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De novo discovery of metabolic heterogeneity
with immunophenotype-guided imaging mass
spectrometry
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Achim Buck 1,**, Axel Walch 1,*
ABSTRACT

Background: Imaging mass spectrometry enables in situ label-free detection of thousands of metabolites from intact tissue samples. However,
automated steps for multi-omics analyses and interpretation of histological images have not yet been implemented in mass spectrometry data
analysis workflows. The characterization of molecular properties within cellular and histological features is done via time-consuming, non-
objective, and irreproducible definitions of regions of interest, which are often accompanied by a loss of spatial resolution due to mass spectra
averaging.
Methods: We developed a new imaging pipeline called Spatial Correlation Image Analysis (SPACiAL), which is a computational multimodal
workflow designed to combine molecular imaging data with multiplex immunohistochemistry (IHC). SPACiAL allows comprehensive and spatially
resolved in situ correlation analyses on a cellular resolution. To demonstrate the method, matrix-assisted laser desorption-ionization (MALDI)
Fourier-transform ion cyclotron resonance (FTICR) imaging mass spectrometry of metabolites and multiplex IHC staining were performed on the
very same tissue section of mouse pancreatic islets and on human gastric cancer tissue specimens. The SPACiAL pipeline was used to perform
an automatic, semantic-based, functional tissue annotation of histological and cellular features to identify metabolic profiles. Spatial correlation
networks were generated to analyze metabolic heterogeneity associated with cellular features.
Results: To demonstrate the new method, the SPACiAL pipeline was used to identify metabolic signatures of alpha and beta cells within islets of
Langerhans, which are cell types that are not distinguishable via morphology alone. The semantic-based, functional tissue annotation allows an
unprecedented analysis of metabolic heterogeneity via the generation of spatial correlation networks. Additionally, we demonstrated intra- and
intertumoral metabolic heterogeneity within HER2/neu-positive and -negative gastric tumor cells.
Conclusions: We developed the SPACiAL workflow to provide IHC-guided in situ metabolomics on intact tissue sections. Diminishing the
workload by automated recognition of histological and functional features, the pipeline allows comprehensive analyses of metabolic hetero-
geneity. The multimodality of immunohistochemical staining and extensive molecular information from imaging mass spectrometry has the
advantage of increasing both the efficiency and precision for spatially resolved analyses of specific cell types. The SPACiAL method is a stepping
stone for the objective analysis of high-throughput, multi-omics data from clinical research and practice that is required for diagnostics, biomarker
discovery, or therapy response prediction.
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1. INTRODUCTION

