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SUMMARY

Evidence suggests interplay among the three major
risk factors for Alzheimer’s disease (AD): age, APOE
genotype, and sex. Here, we present comprehensive
datasets and analyses of brain transcriptomes and
blood metabolomes from human apoE2-, apoE3-,
and apoE4-targeted replacement mice across young,
middle, and old ages with both sexes. We found that
age had the greatest impact on brain transcriptomes
highlighted by an immune module led by Trem2 and
Tyrobp, whereasAPOE4was associatedwith upregu-
lation of multiple Serpina3 genes. Importantly, these
networks and gene expression changes were mostly
conserved inhumanbrains.Finally,weobservedasig-
nificant interactionbetweenage,APOEgenotype, and
sex on unfolded protein response pathway. In the
periphery, APOE2 drove distinct blood metabolome
profile highlighted by the upregulation of lipid metab-
olites. Our work identifies unique and interactive mo-
lecular pathways underlying AD risk factors providing
valuable resources for discovery and validation
research in model systems and humans.

INTRODUCTION

Alzheimer’s disease (AD) is a devastating neurodegenerative dis-

order characterized by the extracellular deposition of amyloid-b
(Ab) as senile plaques and intracellular accumulation of patho-

logical tau as neurofibrillary tangles in the brain (Blennow et al.,

2006). Although the cause of sporadic AD is likely multifactorial,

age is the greatest risk factor wherein 3% of people between the

ages of 65 and 74, 17% of people between ages 75 and 84, and

32% of people aged 85 or older have AD (Brookmeyer et al.,

1998; Hebert et al., 2013). The aging brain undergoes functional

decline likely driven by decreased synaptic density and functions

and is associated with inflammation induced by the reactive glial

cells including astrocytes (Boisvert et al., 2018) and microglia

(Kang et al., 2018; Sala Frigerio et al., 2019); however, the exact

comprehension of the molecular pathways underlying the link

between aging and AD is still vague. In addition to age, it is

well documented that the apolipoprotein E (APOE) genotype

(Bu, 2009; Yamazaki et al., 2019; Zhao et al., 2018a) and sex

(Damoiseaux et al., 2012; Payami et al., 1994) substantially im-

pacts the disease onset and development. The APOE4 gene

allele is the strongest genetic risk factor for late-onset AD,

whereas APOE2 is protective compared to the common

APOE3 allele (Bu, 2009; Farrer et al., 1997). Carrying one copy

of APOE4 increases the AD risk by 3- to 4-fold, and two copies

by 10- to 15-fold compared to those carrying two copies of

APOE3 (Holtzman et al., 2012; Loy et al., 2014; Michaelson,

2014). Indeed, around 65% of all AD patients have at least one

copy of the APOE4 allele (Mayeux et al., 1998). Multiple Ab-de-

pendent and Ab-independent mechanisms are likely involved

in the risk determining effect ofAPOE polymorphism from human

or mouse studies (Kanekiyo et al., 2014; Liu et al., 2017; Shino-

hara et al., 2016). Furthermore, epidemiological studies have

demonstrated that women disproportionately suffer from

dementia including AD, particularly in the elderly (Hebert et al.,
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Figure 1. Global Characterization of Brain Transcriptome and Serum Metabolome Profiles of ApoE-Target Replacement Mice

(A and C) The effects of APOE genotype, age, sex, and their interactions on the variation of brain gene expression (A) and serum metabolite level (C) in the study

cohort (n = 7–8 mice/genotype/age/sex).

(B and D) Sample-to-sample variation among brain transcriptomes (B) and serummetabolomes (D) revealed by principal-component analysis (PCA). Each circle

represents a sample, colored by APOE, age, and sex, respectively.
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2013; Mazure and Swendsen, 2016) and APOE4 carriers

(Altmann et al., 2014; Farrer et al., 1997; Neu et al., 2017). Collec-

tively, these emerging lines of evidence suggest that age, APOE

genotype, and sex independently and/or interactively affect the

pathogenesis of AD. Investigating the molecular pathways

impacted by these factors is of paramount importance to devel-

oping therapeutic strategies for AD.

Heterogeneity in humans due to genetic diversity and the

impact of environmental and lifestyle differences limits the mo-

lecular study of disease mechanisms. Therefore, mouse

models offer opportunities to study the effects of disease-

related risk factors in a relatively pure genetic background

within a controlled environment. In this study, we comprehen-

sively profiled the brain transcriptomes and serum metabo-

lomes of human apoE-targeted replacement (TR) mice, in

which the murine Apoe gene locus is replaced with human

APOE2, APOE3, or APOE4 gene (Sullivan et al., 1997), at

different ages and in both sexes. These apoE-TR animal

models have been extensively used to assess the role of

apoE isoforms in brain homeostasis and aging (Zhao et al.,

2017a) or pathogenesis of amyloid (Hu et al., 2015; Tachibana

et al., 2019), tau (Shi et al., 2017; Zhao et al., 2018b), and

a-synuclein (Davis et al., 2020; Zhao et al., 2020). To ensure

availability of our transcriptomics and metabolomics datasets

for widespread utilization, we established a user-friendly web-
2 Neuron 106, 1–16, June 3, 2020
site (https://www.gbulab.com/searchlinks). Additionally, all

datasets described in this study are available to the research

community through AD Knowledge Portal (https://

adknowledgeportal.synapse.org/). Guided by these datasets,

we identified promising candidates of genes, metabolites,

gene/metabolite co-expression networks/modules, and molec-

ular pathways influenced by age, APOE genotype, and sex.

