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The protein-protein interaction (PPI) networks are dynamically organized as modules, and are typically
described by hub dichotomy: ‘party’ hubs act as intramodule hubs and are coexpressed with their partners,
yet ‘date’ hubs act as coordinators among modules and are incoherently expressed with their partners.
However, there remains skepticism about the existence of hub dichotomy. Since different algorithms and
data sets were used in previous studies to test the model of hub classification, the conclusions may be largely
influenced by the potential inherent biases. In this study, we evaluated two data sets of yeast interactome,
and systematically investigated the behavior of hubs from multiple perspectives including co-expression
patterns, topological roles and functional classifications. Our results revealed consistency between the two
data sets, confirming the presence of hub dichotomy. Furthermore, we analyzed a human interactome data
set, and demonstrated that the modular architecture of the PPI networks was more complicated than hub
dichotomy.

he concept of ‘date’ and ‘party” hubs has been widely accepted in the area of protein-protein interaction (PPI)

networks. Han et al first classified hubs of the yeast interactome into two classes’, by integrating PPI network

information with transcriptional profiling data. Party hubs interact with most of their partners simulta-
neously, while date hubs bind different partners at different locations and times. In theory, date hubs preferen-
tially connect functional modules to each other, whereas party hubs preferentially act inside functional
modules'?. The two types of hubs also display profound differences regarding topological roles and evolutionary
constraint, in that party hubs posited in single modules are highly constrained, whereas date hubs connecting
different modules are more plastic'”. However, Batada et al suggested that the organization of global protein
interaction network is highly interconnected in the manner that is more like the continuous dense stratus clouds
than the segregated altocumulus clouds, and hence argued against the classification of ‘date’ and ‘party’ hubs®. A
series of subsequent papers were then involved in this debate, but there is still no definitive conclusion on it as of
today*®. For example, Taylor et al extended the scope of two distinct hub types from yeast to human with the
evidence of a multimodal distribution of hubs co-expression in human PPI network’. However, Agarwal et al
argued that the feature of multimodal distribution was not robust according to methodological changes®. In view
of three-dimensional protein structures, Kim et al supported the binary partition of hubs by explaining ‘date hubs’
as single-interface hubs and ‘party hubs’ as multi-interface hubs®, while Wang et al further suggested that the
number of interaction interfaces are crucial in classification of functional and topological properties associated
with each hub protein®.

We proposed that the results of the PPI network analysis may be largely influenced by the potential biases in
data and analytical methods. First, there was lack of consistency in the data sets used in previous analysis. Each
study used different criteria or prediction methods to derive the PPI information from different public data
sources, such as yeast two-hybrid assay or protein mass spectrometry, so that the number of nodes and edges are
quite different between studies. For example, the network used by Han et al contains 2,491 interactions among
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1,375 proteins yet the data set of Batada et al contains 3,976 inter-
actions among 1,291 proteins. Previous study also suggested that
experimental bias might play a key role in the observed properties
in a given data set. Thus, it is important to construct a complete
picture of cellular PPI networks and the results can be improved
significantly, when more data on high-quality binary interaction
information becomes available'. Second, the definitions of hubs in
the network were also not consistent among different studies; for
example, Han et al defined hubs with degree greater than 5 and
Batada et al defined hubs as nodes whose connectivity ranked within
top 5% or 10% most connected nodes in the data set. These differ-
ences in definition may also be responsible for the discordances in
different studies regarding the presence of date and party hubs. This
problem was also addressed by a recent study which presented three
objective methods to define hub proteins in PPI networks''. Third,
the principle to distinct two classes of hubs was only based on the
averaged Pearson correlation coefficient (avPCC) of expression
levels between hub and its interacting partners, which are not robust
and may be influenced by the topological structure of the PPI net-
work. In the paper of Han et al, they found that the avPCC of hubs
(degree greater than 5) followed a bimodal distribution but the no-
hubs displayed a normal distribution. Thus, hubs were split into two
types: one with relatively low avPCC (date hub) and the other with
relatively high avPCC (party hub). They were further inferred to play
different roles in the modulization process of PPI networks. Party
hubs, which highly coexpressed with their neighbors, were intramo-
dule hubs that coordinate proteins from the same functional module,
yet date hubs, which provisionally coexpressed with their neighbors,
were considered as higher-level intermodule hubs that perform dif-
ferent functions under different conditions>”. However, the model
described above was purely based on gene expression data and
ignored the network topology or protein structure information. A
recent study also attempted to improve the classification of date and
party hubs by features analysis'.