Computational automation of routine tasks and artificial intelligence
guided analyses rapidly gain significance with the increasing amount
of data generated from single tissue samples [1]. With the rise of digital
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pathology, a major objective for precision medicine is the integration of
morphological and molecular imaging data from multi-omics studies
[2]. Matrix-assisted laser desorption-ionization (MALDI) imaging mass
spectrometry (IMS) can be used for in situ imaging of metabolites from
frozen or formalin-fixed, paraffin-embedded (FFPE) tissue samples [3].
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Providing spatially resolved and label-free detection of hundreds to
thousands of molecules within a single tissue section, MALDI imaging
has proven to be an invaluable tool for digital histopathology. However,
the spatial resolution of molecule distributions is often not fully utilized.
For instance, cell- and tissue-specific structures, such as tumors, are
frequently analyzed by manually annotating the respective areas on
whole-slide images to mark so-called regions of interest (ROIs) [4]. The
spatially resolved mass spectra in these regions are lost because only
the mean or representative spectrum of each ROI is used for subse-
quent calculations. Such segmentation approaches fail to preserve
molecular heterogeneity and spatial distribution, while whole-sample-
based classifications fail for tissue sections comprised of cells
belonging to different classes [5]. With the availability of tissue sam-
ples from large-scale clinical cohort studies, manual preprocessing
steps can easily take weeks or months of work. Furthermore, manually
annotating tumor regions is not only time-consuming, non-objective,
and irreproducible, but also requires extensive histology knowledge
that only expert pathologists possess. Additionally, it only permits the
annotation of regions and cell types that are histologically distin-
guishable, while molecular alterations often do not manifest
morphologically. Current efforts to utilize machine learning algorithms
to automatically distinguish cell types [6] based on nothing more than
hematoxylin and eosin tissue staining may work, for example, on tu-
mor and stroma cells, but are not able to identify morphologically
indistinguishable tumor subtypes.
Traditionally, when morphology alone is not sufficient, even clinical
pathologists resort to immunohistochemistry (IHC) to localize proteins
or peptides in a single tissue section [7]. Compared to efforts to define
ROIs or distinguish cell types based on molecular distributions [8e10],
immunostainings represent a method to precisely label specific cell
types [11]. The technique is currently used to classify tumors or to
perform structural tissue analyses to help pathologists establish a
diagnosis [7]. IHC staining is commonly used for cell type labeling [12],
but their potential for automated, semantic-based, functional tissue
annotation and spatially resolved molecular analyses of heterogeneity
is not fully utilized. In recent years, imaging mass spectrometry data
and immunohistochemical staining have been successfully combined
to increase the resolution of MALDI images [13] or to characterize
individual dissociated cells [14], but no in situ tissue analysis with
automatic identification of ROIs and data integration has been pre-
sented. While there is some software available for tissue image
analysis, there currently is no method that integrates and analyzes the
comprehensive molecular data from imaging mass spectrometry in
combination with morphological, proteomic, and genetic information
from other omics fields. The translation of imaging mass spectrometry
into experimental clinical applications requires time-efficient data
post-processing and comprehensive analyses of spatially resolved
molecular information by avoiding expensive manual annotations or
loss of resolution due to the generation of mean or representative
spectra. In research, the use of immunostainings in combination with
molecular data represent a significant improvement in scientific quality
by solving the problem of time-consuming and irreproducible user-
defined ROIs. In particular, the analysis of metabolic heterogeneity is
hampered by pseudoheterogeneity originating from inaccuracies dur-
ing manual annotation or by the use of consecutive tissue sections. The
analysis of metabolic heterogeneity in tissues requires a strict
coherence to consistent tissue and data preprocessing.
Here, we present our Spatial Correlation Image Analysis (SPACiAL)
pipeline, a computational multimodal workflow to integrate molecular
imaging mass spectrometry data with multiplex IHC staining from the
very same tissue section to provide automated and reliable annotations
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and allow comprehensive and pixel-accurate correlation analyses of
heterogeneity to combine data from multi-omics studies. The pipeline
represents a starting point for the objective analysis of high-throughput
data from clinical research and practice, which is required for tissue-
based diagnostics and research.
To demonstrate the versatility and analytical power of the SPACiAL
method, we deliberately chose two examples of molecular heteroge-
neity in both a physiological and a pathophysiological application: First,
we performed a high-resolution analysis of islets of Langerhans in
mouse pancreases. Phenotypic and functional beta cell heterogeneity
has been shown to provide pancreatic islets with functional flexibility to
adapt to physiological changes in the environment [15]. The metab-
olomic analysis of islet and islet cell heterogeneity requires in situ
analyses of intact islets within tissue slices [16,17] and it has been
insufficiently studied in their natural histological context. With SPACiAL,
we distinguish alpha and beta cells and investigate the heterogeneity
of different islets within one animal. Second, an analysis of tissue
samples from patients with gastric cancer was carried out. The
metabolomic, intratumoral, heterogeneous nature of the human
epidermal growth factor receptor 2 (HER2/neu) is insufficiently studied
in situeespecially in relation to gastric cancereeven though it is highly
relevant for diagnostics and response to HER2/neu-based treatment.
The SPACiAL pipeline was applied on tissue resection specimens and
on a tissue microarray to distinguish HER2/neu-positive and -negative
tumor cells and to investigate the molecular intra- and intertumoral
heterogeneity. The multimodal approach utilizes pixel-wise molecular
information to investigate metabolic heterogeneity via spatial correla-
tion networks from cell populations automatically identified by multi-
plex immunohistochemical analysis.

2. METHODS

2.1. Tissue specimens and Fourier-transform ion cyclotron
resonance (FTICR) MALDI IMS analysis
Pancreas/islets of Langerhans were obtained from a C57BL/6 N mouse
and the sample was flash frozen in liquid nitrogen until measurement.
The animal was provided ad libitum access to food and water. All
animal studies were conducted in accordance with German animal
welfare legislation and approved by the government of Upper Bavaria.
FFPE tissue patient samples of gastric cancer were collected between
1995 and 2018 at the University of Leipzig and at the Department of
Surgery, Klinikum Rechts der Isar, Munich, Germany. The resection
specimens were processed in a highly standardized manner and fixed
for 12e24 h in 10% neutral buffered formalin, followed by tissue
dehydration and paraffin embedding with fully automated systems.
The study was approved by the local Ethics Committees. All patients
provided informed, signed consent.
Tissue preparation steps for MALDI imaging analysis was performed as
previously described [3,18,19]. In brief, frozen (12 mm, Leica Micro-
systems, CM1950, Germany) and FFPE sections (4 mm, Microm,
HM340E, Thermo Fisher Scientific, USA) were mounted onto indium-
tin-oxide (ITO)-coated glass slides (Bruker Daltonik, Bremen, Ger-
many) pretreated with 1:1 poly-L-lysine (Sigma Aldrich, Munich, Ger-
many) and 0.1% Nonidet P-40 (Sigma). The air-dried tissue sections
were spray-coated with 10 mg/ml of 9-aminoacridine hydrochloride
monohydrate matrix (SigmaeAldrich, Munich, Germany) in 70%
methanol using the SunCollect� sprayer (Sunchrom, Friedrichsdorf,
Germany). Prior matrix application, FFPE tissue sections were incu-
bated additionally for 1 h at 70 �C and deparaffinized in xylene
(2 � 8 min). Spray-coating of the matrix was conducted in eight
passes (ascending flow rates 10 ml/min, 20 ml/min, 30 ml/min for
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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layers 1e3, and layers 4e8 with 40 ml/min), utilizing 2 mm line
distance and a spray velocity of 900 mm/min.
Metabolites were detected in negative-ion mode on a 7 T Solarix XR
FTICR mass spectrometer (Bruker Daltonik) equipped with a dual ESI-
MALDI source and a SmartBeam-II Nd: YAG (355 nm) laser. Data
acquisition parameters were specified in ftmsControl software 2.2 and
flexImaging (v. 5.0) (Bruker Daltonik). Mass spectra were acquired in
negative-ion mode covering m=z 75e1,100, with a 1 M transient