RESULTS

Profiling Strategies of Brain and Serum Samples from
Mouse Models with Different APOE Genotype, Age,
and Sex
We analyzed the cerebral cortex transcriptomics and serumme-

tabolomics in male and female apoE2-TR, apoE3-TR and,

apoE4-TR mice at 3, 12, and 24 months of age (experimental

design in graphical abstract). In total, our analyses included 18

different experimental conditions (n = 7–8 mice per condition)

for both transcriptomics and metabolomics. We first investi-

gated how APOE genotype, age, sex, and their interactions

contributed to the variation in the transcriptomics and

metabolomics profiles. Interestingly, age was the strongest fac-

tor for the brain transcriptomes (Figure 1A), whereas APOE ge-

notype had the greatest influence on the serum metabolomes

(Figure 1C). Consistent with the source of variation analyses,

https://www.gbulab.com/searchlinks
https://adknowledgeportal.synapse.org/
https://adknowledgeportal.synapse.org/


Figure 2. Impact of APOE Genotype, Age, and Sex on Gene Co-expression Networks of the Mouse Brain Transcriptomes

(A) The correlation betweenmodule eigengenes (MEs) andAPOE genotype, age, and sex. The values in the heatmap are Pearson’s correlation coefficients. Stars

represent significant correlations: **p < 0.01; ****p < 0.0001. Modules with positive values (orange) indicate positive correlation of MEs with APOE4 genotype,

older age, or female; modules with negative values (blue) indicate negative correlation of MEs with these traits.

(B) The ME network representing the relationships betweenmodules and betweenmodules and APOE genotype, age, and sex. The y axis shows the dissimilarity

of eigengenes. Modules and traits with dissimilarity score <0.5 (gray dotted line, green shadow) are considered to be tightly correlated.

(legend continued on next page)
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principal-component analyses (PCAs) revealed a clear separa-

tion of the brain samples of young age cohort (3 months) from

those of middle age (12months) and old age (24months) cohorts

(Figure 1B). Although the separation between male and female

was also clear by PCA, the distinguished pattern disappeared

after removing the sex chromosome genes (Figure S1). Among

the serum samples, a clear separation was observed between

the apoE2-TR mice and other apoE-TR mice (Figure 1D).

Identification of Gene Modules Associated with APOE

Genotype, Age, and Sex in the Mouse Brain
Next, we identified the brain transcriptional signatures affected

by APOE genotype, age, and sex. To place gene expression

changes in a systems-level framework, we performed a

weighted gene co-expression network analysis (WGCNA) (Lang-

felder and Horvath, 2008; Zhang and Horvath, 2005) on the brain

transcriptomes. We identified 16 co-expression modules (Fig-

ure 2A; Table S1). Four modules were significantly correlated

with APOE genotype, including lightcyan, tan, cyan, and yellow

(p < 0.01) (Figure 2A). Among the four modules, two were upre-

gulated (lightcyan and tan) and two were downregulated (cyan

and yellow) in APOE4 genotype compared to APOE2 or

APOE3 genotype (Figure 2A). Ten modules were significantly

correlated with age, including eight upregulated (blue, pink,

brown, tan, black, magenta, green, and greenyellow) and two

downregulated modules (turquoise and red) (Figure 2A). One

module, magenta, was significantly correlated with sex, and

was upregulated in females compared to males (Figure 2A).

Further network analysis of the eigengene and traits revealed

strong correlations between the lightcyan module and APOE ge-

notype; the blue, pink modules and age; and the black and

brown modules (eigengene correlation of at least 0.5, Figures

2B and 2C).

To better understand the modules associated with the APOE

genotype, we performed functional annotation of these modules

and identified the top 10 intramodular hub genes in eachmodule.

The top 10 hub genes in the lightcyan module were mainly from

the Serpina3 gene family, including Serpina3c, Serpina3f, Serpi-

na3k, Serpina3l-ps, Serpina3m, and Serpina3n (Figure 2D).