Modularity and community structure are important features in
real complex networks'>'*. In biological networks, subnetworks and
functional modules are associated with certain biological process'> .
Thus, when the functional modules were identified by network topo-
logy, we can locate the hubs in functional modules and use statistic
measurements to determine the intramodule and intermodule hubs
based on the proportion of connections within or outside of their
own module. Then, the concept that party hubs (intramodule hubs)
are highly coexpressed with their neighbors while date hubs (inter-
module hubs) are conditionally and temporarily coexpressed with
their neighbors can be directly examined, when we take into account
the modularity of PPI networks.

In this work, we used a simulated annealing method to identify
modules in the networks, and assign different roles to each node
based on its pattern of intramodule and intermodule connections'®?'.
We applied this approaches on two data sets of yeast from different
studies, one of which supported the ‘date’ and ‘party’ hubs concept
and the other did not**. Our results indicated that the modularity of
interactome is far more complex than the dichotomy of hubs.
However, we also depicted examples of intermodule and intramo-
dule hubs which conformed to the norm based on both topology
structure and gene co-expression, suggesting that the mechanism of
‘date’ and ‘party” hubs still played an important role in the regulation
of PPI networks. In addition to yeast data sets, we also revealed an
analogous dynamic organization of human interactome, indicating
the universality of regulatory mechanism across species.

Results

Comparison of the detected modules between two yeast data sets.
We chose to use the updated version of data sets from both sides in
the debate, including the filtered high-confidence (‘filtered-HC’)
data set which supported the classification of ‘date’ and ‘party’

hubs*, and the updated high-confidence (‘updated-HC’) data set
which did not®. Both data sets were generated on high-throughput
yeast two-hybrid system with different filter thresholds and criteria
for curation. The size of the interaction network represented a major
difference between the two data sets; however, the average degree of
the network, a global network property to measure the connectivity
of the whole network, was quite similar (Table S1). A recent study
also revealed a consistent degree correlation pattern in these two data
sets and suggested that protein interaction network possessed an
inherent dichotomy in degree correlation®’. We next calculated the
largest connected component (LCC) of the network and partitioned
the LCC into modules. 23 and 14 modules were identified in filtered-
HC and updated-HC data sets, respectively. Although the filtered-
HC was divided into more modules with relatively smaller size
compared with the updated-HC, we found a high degree of
consistency of the detected modules from the two data sets. 18 of
23 modules identified in filtered-HC have corresponding modules
from updated-HC with an overlap coefficient above 0.5, where the
XNY|

min(|X].|Y])
example, the module 4 (227 proteins) in filtered-HC has an overlap
of 128 proteins with the module 12 (203 proteins) in updated-HC
(Overlap coefficient = 0.63, Table S2; Fisher’s Exact Test, p-value <
2.2e-16, Figure S1). Gene functional enrichment analysis confirmed
that both module 4 in filtered-HC and module 12 in updated-HC
were highly enriched with genes involved in ‘ribosome biogenesis
and assembly’ and ‘RNA metabolism’ (Table S3). The Venn diagram
(Figure 1) further showed that most of the proteins associated with
‘ribosome biogenesis and assembly’ or ‘RNA metabolism’ from
module 4 in filtered-HC and module 12 in updated-HC were
present in the overlapping portion of the two modules. These
results implicated that biologically meaningful modules can be
identified based on the topological structure, despite the large
differences between these PPI data sets.