(0.367 s duration) and an estimated resolving power of 49,000 at m/z
200,000. The laser operated at a frequency of 1,000 Hz utilizing 200
laser shots per pixel with a pixel resolution of 15 mm (islets of Lang-
erhans) and 60 mm (gastric cancer), respectively. L-Arginine was used
for external calibration in the ESI mode. On-tissue double mass spec-
trometry (MS/MS) was conducted on islets of Langerhans from the
consecutive mouse pancreatic tissue section using continuous accu-
mulation of selected ions’ mode and collision-induced dissociation (CID)
in the collision cell (Supplementary Figure 17). MS/MS spectra were
analyzed by Bruker Compass DataAnalysis 5.0 (Build 203.2.3586).
Figure 1: Workflow of immunohistochemistry-guided in situ metabolomics using th
application on tissue sections, MALDI imaging and data processing including peak picki
tochemical staining of the very same tissue section using DAPI, glucagon, and insulin. The i
molecular MALDI data and immunohistochemical data. The IHC images need to be co-reg
generate an image of the measurement region, which can be used for precise co-registrat
are scaled to match the resolution of the measurement and color values per pixel are used
heterogeneity.
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2.2. Multiplex fluorescent immunohistochemical staining
After MALDI IMS analysis, 9-aminoacridine matrix was removed with
70% ethanol for 5 min from tissue sections followed by immunohis-
tochemical staining. Pancreatic islets were analyzed by double staining
for insulin [Insulin-monoclonal rabbit anti-insulin (1:800), catalog no.
3014, Cell Signaling Technology, Germany; AF750-goat anti-rabbit
(1:100), catalog no. A21039, Thermo Fisher Scientific, US] and
glucagon [polyclonal guinea pig anti-glucagon (1:3,000), catalog no.
M182, Takara, USA; biotinylated goat anti-guinea pig immunoglobulin
G (IgG, 1:100), catalog no. BA-7000, Vector Laboratories, US;
streptavidin-Cy3, catalog no. SA1010, Thermo Fisher Scientific].
Double staining of human gastric cancer tissue specimens and a tissue
microarray was performed using HER2 [polyclonal rabbit anti-human c-
erbB-2 oncoprotein (1:300), catalog no. A0485, DAKO, CiteAb Ltd., UK]
and pan-cytokeratin [monoclonal mouse pan cytokeratin plus [AE1/
AE3þ8/18] (1:75), catalog no. CM162, Biocare Medical, US]. Signal
detection was conducted using fluorescence-labeled secondary anti-
bodies [Goat Anti-rabbit IgG (H þ L)-Cross-Adsorbed Secondary
e example of an islet of Langerhans. A: MALDI and IHC workflow starting with matrix
ng and annotation. The matrix is then removed for subsequent multiplex immunohis-
ndividual stainings are digitized with a slide scanner. B: The SPACiAL pipeline integrates
istered to the coordinates of the mass spectra per pixel. The MALDI data file is used to
ion with the tissue image and tissue stainings. Once co-registered, the staining images
for the definition of regions or for pixel-accurate analyses of metabolic correlations or
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Antibody-DyLight 633 (1:200), catalog no. 35563; and Goat Anti-Mouse
IgG (H þ L)-Cross-Adsorbed Secondary Antibody-Alexa Fluor 750
(1:100), catalog no. A-21037, both Thermo Fisher Scientific]. Nuclei
were identified with Hoechst 33342 in all stainings. Fluorescence
stainings were scanned with an AxioScan.Z1 digital slide scanner (Zeiss)
equipped with a 20x magnification objective and visualized with the
software ZEN 2.3 blue edition (Zeiss). Multi-images were exported as TIF
files. Additionally, tissue sections were stained with hematoxylin and
eosin after MALDI and IHC for internal visual validation.

2.3. Peak picking
The Bruker software flexImaging (v. 5.0) was used to export all root
mean square normalized mass spectra as processed imzML files. An
in-house python 3 pipeline was written to perform pixel-wise and
parallelized peak picking. For each coordinate (i.e., spectrum), the
peak picking pipeline began by resampling the mass (m=z ) and in-

tensity values between 75 and 1,100 Dalton (Da) with a step size of
0.0005 Da. Intensity values were resampled by choosing the
maximum intensity per window. Noise levels were estimated for
windows of 10 Da, and all peaks falling below their respective noise
level were filtered. The noise level was calculated as 2.2 times the
85th percentile of the intensity values within the window. If fewer
than 200 intensities fell within 1 window, which frequently happens
in the higher mass range, then their neighboring windows are
considered until at least 200 intensities can be used for the calcu-
lation. Since the noise level is expected to increase with the m=z
value and to avoid extreme noise level fluctuations, the level of the
first and last window were used as upper bounds. After noise-
filtering, only local maxima were kept as preliminary peaks.
Preliminary peaks within each spectrum were merged as previously
described [18]. The merged peaks of all coordinates were then
aligned, if their distance did not exceedh�

m=z

�
�delta ppm

i
O1; 000; 000 with delta ppm ¼ 2. Peaks

that occur in less than 0.5% of the spectra were filtered. Picked
peaks were saved as an imzML file. Noise levels and the peak
pickings were verified by manual inspection of random sample
coordinates.