Genes in this module were enriched for the regulation of endo-

peptidase inhibitor activity (Figure 2E). The module eigengene

(ME) of the lightcyan module was upregulated in APOE4

compared to the APOE2 or APOE3 genotype (Figure 2F). Addi-

tionally, the cyan module, enriched for lysosome and purine

deoxyribonucleoside monophosphate metabolic processes,

was significantly downregulated in theAPOE4 genotype (Figures

S2A–S2C). The yellow and tan modules, enriched for RNA

splicing and ribosome, respectively, were slightly upregulated

in APOE4 genotype (Figures S2D–S2F; Figures S3D–S3F).
(C) Heatmap of the eigengene adjacency matrix. Each row and column correspo

heatmap, orange indicates positive correlation and blue indicates negative corre

(D, G, and J) Network plots of the top 10 genes with the highest intramodular co

(E, H, and K) The top 5 Gene Ontology (GO) terms enriched by 35 module genes

module genes in the pink module (K). The orange dotted line indicates the thresh

(F, I, and L) MEs in the lightcyan (F), blue (I), and pink (L) modules across different

and sexes (male and female). The top and bottom lines in the boxplots represent t

the median. n = 7–8 mice/genotype/age/sex.
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We further examinedmodules associated with aging. The blue

module, significantly correlated with age, was upregulated at 12

and 24 months compared to 3 months (Figure 2I). Genes in this

module were enriched for processes relating to extracellular ves-

icles (EVs) (Figure 2H). The top hub genes in this module are

known to be detected in EVs, including Anln, Arhgef10,

B3galt5, Csrp1, Endod1, Plekhb1, and Zcchc24 (Pathan et al.,

2019) (Figure 2G). Furthermore, the pink module was also signif-

icantly correlated with aging, which was upregulated at

24 months compared to 3 and 12 months (Figure 2L). Genes in

this module were enriched for immune response (Figure 2K),

with top hub genes including Trem2, Tyrobp, and Cd68 (Fig-

ure 2J), all of which are involved in microglial functions and

immune responses in the brain (Keren-Shaul et al., 2017; Ulland

and Colonna, 2018). The turquoise and red modules, enriched

for respiration chain and synaptic transmission, respectively,

were significantly downregulated after 12months of age (Figures

S4A–S4F). The profiles of brown, tan, black, green, greenyellow,

andmagentamodules slightly increasedwith aging andwere en-

riched for amine biosynthetic process, ribosome, protein target-

ing to vacuole, intracellular membrane bounded organelle, EVs,

and neurological system process, respectively (Figures S3A–

S3R). The magenta module was also slightly elevated in female

mice (Figures S3P–S3R).

To validate the top gene and pathway that were dysregulated

by APOE4, we performed qPCR experiments to detect the

expression of Serpina3n, which is the mouse ortholog of the

human SERPINA3 gene (Horvath et al., 2005). We found signifi-

cantly elevated Serpina3n mRNA levels in APOE4 mice at 3, 12,

and 24 months of age (Figure 3A), consistent with the RNA

sequencing (RNA-seq) results. The effect of APOE4 on elevating

brain Serpina3n level was further confirmed by using in situ

hybridization to stain Serpina3n mRNA (Figures 3B and 3C)

and western blotting to detect Serpina3n protein in an indepen-

dent cohort of apoE animals (Figures 3D and 3E). To further test

whether the effect of APOE4 on regulating Serpina3n is system-

atic or specific to the central nervous system, we assessed the

Serpina3n level in the blood, as well as in the liver where Ser-

pina3n is synthesized and secreted into the circulation (Baker

et al., 2007). Interestingly, the blood Serpina3n level was not

elevated but rather decreased in APOE4 mice compare to

APOE3 mice, and this difference was exacerbated with aging

(Figure 3F), whereas the mRNA and protein levels did not differ

in the liver of APOE4 mice compared to APOE3 mice (Figures

3G–3I). Together, these data suggest that the upregulation of

Serpina3n by APOE4 is brain specific.

Additionally, to validate the upregulated immune response

with aging, we selected one of the hub genes in the pink module,

Cd68, which encodes a lysosomal protein expressed at high
nds to one eigengene (labeled by module color) or a trait of interest. Within the

lation. *Correlation coefficient is above 0.5.

nnectivity (hub genes) in the lightcyan (D), blue (G), and pink (J) modules.

in lightcyan module (E), 2,628 module genes in the blue module (H), and 308

old of p = 0.01.

APOE genotypes (APOE2, APOE3, and APOE4), ages (3, 12, and 24 months),

he maximum andminimum values after Tukey’s test. The center line represents



Figure 3. Validation of Serpina3n Upregulation by APOE4 and Microglia Activation by Aging in the Brain of ApoE-TR Mice

(A) The expression of Serpina3n at themRNA level was detected by qPCR using RNA samples from the cortex of apoE-TRmice at different ages (n = 7–8mice per

APOE genotype per age group, mixed gender). Data are expressed as mean ± SEM relative to APOE2 mice at 3 months of age. One-way ANOVA was used to

detect differences among APOE genotypes within each age group.

