quiescence 
through CXCL4 secretion. Nat. Med., 20, 1315–1320. 

Camp,J.G. et al. (2017) Multilineage communication regulates human liver bud 
development from pluripotency. Nature, 546, 533. 

Caruso,F.P. et al. (2019) A MAP of tumor-host interactions in glioma at single cell 
resolution. bioRxiv, 827758. 

Chapellier,M. et al. (2019) Arrayed molecular barcoding identifies TNFSF13 as a 
positive regulator of acute myeloid leukemia-initiating cells. Haematologica, 

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article-abstract/doi/10.1093/bioinform
atics/btaa482/5836497 by H

elm
holtz Zentrum

 M
uenchen - C

entral Library user on 18 M
ay 2020



M. Solovey et al. 

104, 2006–2016. 
Cohen,M. et al. (2018) Lung Single-Cell Signaling Interaction Map Reveals 

Basophil Role in Macrophage Imprinting. Cell, 175, 1031–1044.e18. 
DeChiara,T.M. et al. (1991) Parental imprinting of the mouse insulin-like growth 

factor II gene. Cell, 64, 849–859. 
Efremova,M. et al. (2020) CellPhoneDB: inferring cell-cell communication from 

combined expression of multi-subunit ligand-receptor complexes. Nat. 
Protoc., 15, 1484–1506. 

van Galen,P. et al. (2019) Single-Cell RNA-Seq Reveals AML Hierarchies 
Relevant to Disease Progression and Immunity. Cell, 176, 1265–1281.e24. 

Gmeiner,W.H. et al. (2015) Thymineless death in F10-treated AML cells occurs 
via lipid raft depletion and Fas/FasL co-localization in the plasma membrane 
with activation of the extrinsic apoptotic pathway. Leuk. Res., 39, 229–235. 

Halpern,K.B. et al. (2018) Paired-cell sequencing enables spatial gene expression 
mapping of liver endothelial cells. Nat. Biotechnol., 36, 962–970. 

Itkin,T. et al. (2016) Distinct bone marrow blood vessels differentially regulate 
haematopoiesis. Nature, 532, 323–328. 

Jaccard,P. (1912) THE DISTRIBUTION OF THE FLORA IN THE ALPINE 
ZONE.1. New Phytol., 11, 37–50. 

Kumar,M.P. et al. (2018) Analysis of Single-Cell RNA-Seq Identifies Cell-Cell 
Communication Associated with Tumor Characteristics. Cell Rep., 25, 1458–
1468.e4. 

Labib,M. and Kelley,S.O. (2020) Single-cell analysis targeting the proteome. 
Nature Reviews Chemistry, 4, 143–158. 

Langfelder,P. et al. (2008) Defining clusters from a hierarchical cluster tree: the 
Dynamic Tree Cut package for R. Bioinformatics, 24, 719–720. 

McInnes,L. et al. (2018) UMAP: Uniform Manifold Approximation and Projection. 
JOSS, 3, 861. 

Mollica Poeta,V. et al. (2019) Chemokines and Chemokine Receptors: New 
Targets for Cancer Immunotherapy. Front. Immunol., 10, 379. 

Nowotschin,S. et al. (2019) The emergent landscape of the mouse gut endoderm at 
single-cell resolution. Nature, 569, 361–367. 

Puram,S.V. et al. (2017) Single-Cell Transcriptomic Analysis of Primary and 
Metastatic Tumor Ecosystems in Head and Neck Cancer. Cell, 171, 1611–
1624.e24. 

Ramilowski,J.A. et al. (2015) A draft network of ligand-receptor-mediated 
multicellular signalling in human. Nat. Commun., 6, 7866. 

Rieckmann,J.C. et al. (2017) Social network architecture of human immune cells 
unveiled by quantitative proteomics. Nat. Immunol., 18, 583–593. 

Schiebinger,G. et al. (2019) Optimal-Transport Analysis of Single-Cell Gene 
Expression Identifies Developmental Trajectories in Reprogramming. Cell, 
176, 928–943.e22. 

Sheikh,B.N. et al. (2019) Systematic Identification of Cell-Cell Communication 
Networks in the Developing Brain. iScience, 21, 273–287. 

Skelly,D.A. et al. (2018) Single-Cell Transcriptional Profiling Reveals Cellular 
Diversity and Intercommunication in the Mouse Heart. Cell Rep., 22, 600–
610. 

Stower,M.J. and Srinivas,S. (2018) Chapter Fourteen - The Head’s Tale: Anterior-
Posterior Axis Formation in the Mouse Embryo. In, Plusa,B. and 
Hadjantonakis,A.-K. (eds), Current Topics in Developmental Biology. 
Academic Press, pp. 365–390. 

Tam,P.P.L. and Loebel,D.A.F. (2007) Gene function in mouse embryogenesis: get 
set for gastrulation. Nat. Rev. Genet., 8, 368–381. 

Vento-Tormo,R. et al. (2018) Single-cell reconstruction of the early maternal-fetal 
interface in humans. Nature, 563, 347–353. 

Wang,Y. (2020) talklr uncovers ligand-receptor mediated intercellular crosstalk. 
bioRxiv, 2020.02.01.930602. 

Yuan,Y. et al. (2016) Role of the tumor microenvironment in tumor progression 
and the clinical applications (Review). Oncol. Rep., 35, 2499–2515. 

Zepp,J.A. et al. (2017) Distinct Mesenchymal Lineages and Niches Promote 
Epithelial Self-Renewal and Myofibrogenesis in the Lung. Cell, 170, 1134–
1148.e10. 

Zhou,J.X. et al. (2017) Extracting Intercellular Signaling Network of Cancer 
Tissues using Ligand-Receptor Expression Patterns from Whole-tumor and 
Single-cell Transcriptomes. Sci. Rep., 7, 8815. 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article-abstract/doi/10.1093/bioinform
atics/btaa482/5836497 by H

elm
holtz Zentrum

 M
uenchen - C

entral Library user on 18 M
ay 2020