2.4. Metabolite annotation
The Human Metabolome Database [20] (HMDB, v. 4.0) was used to
functionally annotate m=z values. The metabolite XML file was

downloaded for offline use and a local PostgreSQL (v. 11) database
was set up. Molecules were annotated by allowing M�H, MeH2OeH,
Mþ Nae2H, Mþ Cl and Mþ Ke2H as negative adducts with a mass
tolerance of 4 ppm. A keyword search was performed on the
description text to filter compounds with multiple annotations.
Figure 2: Multi-omics data integration via the SPACiAL method. Left: Islet of Langerha
distribution of 3-O Sulfogalactosylceramide (m/z 778.5147). Right: Data integration via SPA
pixelated staining in red) and correlating metabolites. Lateral MALDI resolution (pixel): 15
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Specifically, compounds with indications of being drug-, plant-, food-,
or bacteria-specific were filtered stringently.

2.5. Image co-registration
The imzML file of picked peaks was used to create a master image
of the MALDI measurement region (imzML-grid). All additional im-
ages were precisely co-registered onto this image, allowing an
exact integration and correlation of molecular MALDI data with
immunostainings. The co-registration was done with the Landmark
Correspondences plugin of FIJI ImageJ [21] (v. 1.52p). Alternatively,
co-registration is also feasible with Adobe Photoshop CC 2019 or
the GNU Image Manipulation Program (GIMP, v.2.10.8). A gray-scale
tissue overview image and measurement points were exported with
flexImaging (v. 5.0) and then fitted onto the master image. The
integration of mass spectra and image data is done by co-
registering the tissue scanned subsequent to MALDI imaging
mass spectrometry and mapping the matrix ablation marks to the
imzML-grid. The 40,6-diamidino-2-phenylindole (DAPI) staining and
all other stainings were finally fitted onto the precisely co-registered
tissue image.

2.6. Region inclusion/exclusion criteria
After co-registration, all images had the exact same dimension and
resolution. SPACiAL now offers the option to create a mask, where the
user can manually label regions that should be excluded from sub-
sequent analyses. Such regions may comprise tissue folds, swept
away tissue, artifacts, or regions that are generally of no interest.
To integrate the data from all images, they have to be scaled to the
exact MALDI measurement resolution by averaging the color values
per x/y-coordinate. The IHC images are then converted into nu-
merical matrices comprised of values corresponding to the lightness
values for each pixel. SPACiAL can create images to allow validation
of automatically defined ROIs (e.g., HER2/neu-positive tumor
regions).

2.7. Pixel-accurate definition of HER2/neu-positive tumor regions
FFPE tissue sections of human gastric cancer samples were used to
analyze the metabolic heterogeneity within HER2/neu-positive tumor
regions. Tumor cells were annotated via the pan-cytokeratin staining.
They were then classified as HER2/neu positive, if they also exhibited a
positive signal in the HER2/neu staining. Otherwise, they were clas-
sified as HER2/neu-negative.

2.8. Networks
Correlation networks were created with Cytoscape [22] (v. 3.7.1).
In all networks, nodes represent metabolites with node sizes
corresponding to the mean intensity. Edges represent spatial
ns with immunohistochemical staining (glucagon in red, insulin in green). Middle: Spatial
CiAL, utilizing the IHC stainings to automatically identify alpha cells (semi-transparent,
mm.
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Figure 3: Metabolic heterogeneity within and between islets of Langerhans in a pancreatic tissue section of one mouse (AeE). The column on the left shows multiplex
immunostainings after MALDI imaging mass spectrometry. Alpha cells (red) and beta cells (green) are stained with glucagon and insulin, respectively. A tissue fold in the fifth islet
(E) was excluded from analyses (dashed). The second and third columns show spatial correlation networks for metabolites in alpha and beta cells, respectively. Nodes and edges
represent compounds and their spatial correlation. The networks shown here only include direct neighbors of the glucose 6-phosphate node and edges representing a correlation
coefficient of at least 0.7. Scale bar, 150 mm. Abbreviations: adenosine monophosphate (AMP), guanosine monophosphate (GMP), phosphatidic acid (PA), phosphatidyletha-
nolamine (PE), lysophosphatidic acid (LPA), lysophospholipid (LPC), lysophosphatidylinositol (LPI), dihydroxyacetone phosphate (DHAP), glycerophosphoinositol (GroPIns), phos-
phodimethylethanolamine (P-DME).

MOLECULAR METABOLISM 36 (2020) 100953 � 2020 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
www.molecularmetabolism.com

5

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://www.molecularmetabolism.com


Figure 4: Multiplex immunohistochemistry-guided imaging mass spectrometry on islets of Langerhans to automatically distinguish morphologically indistinguishable
cell types (AeE). Alpha and beta cells were stained with glucagon (red) and insulin (green), respectively. The spatial distributions of ADP, cholesterol sulfate and 3-O-sulfo-
galactosylceramide (sulfatide) are visualized (yellow). Pixel-wise intensity distributions are shown for alpha (red) and beta cells (green), respectively. See the methods section for
details about the statistical analysis. Scale bar, 150 mm.