(B and C) Brain sections were prepared from the apoE-TR mice (n = 5–6 mice per APOE genotype, mixed gender). The expression of Serpinas3n was visualized

using RNAscope probes while nuclei were visualized with DAPI. Representative images were shown from each APOE genotype, respectively (B). Scale bar:

20 mm. The intensity of Serpina3n staining was quantified using ImageJ software and compared among APOE genotypes using one-way ANOVA (C).

(D and E) Proteins from the cortex of apoE-TR mice were extracted using RIPA buffer. Serpina3n level was examined by western blotting (n = 8 mice per group,

mixed gender, D). Results were normalized to a-tubulin expression. Data are expressed as mean ± SEM relative to APOE2 mice (E). One-way ANOVA tests

were used.

(F) Serpina3n in the serum of apoE-TR mice was examined by ELISA (n = 5 mice per APOE genotype at 3 months of age, n = 7–8 mice per APOE genotype at 12

and 24 months of age, mixed gender). One-way ANOVA tests were used to detect difference among APOE genotypes within each age group.

(G–I) The expression of Serpina3n at the mRNA and protein levels was evaluated in the liver of apoE-TRmice at 24months of age by qPCR (G) or western blotting

(H and I) (n = 5–6 mice per group, mixed gender, RIPA fraction was used for the western blotting experiment). The immunoblotting results were normalized to

b-actin expression. Data are expressed as mean ± SEM relative to APOE2 mice. One-way ANOVA tests were used.

(J–M) Brain sections were prepared from the apoE-TR mice at 3 and 24 months of age. Representative images are shown for the CD68 (J) and IBA1 (K)

immunohistochemical staining at different brain regions. Scale bar, 100 mm. The immunoreactivity of CD68 (L) and IBA1 (M) staining in the region of cortex was

evaluated by Aperio ImageScope (n = 17–18mice per age group, mixedAPOE genotype and gender). Red, green, and blue circles representAPOE2,APOE3, and

APOE4 genotype, respectively.

Data represent mean ± SEM relative to 3-month-old mice. Mann-Whitney U tests were used. *p < 0.05; **p < 0.01; ****p < 0.0001; N.S., not significant.
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levels by activated microglia and at low levels by resting micro-

glia in the brain (Walker and Lue, 2015) and performed immuno-

histological staining with the brain slides from apoE-TR mice.

Consistent with upregulated Cd68 mRNA with aging, we also

found significantly higher CD68 immunoreactivity in the mouse

brain at 24 months of age compared to those at 3 months of

age (Figure 3J and 3L), whereas the general microglia marker

ionized calcium binding adaptor molecule-1 (IBA1) (Walker and

Lue, 2015) did not change significantly with aging (Figures 3K

and 3M), confirming the aging effects on activating microglia.

Preservation of APOE Genotype, Age, and Sex-Related
Modules in Human AD Brains
We next assessed preservation of the APOE genotype, age, and

sex-related modules in human post-mortem brain samples to

validate their human relevance. We used the previously pub-

lished RNA-seq datasets of the prefrontal cortex from Religious

Orders Study and Rush Memory and Aging Project (ROSMAP)

(Bennett et al., 2018) and the temporal cortex and cerebellum

from the Mayo Clinic (Allen et al., 2016, 2018b). We found that

8, 10, and 9 out of 16 mouse modules were preserved in the pre-

frontal cortex, temporal cortex, and the cerebellum, respectively

(Figures 4A, 4D, and 4G). As aging is the strongest risk factor for

AD, we sought to assesswhether the aging-related pink and blue

mousemodules were also related to AD in humans. Interestingly,

both the pink immunemodule and the blue EVsmodulewerewell

preserved in all three human brain datasets and significantly

upregulated in AD cases compared to controls in the prefrontal

cortex (Figures 4B and 4C) and the temporal cortex (Figures

4E and 4F), consistent with their upregulation with aging in

mouse cortex (Figures 2G–2L). In the cerebellum, the pink mod-

ule did not change between AD and control (Figure 4I), but the

blue module showed trending downregulation in AD cases,

opposite of what we found in temporal cortex (Figure 4H). We

further assessed whether the protein levels of these module

genes were also affected by AD by analyzing a previously

published proteomics dataset (Ping et al., 2018). Interestingly,

the protein level of the pink immune module was significantly

upregulated in AD cases compared to controls in the anterior

cingulate gyrus and frontal cortex regions (Figure S5A), reflecting

robust gene to protein association in immune response and AD

in different cortical regions. However, the blue EVs module

showed trending upregulation in the anterior cingulate gyrus

but downregulation in frontal cortex (Figure S5B), indicating

that the regulation of this module in AD might be dependent on

brain regions. Taken together, our analyses show that the pink

immune and blue EVs co-expression modules were conserved

from mouse to human and dysregulated in AD, confirming that

our findings are relevant to AD pathogenesis in humans.