overlap coefficient is defined as: overlap(X,Y) = For

Association between node roles and avPCC. Once modules in a
PPI network were identified, the role of a node can be naturally
determined by how the node was located in its own module and
with respect to other modules. The avPCC level for nodes can be
directly calculated as the average correlation coefficient of gene
expression levels between a node and all its interacting partners
under various conditions or in various tissues. Using the two
properties termed as within-module degree and its participation
coefficient, the nodes can be assigned into seven roles based on the
intramodule and intermodule connectivity (See Methods). The
relationship between role assignment and avPCC was plotted in
Figure 2. Similar to avPCC, another measure called expression

ribosome biogenesis and assembly RNA metabolism

17

90 62

38

Module 4 of FHC Module12 of UHC

Figure 1 | The four-way Venn diagram summarizes the number of shared
proteins in each combination of the four groups. Orange: ‘Module4 of

filtered HC’, red: ‘Modulel2 of updated HC’, green: ‘ribosome biogenesis
and assembly’, blue: ‘RNA metabolism’.
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variance (EV) can be used to evaluate the dynamic expression level of
each node, which is calculated as the quantile value of the variance of
its expression profile among all nodes in the network. The EV is close
to 0 if the gene expression is static (with the lowest variance), yet the
EV value is 1 if the gene has the most dynamic expression pattern
among all genes in the genome. A high correlation was found
between the value of EV and the mRNA abundance of a gene. In
addition, neighbors of dynamic proteins with high EV, but not static
proteins with low EV, were highly coexpressed with each other. Static
protein hubs were suggested to be excluded from the date hub, since
they interacted with their neighbors continuously®.

According to the definition, R6 (Connector hub) and R7 (Kinless
hub) are more likely to be the intermodule hub (date hub, the per-
centage is 0.63% for FHC and 1.03% for UHC), yet R5 (Provincial
hub) should be the intramodule hub (party hub, the percentage is
1.97 for FHC and 0.89% for UHC). Thus, the R6 and R7 hubs are
expected to have low levels of avPCC whereas R5 hubs are expected
to have high values of avPCC. Figure 2 showed highly consistent
patterns between the filtered-HC and updated-HC data sets, that
is, all the R6 nodes had low values of avPCC. A fraction of R5 hubs
showed high level of avPCC, though most of them still had low level
of avPCC. The small fraction of nodes with high avPCC made the
overall avPCC of R5 higher than the other roles (Figure S2). In
summary, the role assignment of hubs did not correspond well with
the avPCC measure, indicating that a simple dichotomy was not
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sufficient to interpret the diversity of hubs. Additionally, no clear
correlation can be found between the role assignments and EV from
Figure 2, so the dynamic levels of gene expression also cannot dis-
tinguish the topological roles of hubs.

The functional modules with high avPCC. We then focused our
attention on the nodes with high values of avPCC. Strikingly, most of
the nodes with avPCC above 0.5 were from the module enriched in
‘ribosome biogenesis and assembly’ and ‘RNA metabolism’ (module
4 in filtered-HC and module 12 in updated-HC, both with a p-value
< 2.2e-16 by Fisher’s Exact Test). Additionally, we also observed a
clear bimodal distribution of the avPCC in module 4 in filtered-HC
and module 12 in updated-HC. In the paper of Han et al, a bimodal
distribution of avPCC of hubs suggested a natural division of the date
and party hubs with a threshold of avPCC at 0.5, though the author
emphasized that the bimodality was not essential evidence of the
party/date hub distinction in the original report"’. Considering
that hubs were defined by 5 degrees in the initial paper of Han et
al, and most of the nodes with high avPCC also showed a degree
larger than 5 in this module, nodes of this particular module
contributed largely to the formation of the bimodal distribution of
hub co-expression.