Original Article
correlations with line thickness and opacity increasing with the
correlation coefficient. Nodes were colored red if their metabolites
take part in glycolysis or they were colored depending on the
molecule super class defined in HMDB [lipids and lipid-like mol-
ecules (yellow); nucleosides, nucleotides, and analogs (light red);
organic acids and derivatives (green); organoheterocyclic com-
pounds (lime green); alkaloids and derivatives (pink); organic ox-
ygen compounds (blue); benzenoids (violet); phenylpropanoids and
polyketides (orange); others (gray)]. All networks were either
visualized using the yFiles circular layout or edge-weighted spring-
embedded layout using the absolute value of the correlation co-
efficient. For the pancreatic islet cells, circular networks were
generated by filtering edges with a coefficient smaller than 0.7 and
by only visualizing direct neighbors of glucose 6-phosphate. All
islets were located on the same tissue slide and were analyzed
concurrently. The multiplex staining of the complete tissue is
shown in Supplementary Figure 1. All remaining networks were
generated by showing metabolites with at least one correlation
6 MOLECULAR METABOLISM 36 (2020) 100953 � 2020 The Author(s). Published by Elsevier GmbH. T
coefficient larger than 0.5, but without filtering edges. The com-
plete networks are shown in Supplementary Figures 15 and 16.
The multiplex staining of the complete tissues are shown in
Supplementary Figures 8, 10, 12, and 14.

2.9. Statistical analyses
For the networks, pairwise Spearman rank-order correlations (Python
3.7, SciPy 1.2.0) were calculated between annotated metabolites
using their intensities, and the resulting p-values were adjusted with
Benjamini/Hochberg correction (Python 3.7, StatsModels 0.9.0). For
the pancreatic islet cells, circular networks were generated by filtering
edges with a coefficient smaller than 0.7. Network metrics
(Supplementary Tables 1e3) were calculated using Cytoscape’s plugin
NetworkAnalyzer.
Metabolites localized predominantly on alpha or beta cells in islets of
Langerhans were identified by using the ManneWhitney U-test (Py-
thon 3.7, SciPy 1.2.0). The p-values were adjusted with Benjamini/
Hochberg correction (Python 3.7, StatsModels 0.9.0). The number of
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Figure 5: Image processing workflow to define HER2/neu positive and negative tumor regions. Pan-cytokeratin (green) as an epithelial marker to stain tumor cells. HER2/
neu positive cells are shown in red. Both stainings are adjusted to match the lateral imaging mass spectrometry resolution (60 mm) and combined to classify HER2/neu positive and
negative tumor cells. Scale bar, 3000 mm.
cell-type specific pixels per islet ranges between 59 and 194 for alpha
cells and between 112 and 228 for beta cells. The Python 3.7 package
NumPy 1.15.4 was used to calculate statistics for the intensity dis-
tributions of ADP, cholesterol sulfate, and 3-O-sulfogalactosylceramide
in the islets of Langerhans (Supplementary Figures 5e7).

3. RESULTS AND DISCUSSION

3.1. The SPACiAL workflow for immunohistochemistry-guided
imaging mass spectrometry
The SPACiAL pipeline comprises a series of MALDI data and image
processing steps to combine molecular data with morphological and
immunophenotypic information from IHC stainings or other imaging
data. Immunostaining following MALDI imaging has previously been
shown to be feasible [23,24]; hence the entire workflow works on
the very same tissue section. Here, we have demonstrated that
even multiplex immunostainings are entirely possible after MALDI
imaging of the very same tissue section, which allows automatic
data integration of morphological and spatially resolved in situ data
of thousands of molecules via the SPACiAL method. The entire
tissue and data pre-processing workflow preceding the application
of the SPACiAL algorithm includes matrix coating of tissue sections,
MALDI imaging, peak picking, matrix removal, IHC staining, and
image digitalization, which is shown schematically for an islet of
Langerhans with glucagon, insulin and DAPI staining (Figure 1A).
SPACiAL then uses MALDI imaging files to create a reference image
for subsequent co-registration of the molecular data with other
image information (Figure 1B). The digitized and co-registered im-
munostaining images are scaled to match the exact MALDI reso-
lution and then converted into numerical data without loss of spatial
resolution. This ultimately allows pixel-accurate, objective tissue
annotations based on semantics and function, which is shown here
as an example for alpha and beta cells stained with glucagon (red)
and insulin (green), respectively, and one metabolite (yellow) co-
localizing with alpha cells (Figure 2). The SPACiAL pipeline paves
the way for further statistical calculations and for the analysis of
MOLECULAR METABOLISM 36 (2020) 100953 � 2020 The Author(s). Published by Elsevier GmbH. This is an open
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tissue heterogeneity and previously infeasible molecular in situ
analyses of cell subpopulations within intact tissue sections. To
illustrate the versatility and analytical power of the SPACiAL pipe-
line, it was applied on two datasets; a physiological use case and a
pathophysiological use case.