The lightcyan module associated with APOE4 was not pre-

served in any of the three human RNA-seq datasets (Figures

4A, 4D, and 4G). This is likely due to the fact that humans only

have one SERPINA3 protein-coding gene, whereas mice have

ten protein-coding genes that are orthologous or paralogous to

human SERPINA3 (Heit et al., 2013), six of which were hub genes

in the lightcyan module (Figure 2D). Consequently, we examined

the expression levels of SERPINA3 and ATF4, two mouse hub

genes with human homologs. Interestingly, both SERPINA3
6 Neuron 106, 1–16, June 3, 2020
and ATF4 gene expression were significantly upregulated in

APOE4 carriers compared to non-carriers in the temporal cortex

(Figures 4J and 4L, left panel). Additionally, the expression of

these two genes both showed upregulation in AD cases

compared to controls (Figures 4K and 4M, left panel). However,

the difference between APOE4 carriers and non-carriers disap-

peared after adjusting for AD status (Figures 4J and 4L, right

panel), whereas the upregulationwas still significant in AD versus

control after adjusting for APOE4 status (Figures 4K and 4M,

right panel), suggesting that the effects of AD pathology are

stronger than APOE genotype or that the APOE4 effects are

AD dependent in these human samples.

Identification of APOE Genotype, Age, and Sex-Related
Differentially Expressed Genes and Enriched Pathways
in the Mouse Brain
We then evaluated genes with significant differential expression

among different APOE genotypes, ages, and sexes (Table S2).

We found 189 downregulated and 213 upregulated differentially

expressed genes (DEGs) in APOE2 versus APOE3 genotypes;

117 downregulated and 144 upregulated DEGs in APOE2 versus

APOE4 genotype, and 97 downregulated and 112 upregulated

DEGs in APOE3 versus APOE4 genotype (Bonferroni-corrected

p < 0.05, fold changeR1.2). Differential expression among three

APOE genotypes was observed in 1,813 genes (Bonferroni-cor-

rected p < 0.05; Table S2; Figure S6A; Figures 5A–5C). Hierarchi-

cal clustering of the top 20 genes successfully separated the

samples by APOE genotype (Figure 5D; Figures S6B, S6D, and

S6F). Among these DEGs, the Serpina3 family genes were upre-

gulated in the APOE4 genotype compared to APOE2 or APOE3

genotype, consistent with our findings from WGCNA (Figures

2D–2F). On the other hand, the expression levels of Wdfy1,

Alkbh6, and Rdh13 were lower in APOE4 genotype. Wdfy1 and

Alkbh6 were also hub genes in the cyan module, which was

downregulated in APOE4 (Figures S2A–S2C). Additionally, the

expression levels of Zc3h7b, Oscar, Thnsl1, and Tmc4 genes

were downregulated in APOE3 compared to APOE2 or APOE4

genotype; the Xaf1, Ech1, and Nnt gene expression levels

were upregulated whereas the expression levels of Olfr316,

Lyrm7, Alox8, and Zfp14 were downregulated in APOE2

compared to APOE3 and APOE4 genotype (Figure 5D). The

DEGs affected by APOE genotypes were significantly enriched

in canonical pathways such as tRNA charging, interleukin-7

(IL-7) signaling, serotonin receptor signaling, GP6 signaling,

and eicosanoid signaling pathways (Figure 5E; Figures S6C,

S6E, and S6G).

When comparing different ages, we identified 10,244 DEGs

among three ages (Table S2). Around 3,000 DEGs were found

in 12 months versus 3 months, or 24 months versus 3 months,

whereas the number of DEGsbetween 24months and 12months

was below 500, suggesting that the most dramatic changes of

the brain transcriptomes arise between 3 and 12 months of

age (Figures 5F–5H; Figure S6A). Furthermore, hierarchical clus-

tering of the top 20 DEGs successfully separated the 3 months

samples from those of the 12 and 24 months (Figure 5I; Figures

S7A, S7C, and S7E). Among the top 20 DEGs, Marcksl1, Gbn4,

Snca, and Met were downregulated whereas the other genes

were upregulated with aging, including Pisd, C4b, Pcdhb9,



Figure 4. Module Preservation Analyses between

Mouse and Human Samples

(A, D, and G) Module preservation in the ROSMAP human

prefrontal cortex (A, n = 313), Mayo clinic human temporal

cortex (D, n = 159), and Mayo clinic human cerebellum (G,

n = 158) datasets. Preservation Z summary between 2 and

10 indicates moderate preservation. Z summary >10

indicates strong preservation.

(B and C) Blue (B) and pink (C) MEs in human control, MCI

and AD samples in the ROSMAP prefrontal cortex dataset

(n = 85 Ctrl, n = 78 MCI, and n = 150 AD).

(E and F) Blue (E) and pink (F) MEs in human AD and controls

samples in the Mayo Clinic temporal cortex dataset (n = 77

Ctrl and n = 82 AD).