We further illustrated the topological structure of module 4 of
Filtered-HC in Figure 3. A large proportion of nodes highly coex-
pressed with each other form a closely connected cluster in this
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Figure 2 | Relationship between role assignment, avPCC and EV. (A) Updated-HC plotted by role assignment and avPCC (B) Updated-HC plotted by
role assignment and EV. (C) Filtered-HC plotted by role assignment and avPCC (D) Filtered-HC plotted by role assignment and EV. Role assignments:
R1, Ultra-peripheral; R2, Peripheral; R3, Non-hub connector; R4, Non-hub kinless; R5, Provincial hub; R6, Connector hub; and R7, Kinless hub. There is
no clear correlation between role assignments and avPCC or EV in the plot for the two data sets.
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Figure 3 | Topological structure of module 4 in Filtered-HC. Node representation: R1 (Ultra-peripheral), lavender; R2 (Peripheral), blue; R3 (Non-hub
connector), purple; R5 (Provincial hub), orange; R6 (Connector hub), coral. Party and date hubs provided by Bertin et al are represented by rectangles
and triangles, respectively’. Edge representation: black dot lines represent interactions with negative correlation of expression; solid lines represent

interaction with positive correlation of expression; edge colors correspond to the Pearson Correlation Coefficient values in the legend. A small closely

connected group of non-coexpressed nodes were marked with dashed oval.

module. Most of them belong to the ‘ribosome biogenesis and assem-
bly’ or ‘RNA metabolism’ pathways. In all the 227 nodes of this
module, 95 nodes have an avPCC above 0.5, while 64 of 99 nodes
related to ‘ribosome biogenesis and assembly’ or ‘RNA metabolism’
showed an avPCC above 0.5 (p-value = 1.378 e-4, Fisher’s Exact
Test). Party hubs (R5, Provincial hub) situated in the center of this
cluster also showed high co-expression level with their neighbors.
They therefore acted as a skeleton structure of module 4.

In the paper of Bertin et al, the authors provided a list of updated
date and party hubs based on the filtered-HC dataset. The Provincial
hubs (R5) in our study were all defined as party hubs in Bertin et al. In
addition, some non-hub nodes (R1, R2) in our study were also con-
sidered as party hubs by Bertin et al. In terms of biological signifi-
cance, these nodes can be considered as party hubs since they also
played an important role in the formation of the co-expression clus-
ter in module 4. In contrast, there was also a small closely connected
cluster with low co-expression level in Figure 3. Most of the nodes in
the small cluster were classified as date hubs by Bertin et al because of
the high degree and low avPCC. Intuitively, the observation is oppos-
ite to the biological interpretation of date hubs which serve as coor-
dinators between functional modules, implying that hubs with low
avPCC did not simply equate with the intermodule hubs or date
hubs.

The dynamic modularity of the functional modules. Except for
module 4 described above, other modules from Filtered-HC did not
show a peak of avPCC distribution above 0.5 (Figure S3). However,
the correlations may be impaired by integrating data sets with
different conditions. When computing the correlation in certain
conditions, genes in some modules became highly coexpressed.
So the dynamic modularity was inferred by comparing the

co-expression of modules across different conditions. The enriched
functions of modules were also consistent with the conditions at which
the modules reveal high co-expression. For example, module 9 was
enriched with ‘cell cycle’ and ‘pseudohyphal growth’ (a pattern of cell
growth occurs in conditions of nitrogen limitation) proteins, and it
displayed higher co-expression in the sporulation process (Figure 4),
whereas module 7 was enriched with ‘protein biosynthesis and
catabolism’” proteins and also showed an increasing trend of co-
expression at the condition of environmental changes or DNA
damage®**. Module 9 contained the gene CDC28, which has the
highest degree, with 202 connections in the whole network. Notably,
CDC28 was listed as a date hub by Bertin et al and was also predicted as
an intermodule hub (R6, connector hub) by topological structure.
CDC28 was known as the catalytic subunit of the main cell cycle
cyclin-dependent kinase (CDK), which can alternately associate with
GI cyclins (CLNs) and G2/M cyclins (CLBs) directing the CDK to
specific substrates. Thus, this gene functions as a global regulator in
yeast. As described in Figure 4, most of the genes around CDC28
were highly coexpressed with it when the sporulation process was
initiated, suggesting that CDC28 played a crucial role in regulation.
Additionally, CDC28 was also connected with PREI, RPN3 and
RPTI in module 7. PREI was also classified as R5 (Provincial
hub). In the terms of topological structure, module 7 also
contained a closely connected region which included PRE1, RPN3
and RPTI. In contrast to the condition of sporulation, most of the
connected partners with CDC28 showed very low correlation in the
condition of DNA damage; however, the correlations of CDC28 with
PREI, RPN3 and RPTI increased significantly: The ranks of the
correlations with PREI, RPN3, RPTI among the 202 neighbors of
CDC28 were increased from 71, 76, 78 to 12, 2, 6, respectively. The
correlation between CDC28 and RPN3 was further predicted as
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Figure 4 | Topological structure and the co-expression change of module 9 in Filtered-HC. (A) The co-expression pattern of module 9 and the
corresponding avPCC distribution under the condition of sporulation. (B) The co-expression pattern of module 9 and the corresponding avPCC
distribution under the condition in the whole compedium. Node and edge representation follows the convention in Figure 3. Party and date hubs
provided by Bertin et al are expressed as rectangles and triangles respectively*. The expression correlations between connected partners in module 9 are
much higher in the condition of sporulation, as most of the edges are red. In addition, the distribution of avPCC also shows that a group of nodes are
highly coexpressed with their neighbors in the condition of sporulation (a peak of avPCC distribution above 0.5). Therefore, genes in module 9 are highly
coexpressed in the condition of sporulation in comparison to the whole compendium.