3.2. SPACiAL analysis of metabolic heterogeneity within and
between islets of Langerhans
To demonstrate the SPACiAL pipeline, it was applied on islets of
Langerhans in the pancreas of a wild-type mouse to distinguish the
glucagon-releasing alpha and insulin-releasing beta cells and to
investigate the heterogeneity of different islets within one animal.
Previous studies highlight heterogeneity as a fundamental character-
istic of pancreatic islets [25]. Beta cells are functionally heterogeneous
and display different activity patterns in response to glucose stimu-
lation or the ability to secret insulin [26]. The metabolic heterogeneity
within automatically detected alpha and beta cells was analyzed in
detail for the glucose metabolism. The islets of Langerhans e origi-
nating from one tissue section (Supplementary Figures 1e4) e were
imaged with both high lateral (15 mm) and high mass resolution.
Correlation networks were created to identify functional relationships
of metabolites with glucose 6-phosphate and to assess metabolic
heterogeneity within and between individual islets of Langerhans
(Figure 3, Supplementary Table 1). Glucose 6-phosphate was chosen
as a relevant example because it is an important intermediate in the
glycolysis, gluconeogenesis, and pentose phosphate pathways.
Clear differences regarding network size were found between the islets
and islet cell populations, reflecting differential metabolic states
(Figure 3). For example, the alpha and beta cell network of the islet in
Figure 3D indicates a low dependency on glucose metabolism, with
only two metabolites showing a significant correlation to glucose 6-
phosphate. Within networks from other islets, a variety of metabo-
lites, including lipids, nucleotides, amino acid, and analogs, correlate
with glucose 6-phosphate (Figure 3). The highest number of correla-
tions were found in beta and alpha cell populations of the islets A and
E, respectively, indicating a high dependency on glucose metabolism.
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 7
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Figure 6: Intratumoral heterogeneity of spatially correlating metabolites in three human gastric cancer tissue sections, visualized via spatial correlation networks
(AeC). Left: Close-up of the HER2/neu positive (red) and negative (yellow) tumor regions. Middle: Spatial correlation networks for metabolites. Edges represent positive (blue) and
negative (red) spatial correlations between metabolites. Line thickness and transparency correspond to the correlation coefficient. Right: Zoom-in to glucose 6-phosphate. Ab-
breviations: glucose 6-phosphate (G6P), glycerol 3-phosphate (Gly3P), ribose 5-phosphate (R5P), S-adenosylhomocysteine (SAH), glycerophosphoinositol (GroPIns), adenosine
diphosphate (ADP), guanosine monophosphate (GMP), adenine (Ade), 5-phosphoribosylamine (PRA), reduce flavin adenine dinucleotide (FADH), D-glutamine (DGN), cysteinyl-
methionine (CeM), homocysteine (Hcy), phosphatidic acid (PA), phosphatidylglycerol (PG), cyclic phosphatidic acid (CPA), lysophosphatidic acid (LPA), lysophospholipid (LPC),
lysophosphatidylinositol (LPI), phosphodimethylethanolamine (P-DME), phosphopantothenate (PPA), dimethyl-2-oxoglutarate (MOG), tetrahydrobiopterin (BH4), O-phosphoetha-
nolamine (PEA), stearic acid (SA). Scale bar, 600 mm.
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Table 1 e Network metrics for the glucose 6-phosphate node. Sample
identifiers (A, B and C) correspond to the samples in Figure 6. The degree of
a node represents the number of neighbors in the network. The average
shortest path length is the average, minimum number of edges between
glucose 6-phosphate node and any other node. The clustering coefficient is
a measure for the connections between neighboring nodes.

Sample HER2/neu state Degree Average shortest
path length

Clustering coefficient

A positive 27 1.697 0.285
A negative 22 1.942 0.398
B positive 54 2.012 0.721
B negative 55 1.964 0.689
C positive 62 1.294 0.733
C negative 41 1.5 0.472
The spatial distribution of lipid-associated compounds, such as pal-
mitic acid, stearic acid, lysophosphatidylinositol (LPI), and lysophos-
phatidic acid (LPA) were found to be correlated almost consistently.
Other compounds, such as phosphodimethylethanolamine (P-DME) or
glycerophosphoinositol (GroPIns), were found to inconsistently corre-
late with glucose 6-phosphate.
Metabolic signatures related to specific cell types and subpopulations
can now easily be extracted with SPACiAL. Alpha and beta cells were
defined automatically as ROIs, and metabolic differences between
alpha and beta cells were assessed. Significant differences were
detected for adenosine diphosphate (ADP), cholesterol sulfate, and 3-
O-sulfogalactosylceramide (Figure 4). The presence of ADP,
cholesterol sulfate, and 3-O-sulfogalactosylceramide was validated
via MALDI FTICR on-tissue MS/MS using quadrupole collision-
induced dissociation and comparison to standard compounds
(Supplementary Figure 17). Not all islets reveal similar significant
changes, also reflecting inter- and intra-islet metabolic heteroge-
neity. For instance, across four of the five measured islets, signifi-
cantly higher ADP levels were detected in beta cells in comparison to
alpha cells. Thus, the SPACiAL pipeline paves the way for in situ
analyses of individual energy conditions of alpha and beta cells in
each islet due to adenine nucleotide measurements. Cholesterol
sulfate was found abundantly in beta cells, but it also exhibits a
strong heterogeneous distribution between islets and even within
cells of the same islet. Cholesterol sulfate is a component of the cell
membrane [27] and in pancreatic beta cells, elevated intracellular
cholesterol levels have been associated with reduced insulin secre-
tion in mice [27,28]. Correlating with alpha cells, we found the 3-O-
sulfogalactosylceramide. Sulfatides are glycosphingolipids which
have been described in pancreatic islets with different abundances in
alpha and beta cells [29e31].
Finally, pronounced molecular heterogeneity, both within single and
between different islets of Langerhans, is reflected by a varying dis-
tribution of metabolite abundances (Supplementary Figures 5e7).
Between islets and between cell types, the standard deviation of
metabolite intensities differs by a factor of between 2.28 and 14.25
(ADP 0.32e0.73, cholesterol sulfate 0.5e1.52; 3-O-sulfogalacto-
sylceramide 0.04e0.57). Hence, even individual cells within one islet
exhibit different metabolite compositions, possibly reflecting different
metabolic or cell differentiation states.
The in situ analysis of metabolic heterogeneity within pancreatic islets is
just one potential field of application for the SPACiAL pipeline. Metabolic
data together with detailed spatial information can be exploited to assess
the extent and modulation of alpha and beta cells in situ. Because both
insulin and glucagon are dysregulated in pathophysiological conditions,
MOLECULAR METABOLISM 36 (2020) 100953 � 2020 The Author(s). Published by Elsevier GmbH. This is an open
www.molecularmetabolism.com
such as diabetes, our pipeline is valuable for future studies. The analysis
of different subpopulations of islets of Langerhans can help to illuminate
underlying phenotypic mechanisms to expand our knowledge of cell
function and develop new therapeutic strategies.