(H and I) Blue (H) and pink (I) MEs in human AD and controls

samples in the Mayo Clinic cerebellum dataset (n = 76 Ctrl

and n = 82 AD).

(J–M) The gene expression levels (log2 transformed reads

per kilobase permillion [RPKM]) ofSERPINA3 andATF4, two

lightcyan module genes in the Mayo Clinic human temporal

cortex dataset. (J and L) The expression levels of SERPINA3

(J) and ATF4 (L) between APOE4- (n = 108, including 69 Ctrl

and 39 AD) and APOE4+ (n = 51, including 8 Ctrl and 43 AD)

samples: left panel: expression values not adjusted by AD

status; right panel: expression values adjusted by AD status.

(K and M) The expression levels of SERPINA3 (K) and ATF4

(M) between AD (n = 82, including 39 APOE4- and 43

APOE4+) and Ctrl (n = 77, including 69 APOE4- and 8

APOE4+) samples: left panel: expression values not adjusted

by APOE4 status; right panel: expression values adjusted by

APOE4 status. In all boxplots, the top and bottom lines in the

boxplots represent the maximum and minimum values after

Tukey’s test. The center line represents the median. p values

were calculated by Mann-Whitney U tests.
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Zc3hav1, S100b, Plekhb1, Pmp22, Neat1, Ass1, Rcan2, Hapln2,

Anln,Abca8a, Pkp4, Zfp106, and Xaf1. Although not in the top 20

DEG list, several Serpina3 family genes were upregulated at

24 months compared to 12 months of age. The DEGs affected

by age were significantly enriched in canonical pathways such

as the complement system and ephrin receptor signaling

(Figure 5J; Figures S7B, S7D, and S7F).

We next compared gene expression between sexes and iden-

tified 16 downregulated and 29 upregulated DEGs in female

versus male mice (Table S2; Figure S6A; Figure 5K). The DEGs

were significantly enriched in pathways such as androgen

signaling, lanosterol biosynthesis, and synaptic long-term

depression (Figure 5M). Hierarchical clustering of the top 10

DEGs (without genes on X or Y chromosome) did not success-

fully separate the samples according to sex (Figure 5L),

indicating that these genes may also be regulated by other fac-

tors such as age or APOE genotype.

To validate the expression of these DEGs, we selected six top

genes associatedwith eitherAPOE genotype (Serpina3n,Wdfy1,

and Alkbh6) or age (C4b, Pcdhb9, and Plekhb1) and performed

qPCR analyses using the same samples used for RNA-seq. We

found significant correlation between the values from RNA-seq

and qPCR for each individual sample (Figures S8A–S8F), con-

firming the consistency between these two techniques. Further

analysis using qPCR results showed significant dysregulation

of Serpina3n, Wdfy1, and Alkbh6 by APOE genotype (Figures

S8G–S8I), and C4b, Pcdhb9, and Plekhb1 by age (Figures S8J–

S8L), which were all consistent with our results from RNA-seq.

Identification of Metabolite Modules Associated with
APOE Genotype, Age, and Sex in the Mouse Serum
To assess how APOE genotype, age, or sex affects peripheral

metabolism, we examined the serum metabolomes of our mice

using the AbsoluteIDQ p180 Kit. The metabolome profiling

yielded 162 metabolites after quality control (Table S3). WGCNA

analysis of the metabolomes identified five co-expression

metabolite modules (Figure 6A). Three modules, turquoise,

yellow, and green, were significantly correlated withAPOE geno-

type (Figure 6A). The MEs of all three modules were higher in

APOE2 compared to APOE3 or APOE4 genotype (Figures 6A,

6C, 6E, and 6G). The turquoise module contained 92

metabolites, including 65 glycerophospholipids (including
Figure 5. Differential Gene Expression and Pathway Analyses of the M

(A–C) Volcano plots of DEGs identified between the APOE2 and APOE3 (A), AP

denote downregulated DEGs and the red circles denote upregulated DEGs in eac

circles denote genes with significant p values (Bonferroni-corrected p < 0.05) but

value or the fold-change threshold.

(D) Hierarchical clustering of the top 20 DEGs affected by APOE genotypes (Bonfe

corresponds to one sample.

(E) The top 5 pathways enriched by 1,011 DEGs affected byAPOE genotypes (Bon

p = 0.05.

(F–H) Volcano plots of DEGs identified between the 12 and 3 months (F), 24 and 3

circles is identical to (A)–(C).