differential co-expression with a p-value of 0.042 by the method of
Cho et al”’. The nodes posited in closely connected region of module
7 also displayed high co-expression accordingly under the condition
of DNA damage (Figure 5). In summary, CDC28 was crucial in the
regulation of sporulation process; on the other hand, CDC28 also
played important function in the condition of DNA damage. Thus,
CDC28 conformed to the biological interpretation of date hub and
served as an intermodule connector, which was a dynamic partici-
pant in different modules.

Evolutionary constraint on proteins with high avPCC. A previous
study calculated dN/dS ratio of the two hub types provided by Han et
al and suggested that ‘date’ and ‘party’ hubs were under different
evolutionary constraints: hubs with higher avPCC were more
conserved®. However, the conclusion was still under debate since
statistical bias may exist in the previous classification of the hubs’.
Our results showed a negative correlation between the dN/dS value
and the avPCC in the proteins of the whole networks (Pearson

correlation coefficient = —0.23, p-value < 2.2 e-16). Proteins with
high avPCC (above 0.5) also showed significant lower dN/dS ratio
(mean is 0.04) than the other proteins of the network whose average
value of dN/dS ratio is 0.07 (two sample t-test, p-value < 1.4 e-14).
Since most of the proteins with high avPCC were from module 4 as
previous described, module 4 were also under a strong evolutionary
constraint (two sample t-test, p-value = 8.14 e-09). Members of the
most enriched biological functions in module 4, ‘ribosome biogenesis
and assembly’ and ‘RNA metabolism’, were also highly constrained
by purifying selection compared to members of another relatively
enriched function in module 4, ‘DNA metabolism’ (Figure S4 and
Figure S5). Based on the above results, we concluded that members in
the co-expression modules, usually enriched in specific biological
functions, were more conserved in PPI networks.

Analysis of the human interactome. The evidence of date and party
hub distinctions were also elucidated in the human PPI network.
Akin to the bimodal distribution of avPCC in yeast interactome, a
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Figure 5 | Topological structure and the co-expression of module 7 and 9 in Filtered-HC. (A) In the condition of DNA damage, the expression
correlations between CDC28 and PREI, RPN3, RPT1] are increased. (B) In the condition of sporulation, the correlation between CDC28 and PREI, RPN3,
RPT1 are low. Node and edge representation follows the convention in Figure 3. Party and date hubs provided by Bertin et al are expressed as rectangles

and triangles respectively*.