3.3. Intratumoral metabolic heterogeneity in gastric cancer
The SPACiAL strategy has been shown to be powerful for close-to
single-cell analyses of the metabolome in tissues of animal models,
but it is also valuable for clinically relevant tissue analyses regarding
diagnostics, prognosis, and therapy response prediction. For this
reason, we applied the SPACiAL pipeline for the analysis of intra- and
intertumoral heterogeneity in gastric cancer. While we used glucagon
and insulin to stain alpha and beta cells within a frozen pancreatic
tissue section, here we used pan-cytokeratin as an epithelial marker to
stain tumor cells and HER2/neu for tumor cell classification within
human FFPE tissue sections.
In gastric cancer, intratumoral HER2/neu heterogeneity is frequent,
but its clinical significance remains open in terms of treatment with
trastuzumab-chemotherapy [32e38]. The investigation of HER2/neu
heterogeneity in gastric cancer in relation to the metabolic state of
tumors is completely unexplored and may contribute to the
improvement of treatment success. The SPACiAL pipeline was
applied on tissue samples from three patients with gastric cancer to
evaluate metabolic heterogeneity depending on the HER2/neu state.
SPACiAL automatically determines the HER2/neu-positive and
-negative tumor regions in a standardized way by evaluating
expression values both in quantity on the basis of pixel intensity and
localization by pixel co-localization (Figure 5). Regions displaying
both pan-cytokeratin and HER2/neu signals are defined as HER2/neu-
positive tumor regions, while regions displaying only a pan-
cytokeratin signal are classified as HER2/neu-negative. Whole slide
immunohistochemical stainings and regions defined as HER2/neu-
positive (red) and -negative (yellow) are shown in Supplementary
Figures 8e13. The pixel-accurate annotation allows an unprece-
dented analysis of metabolic heterogeneity within tumor cells based
on metabolic correlation networks that were calculated for annotated
metabolites detected and stringently filtered from gastric cancer
tissue sections (Figure 6). For visualization purposes, a zoom-in of
HER2/neu-positive and -negative tumor regions of Supplementary
Figures 9, 11, and 13 is shown.
Since glucose plays a major role in altered energy metabolism in
cancer [39], focusing on captured glucose as glucose 6-phosphate in
the analysis of correlation networks provides insight into the
complexity of the tumor biology regarding HER2/neu status. The spatial
correlation networks comprise 67 to 171 metabolites (Supplementary
Table 2) in HER2/neu-positive or -negative tumor regions, revealing
intratumoral heterogeneity (Figure 6AeC). The number of correlating
metabolites was identified in samples A and C, but the number and
strength of pairwise spatial correlations differed, leading to different
network structures; in particular, the network density is higher in C by
a factor of approximately four (Supplementary Table 2). A majority of
the correlating metabolites belong to the class of lipids and lipid-like
molecules. In HER2/neu-positive regions of all patients, lysophos-
phatidylinositole (LPI) abundance correlates positively with glucose 6-
phosphate. LPI is a bioactive lipid produced by the phospholipase A
family, which is believed to play an essential role in several physio-
logical and pathological processes [40]. As a ligand for the G-protein-
coupled receptor GPR55, LPI may increase the glycolytic activity, since
a GPR55 antagonist was shown to decrease glycolytic activity in cancer
cell lines [41]. In one sample, glucose 6-phosphate formed a cluster
together with numerous lipids (Figure 6C), while in the other two
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 9
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Figure 7: Intertumoral heterogeneity of metabolites in five tissue cores from HER2/neu positive patients with gastric cancer, visualized via spatial correlation
networks (AeE). Edges represent positive (blue) and negative (red) spatial correlations between metabolites. Line thickness and transparency correspond to the correlation
coefficient. Right: Zoom-in to glucose 6-phosphate. Abbreviations: glucose 6-phosphate (G6P), glycerol 3-phosphate (Gly3P), phospholipid (PC), phosphatidylinositol (PI), cyclic
phosphatidic acid (CPA), lysophosphatidic acid (LPA), lysophospholipid (LPC), lysophosphatidylinositol (LPI), phosphodimethylethanolamine (P-DME), stearic acid (SA), dihy-
droxyacetone phosphate (DHAP), alanylglutamine (AeQ), histidinyl-glycine (N-HG). Scale bar, 600 mm.