(I) Hierarchical clustering of the top 20 DEGs affected by age (Bonferroni-correc

(J) The top 5 canonical pathways enriched by the top 1,000 DEGs affected by ag

(K) Volcano plot of DEGs identified between female and male mice. The color co

(L) Hierarchical clustering of the top 10 DEGs affected by sex (the X- and Y-linke

(M) The top 5 pathways enriched by 102 DEGs affected by sex (Bonferroni-corre
phosphatidylcholine [PC] and lysophosphatidylcholine [lyso-

PC]), 14 sphingolipids (including sphingomyelin and hydroxy-

sphingomyelin), and 13 acylcarnitines (Table S3). The yellow

module contained 11 PCs, and the green module contained 5

lyso-PCs (Table S3). Metabolites in these three modules mainly

belong to lipid metabolic pathways, with an upregulation in

APOE2 compared to APOE3 or APOE4 genotype (Figures 6B–

6G), indicating that APOE2 drives distinct serum metabolomics

signatures through the upregulation of lipid metabolism. Addi-

tionally, the yellow and green modules were also significantly

correlated with sex with lower expression in females compared

to males (Figures 6A and 6D–6G).

We further identified three modules that were significantly

correlated with age, including two downregulated (brown and

green) and one upregulated (blue) modules (Figure 6A). The

brown module contained 13 amino acids and biogenic amines,

and the ME was lower at 12 or 24 months of age compared to

3 months (Table S3; Figures 6H and I). The green module

contained 5 lyso-PCs, which were associated with both APOE

genotype and age (Figures 6A and F). The ME of this module

was downregulated with aging in APOE3 and APOE4 genotype;

however, this downregulation was not seen in APOE2 genotype

(Figure 6G), indicating that the protective effects of APOE2 on

aging might be linked to the preservation of lyso-PC levels.

Moreover, the blue module contained 14 acylcarnitines with

most of them being long-chain fatty acids, and the ME was up-

regulated at 12 and 24 months compared to 3 months (Figures

6J and 6K). Together, these data indicate that the effects of aging

on serum metabolomics are downregulation of amino acids and

biogenic amines and upregulation of acylcarnitines especially

long-chain fatty acids.

Identification of APOE Genotype, Age, and Sex-Related
Differentially Expressed Metabolites
We next studied metabolites that were significantly differentially

expressed among different APOE genotypes, ages, and

between sexes (Table S4; Figures S9A–S9D). We found 123 up-

regulated and 4 downregulated DEMs in APOE2 versus APOE3

genotype; 110 upregulated and 2 downregulated DEMs in

APOE2 versus APOE4 genotype; 0 upregulated and 26 downre-

gulated DEMs in APOE3 versus APOE4 genotype (Bonferroni-

corrected p < 0.05, fold change R1.2); and overall 130 DEMs
ouse Brain Transcriptomes

OE2 and APOE4 (B), and APOE3 and APOE4 genotypes (C). The blue circles

h comparison (Bonferroni-corrected p < 0.05 and fold changeR1.2). The black

fold change <1.2, and the gray dots denote genes that did not meet either the p

rroni-corrected p < 0.05). Each row corresponds to one gene and each column

ferroni-corrected p < 0.0001). The orange dotted line indicates the threshold of

months (G), and 24 months and 12-month-old mice (H). The color code of the

ted p < 0.05).

e.

de of the circles is identical to (A)–(C).

d genes were excluded).

cted p < 0.0001). n = 7–8 mice/genotype/age/sex.
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Figure 6. Impact of APOE Genotype, Age, and Sex on Co-expression Network of the Mouse Serum Metabolomes

(A) The correlation between MEs and APOE genotype, age, and sex. The values in the heatmap are Pearson’s correlation coefficients. Stars represent significant

correlations: ****p < 0.0001. Modules with positive values (orange) indicate positive correlation of MEs with APOE4 genotype, older age, or female; modules with

negative values (blue) indicate negative correlation of MEs with these traits.

(B, D, F, H, and J) Network plots of the top 10 hub metabolites in the turquoise (B), yellow (D), green (F, only 5 metabolites in the module), brown (H), and blue (J)

modules.

(C, E, G, I, and K) MEs in the turquoise (C), yellow (E), green (G), brown (I), and blue (K) modules across different APOE genotypes (APOE2, APOE3, and APOE4),

ages (3, 12, and 24 months), and sexes (male and female). The top and bottom lines in the boxplots represent the maximum and minimum values after Tukey’s

test. The center line represents the median. n = 7–8 mice/genotype/age/sex.
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among three APOE genotypes (Table S4; Figure S9A; Figures

7A–7C). Hierarchical clustering of the top 20 DEMs successfully

separated the samples by APOE genotype with APOE2 showing

distinct upregulation of lipids compared to APOE3 and APOE4

(Figures 7A–7C; Figure S9B), consistent with our WGCNA

analysis (Figures 6B–6G).