multimodal distribution of avPCC was previously discovered in the
human interactome’. However, the robustness of the evidence was
questioned when changing the normalization methods for gene
expression or when comparing across different interaction data
sets®. We therefore applied the same strategy on the human
interactome derived from HPRD (Human Protein Reference
Database) to examine the existence of the binary hub classification.
We identified 16 modules with more than 20 members from the
HPRD data set. These modules were also enriched in specific
classification of gene ontology or pathways, suggesting the biological
significance of the network partition method that solely used the
topological properties (Table S4). We further assigned the roles to
each node and calculated the avPCC of each node. As expected, no
association was observed between different types of hubs and their
avPCC as in the yeast data sets (Figure S6). We then investigated the
distribution of avPCC in each module from human interactome.
Unlike the yeast data sets, the distribution of avPCC in each
module did not show bimodality as was observed in the module 4
of Filtered-HC. Instead, they displayed a single peak with modes
ranging from 0 to 0.5. Some modules also revealed high co-
expression, such as the module 15 which was enriched in function
of ‘RNA transport’ (Figure S7), so hubs in module 15 were typical
‘party hubs’. The function of ‘RNA transport’ were not enriched in
modules identified from yeast because the molecular machinery for
RNA transport is more complex, involving much more proteins in
metazoans than yeast”. As described before, genes in module
enriched with ‘ribosome biogenesis and assembly’ were highly
coexpressed in yeast interactome. We found a similar functional
annotation termed as ‘ribonucleoprotein complex’ in human which
was the second most enriched function in module 9. The genes
relevant to ‘ribonucleoprotein complex’ in module 9 yielded a high
co-expression correlation compared to other genes in the same
module (Two Sample t-test, p-value < 5.1 e-4).

Since the avPCC described above were computed by using the entire
expression compendium of different tissues, genes in a collection of
more similar tissues should have higher co-expression level. We next
used only the brain tissues from the human gene expression data to
calculate avPCC, and validated this hypothesis, especially in modules

enriched in nervous system related functions (Figure S7). In tumor
genesis and progression, phenotypic alternations were associated with
rewiring of signaling pathways and networks®. We recalculated the
avPCC from an expression data set collected from different types of
cancers. The values of avPCC in each module were significantly
decreased, suggesting that the normal regulation mechanisms which
yielded the dynamic modularity in human interactome were disrupted
in tumors tissues (Figure S7).

Discussion

In this work, we focused on the dispute about the ‘date’ and ‘party’
hub dichotomy by analyzing the roles of hubs and their dynamic
modularity in PPI networks. Since the previous inference on the
existence of hub dichotomy were based on indirect evidence such
as the existence of a bimodal distribution of hub avPCC or the dif-
ferent changes of network topology by removing hubs, the estab-
lished concept has been under debate for years™*~”. Our analysis
suggested that modularity of interactome is far more complex than
the dichotomy of hubs.

We introduced a novel method to partition PPI network into
several functional modules and assign roles to nodes according to
the topological structure. From this perspective, we proved strong
consistency between the modules identified by two different yeast
interactome data sets, Filtered-HC and Updated-HC, which was
previously used to draw opposite conclusion about the binary clas-
sification of hubs*’. We further detected a module with strong co-
expression which was enriched in ‘ribosome biogenesis and assembly’
and ‘RNA metabolism’. Molecular evolutionary analysis also showed
that this module was highly conserved in evolution. Ribosome bio-
genesis is an energy intensive and complicated process to make ribo-
somes. Due to the importance of the process in cell growth, both the
RNA and protein moieties of ribosomes and the ribosome biogenesis
machinery are highly conservative from yeast to humans®~*. Hubs of
this module satisfied the criteria of ‘party hubs’ very well'. These hubs
participate in the same biological process and connect together to
build up the frame of the functional module. In addition, previous
evidence to support that ‘date’ and ‘party’ hubs produced distinct co-
expression pattern and evolutionary rate may not be reliable, if
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considerable proportion of hubs were selected from this module with
high conservation and high co-expression.

We also showed the dynamic modularity in PPI networks by
studying the co-expression pattern of nodes in different conditions.
Many modules displayed high co-expression under specific bio-
logical functions in which they were enriched. Hubs from these
modules were also ‘party hubs’ according to the schematic diagram
from Han et al'. In summary, ‘party hubs’ widely existed in protein
interactome, accompanied by the occurrence of dynamic modularity.