Original Article
samples, the neighboring nodes belonged to different metabolic
classes e including carbohydrates, dipeptides and glycosylamines
(Figure 6A,B). The intratumoral heterogeneity was most prominent in
tumor sample C, reflected by the difference in degree, average shortest
path length, and clustering coefficient of HER2/neu-positive and
-negative metabolic networks (Figure 6 and Table 1). Overall, the
degree and clustering coefficient of the glucose 6-phosphate node
varies more strongly between patient samples, than between HER2/
neu-positive and -negative tumor regions within individual patient
samples, reflecting intertumoral heterogeneity (Table 1).
10 MOLECULAR METABOLISM 36 (2020) 100953 � 2020 The Author(s). Published by Elsevier GmbH. T
3.4. Intertumoral metabolic heterogeneity in gastric cancer
To additionally demonstrate the compatibility of SPACiAL for high-
throughput multiplex phenotyping, metabolic correlation networks
were created for gastric cancer patient tissues from an FFPE
tissue microarray (Figure 7AeE). Networks on the extracted
HER2/neu-positive tumor regions of 5 gastric cancer patients
comprised 30 to 39 metabolites and exhibited diverse correlation
patterns. Similar to the results from whole gastric cancer
resection specimens, most of the correlating metabolites are
lipids. An altered lipid metabolism has been described previously
his is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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in a HER2/neu-positive breast cancer model [42]. Thus, a
changed lipid metabolism may be associated with a high positive
correlation of individual lipids to glucose 6-phosphate in human
gastric cancer patients.
The diversity between metabolic correlation networks in individual
patients demonstrates high intertumoral heterogeneity of HER2/neu-
positive gastric cancer tissue (also see network metrics in
Supplementary Table 3). The novel pipeline is a starting point for intra-
and intertumoral heterogeneity analyses, enabling simultaneous
analysis of distinct tissue and cellular compartments. The spatially
resolved information from the molecular analysis has been used in our
study to generate correlation networks between metabolites within
ROIs that are automatically defined by immunohistochemical staining.

4. CONCLUSIONS

Our SPACiAL workflow integrates molecular MALDI imaging mass
spectrometry data with IHC staining to facilitate automatic, reliable,
and pixel-accurate annotation of specific cell types. In this context, the
phenotypical information provided by IHC complements in situ mo-
lecular information for cell type-specific evaluation. The pipeline was
demonstrated for both physiological and pathophysiological applica-
tions to investigate metabolic heterogeneity in alpha and beta cells
from islets of Langerhans of a mouse model and in HER2/neu-positive
tumor cells from patients with gastric cancer.
Glucagon-releasing alpha and insulin-releasing beta cells of different
pancreatic islets within one animal were automatically annotated,
demonstrating the basic functionality of the SPACiAL pipeline as a tool
for objective IHC-guided annotation of otherwise histologically indistin-
guishable cell types. The pixel-accurate annotation and analysis of
metabolites allows previously infeasible assessments of metabolomic
heterogeneity between islets of Langerhans. Additionally, tissue samples
from patients with gastric cancer were chosen to demonstrate the
methodological advantages of SPACiAL for the analysis of intra- and
intertumoral heterogeneity. The SPACiAL strategy can be extended by
integrating other in situ datasets from tissue analytic platforms, since all
spatially resolved information of a tissue section can be integrated in this
pipeline (e.g., morphometrics, fluorescence in situ hybridization, and
imaging mass cytometry). Prospectively, the application can also be
useful for the automatic readout of regions of interest for metabolite
quantification on an absolute, rather than on a relative scale. Quantifi-
cation is a major topic of investigation in the targeted MALDI IMS field
concentrating on the analysis of a subset of metabolites. Furthermore,
the workflow was demonstrated to be compatible with both frozen and
FFPE tissue samples. With SPACiAL, hundreds of distinct samples within
tissue microarrays can be analyzed simultaneously. In contrast to the
traditional analysis of mean spectra per ROI, SPACiAL allows in-depth
and full use of available data without loss of resolution. With the
spatial correlation networks of metabolites and the comparative
approach to investigate islet cell heterogeneity, we demonstrate one of
the many possibilities to utilize MALDI data. Combining the data from
multi-omics studies, the pipeline represents an important starting point
for the objective analysis of high-throughput data from large-scale
clinical cohort studies, which are required for artificial intelligence-
guided diagnostics, biomarker discovery, or therapy prediction.
We expect that further development of computational techniques for
automatic feature identification based on multi-parameter molecular
imaging data will remain an important area of ongoing investigation,
and the results we present provide a useful framework and resource
for advancing future studies.
MOLECULAR METABOLISM 36 (2020) 100953 � 2020 The Author(s). Published by Elsevier GmbH. This is an open
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