In contrast to ‘party hubs’ displaying relatively high avPCC, hubs
with low avPCC were far more complicated and should not be sim-
plified defined as ‘date hubs’. Based on the module detection method,
hubs were assigned as R5, R6 or R7. Among the hubs, only a fraction
of R5 nodes showed high level of avPCC, yet all the others repre-
sented low-avPCC hubs (Figure 2). Therefore, the low-avPCC hubs
can be R5 (intra-module hubs) or R6/R7 (inter-module hubs) in the
view of topological properties. We also found low-avPCC hubs
which do not show high co-expression with its neighbors or a strong
evidence of participation as coordinators among modules. For
example, our structural analysis of network described that members
of a small closely connected cluster were all predicted as ‘date hubs’
by Bertin et al due to their low co-expression (Figure 3). Obviously,
these hubs with low avPCC were not coordinators between func-
tional modules. Similar instances widely exist in the whole proteome
networks, which is why the binary classification of hubs has been
argued continuously. Thus, the measure of avPCC alone was insuf-
ficient to infer them as higher-level coordinators which performed
varying functions and were active at different times or under differ-
ent conditions. However, we also pinpointed an intermodule hub
(CDC28) which participated in a global organization of biological
modules. CDC28 was annotated as a global regulator associated with
GI1 cyclins (CLNs) and G2/M cyclins (CLBs) alternatively to regulate
the CDK to specific substrates. CDC28 also displayed low avPCC and
was correctly predicted as ‘date hubs’ by Bertin et al. Therefore, hubs
with low avPCC may serve diverse roles in the protein interactome,
suggesting the existence of complex mechanism to modulate the
protein network architecture and cell behavior.

We further expanded the analysis of dynamic modularity in
protein networks from yeast to human. We demonstrated a similar
dynamic organization of human interactome as yeast interactome,
indicating the universality of regulatory mechanism across species.
By comparing to the co-expression pattern derived from cancer tis-
sues, we confirmed the importance of modular structure in human
PPI network, since the gene co-expression of functional modules was
altered in tumor tissues.

By comprehensively investigating the roles of hubs from multiple
angles, we revealed that ‘party hubs’ were biologically meaningful
and consistent with the role assignment of hubs from topological
structures. Moreover, we confirmed the existence of ‘date hubs’
and expounded the complexity of low-avPCC hubs. Our results
enhanced current understanding of the organizational principles in
interactome addressing the importance of integrating multiple
approaches in illustrating the biological roles of hubs. First, using
the mRNA expression profiles, we can estimate temporal character-
istics of hubs and their partners in the interactome networks based on
static graphics. Since the PPI were static due to the experimental
techniques, gene co-expression information can provide dynamic view
of the interactome. Second, the mathematical methods using graph
theory can exactly identify modules of highly connected nodes and the
universal roles of nodes in the network, giving a comprehensive
understanding of the network topology. Third, functional annotation
of genes can help validate the biological significance of detected func-
tional modules. Since the identified modules and defined node roles
varied as the parameters of module detection algorithm changed, the
reliability of the detected modules should be verified from an inde-
pendent perspective such as gene functional enrichment analysis. We

noticed that a previous study also tried to elucidate the hub dichotomy
by global role assignment from topological structure, but it did not
utilize the information of modules and hastily denied the concept of
hub dichotomy*.

Given the rapid growth of the protein 3D structural information,
future work would focus on constructing a structure-based protein-
protein interaction network. A further systematic survey of the
association among gene co-expression pattern, protein interaction
interface and topological roles should facilitate our understanding of
global organization of the proteome and provide insights to the
dynamic modularity in concordance with the evolution of protein
structure and interaction.

Methods

Gene expression data sets. The gene expression data on yeast were collected from
10 data sets**>****, The data sets were also used in previously papers debating hub
dichotomy"*~*. The human gene expression data were available for a panel of 79
human tissues from a previous study targeting 44775 human transcripts*’. The
transcripts were identified by Affymatrix (Santa Clara, CA) HG-U133A array (22,130
transcripts) and GNF1H custom array (22,645 transcripts). The gene expression data
of human primary tumors were collected from a large-scale RNA profiling of 185
carcinomas including prostate, breast, lung, ovary, colorectum, kidney, liver,
pancreas, bladder/ureter, and gastroesophagus. The profiling experiment was
performed on Affymetrix (Santa Clara, CA) U95a GeneChip, covering 12626 human
transcripts*'.

Protein interaction data sets. The high-confidence (‘filtered-HC’) data set
containing 2,561 nodes and 5,992 edges was curated by Bertin et al to confirm the
existence of ‘date’ and ‘party” hubs*. The updated high-confidence (‘updated-HC’)
data set including 4,011 nodes and 10,055 edges was released by batada et al, who did
not find evidence supporting that network hubs fall into discrete classes®. Both data
sets were obtained on yeast interactome.

For the human interactome, we used Human Protein Reference Database which
contains scientific information of human proteins on the basis of manual curation on
published literature and bioinformatics analyses of the protein sequence®.

Calculation of the average Pearson correlation coefficient. For calculation of the

avPCC, Pearson correlation coefficients of gene pairs were first calculated using the
expression data sets. The correlations between a specific gene ‘A’ and its connected
partners from protein interaction data sets were then extracted. The avPCC of gene
‘A’ is defined as the mean of the extracted correlation values.

Module detection. The modularity M for a given partition of a network into modules
NIANTAY
isM= g BN - ,where N, is the number of modules, L is the number of
s=1 |1 \2L

connections in the network, I is the number of connections between nodes in the
module s and d is the sum of the degrees of the nodes in module s. The definition of
modularity is based on the notion that separating a network into modules must
contain more within-module links and less possible between-module links**. We used
a simulated annealing algorithm to find the optimal partition of network with the
largest modularity. Details are described in the original article of the algorithm'®*'.

Node role definition. The definition of the node role is based on its within-module
degree and its participation coefficient'**'. The within-module degree z-score
measures the connectivity of a given node to its own module, and is defined as
_ kl - kSi

o5

Zi

where k; is the number of links of node i to other nodes within its own module, kg; is
the average of k for all nodes in module S; and a; is the standard deviation of k in
module S;.

The participation coefficient quantifies to the distribution of the links of a node
among the different modules. It defined as

N (ki\?
Pi=1- 25:1 <k_1> ’

Where N is the number of modules, k;, is the number of links of node i to other
nodes in the same module S, and k; is the total degree of node i. The participation
coefficient P; is close to 1 if its links are uniformly distributed among all the modules,
and 0 if all its links are within its own module.

At first, the nodes are classified as hubs and non-hubs according to the within-
module degree (hubs: z = 2.5, non-hubs: z < 2.5). Based on the participation coef-
ficient, nodes are further subdivided into: (R1) ultra-peripheral nodes, considered as
nodes with all their links within their own module (P = 0.05); (R2) peripheral nodes,
considered as nodes with most links within their module (0.05 < P =< 0.62); (R3)
satellite connectors, nodes with a high fraction of their links to other modules (0.62 <
P =0.80) and (R4) kinless nodes, nodes with links homogeneously distributed among
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all modules (P > 0.80). Hubs are divided into: (R5) provincial hubs, considered as
hubs with the vast majority of links within their module (P = 0.30); (R6) connector
hubs, considered as hubs with many links to most of the other modules (0.30 <P =
0.75) and (R7) global hubs, considered as hubs with links homogeneously distributed
among all modules (P > 0.75). The threshold for within-module performs well to
separate nodes with participation coefficient above 0.3, but for nodes with
participation coefficient below 0.3, the role assignment for R1, R2 or R5 with a
within-module degree very close to 2.5 needs to be improved.

Gene functional enrichment analysis. Gene functional enrichment analysis on yeast
was based on COG functional categories®’. For human, We used DAVID (http://
david.abce.nciferf.gov/) to test enrichment in gene sets with GO, SwissProt, and
InterPro terms compared with the background list of all genes*.

Evolutionary rate. The evolutionary rate (dN/dS) was estimated by a method providing
adjustment of dS to correct the selection on synonymous mutations. A detailed
description about the method was available in the published paper of Hirsh et al**.
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