In regard to aging, we identified 30 upregulated and 27 down-

regulated DEMs in 12 months versus 3 months; 30 upregulated

and 31 downregulated DEMs in 24 months versus 3 months; 1

upregulated and 9 downregulated DEMs in 24 months versus

12 months of age (Table S4; Figures S9A and S9C); and overall

74 DEMs among three ages (Table S4). The small number of

DEMs between 24 and 12 months indicates that the most dra-

matic change of serummetabolomics signatures happen in early

ages, consistent with our findings in the brain transcriptomics

(Figure S6A). Hierarchical clustering of the top 20 DEMs

successfully separated the 3 month serum samples from that

of 12 and 24 months, with downregulation of amino acids and

biogenic amines and upregulation of acylcarnitines after

3 months (Figures 7D–7F), consistent with our findings from

our WGCNA analysis (Figures 6H–6K).
10 Neuron 106, 1–16, June 3, 2020
We found 10 upregulated and 68 downregulated DEMs in

female versus male mice (Table S4; Figure S9A and S9D). The

top 20 DEMs were all lipids, but the hierarchical clustering of

these DEMs did not clearly separate sexes (Figures 7G–7I), indi-

cating that the effects of sex on lipid metabolism might be

strongly influenced by other factors such as APOE genotype.

Interactions of APOE Genotype, Age, and Sex on Brain
Transcriptomes and Serum Metabolomes
We finally assessed how the three AD risk factors, APOE geno-

type, age, and sex, interactively affect the brain transcriptomes

and serummetabolomes. We identified 776 brain DEGs (Bonfer-

roni-corrected p < 0.0001) affected by the interactions of APOE

genotype, age, and sex. These genes were enriched in canonical

pathways such as unfolded protein response, autophagy, tight

junction signaling, and endoplasmic reticulum stress pathway

(Figure S10B), all of which are closely related to neurodegenera-

tive disorders such as AD (Gerakis and Hetz, 2018; Scheper and

Hoozemans, 2015; Uddin et al., 2018; Yamazaki and Kanekiyo,

2017). Hierarchical clustering of the top 20 DEGs showed strong

interacting effects of age and APOE genotype (Figure S10A).



Figure 7. Differentially Expressed Metabolites in the Mouse Serum

(A, D, and G) Hierarchical clustering of the top 20 DEMs affected by APOE genotypes (A), age (D), or sex (G) (Bonferroni-corrected p < 0.05).

(B, C, E, F, H, and I) The expression levels of the top 2 DEMs in the comparison among APOE genotypes (B and C), ages (E and F), or sexes (H and I). The top and

bottom lines in the boxplots represent the maximum and minimum values after Tukey’s test. The center line represents the median. n = 7–8 mice/genotype/

age/sex.
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In particular, APOE4 was distinct from APOE2 and APOE3 at

3 months, whereas APOE2 at 12 and 24 months showed distinct

signature from the other groups (Figure S10A). Interestingly, all

age groups from APOE3 genotype clustered together, indicating

that the influence of aging on APOE3 genotype was minimal.

These data suggest that the effects of age on brain transcrip-

tomic profileswere influenced byAPOE genotype. The sex effect

was not dominant under any age or APOE genotype group.

We further identified 68 serum DEMs synergistically affected

by APOE genotype, age, and sex (Bonferroni-corrected

p < 0.05) (Table S4, Figure S10C). Hierarchical clustering of these

DEMs showed distinct separation of APOE2 from APOE3 and

APOE4 with significant upregulation of lipids (Figure S10C),

consistent with our PCA, WGCNA and DEM analyses (Figure 1D;

Figures 6B–6G; Figures 7A–7C). The effects of age and sex on
serum metabolites were observed within APOE2 genotype but

were less apparent in APOE3 and APOE4 (Figure S10C), further

indicating that the APOE2 genotype is the main driver for the

distinct serum metabolomics profiles in our mouse cohort.

DISCUSSION

Numerous genetic and functional studies have indicated the in-

dividual and interactive effects of age, APOE genotype, and

sex on AD risk; however, the underlying molecular pathways

remained elusive. By taking the triad of AD risk factors into

consideration in animal models, we investigated the molecular

signatures of transcriptomics in the brain and metabolomics in

the blood using apoE-TR mice at young, middle, and old ages

in both sexes. Rather than focusing on a priori candidate genes
Neuron 106, 1–16, June 3, 2020 11
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or metabolites, we pursued an unbiased systems-based

approach using multiple types of bioinformatics analyses to

identify gene and metabolite networks and molecular pathways.

Importantly, our study demonstrated that the major age- or

APOE genotype-related genes, gene modules, and pathways

identified in the mouse cortex were also significantly dysregu-

lated in human AD temporal cortex, further supporting the

profound relationship and overlap between increasing age and

AD (Xia et al., 2018). We also considered the principles of

regional vulnerability and disease trajectories (Fu et al., 2018)

and found that the major gene networks associated with aging

in animal models were altered in brain areas that show signs of

pathology such as the temporal cortex, but not in the cerebellum,

a brain region that is for the most part spared in AD (Allen et al.,

2018a; Conway et al., 2018). The validation of gene modules at

the protein level also suggests that the dysregulation of these

co-expressed gene networks in AD might be brain region

dependent.

We identified two major age-related gene modules in the

mouse cortex, including the immune and EVs modules, which

were well preserved in human brains and upregulated in the tem-

poral cortex of AD cases compared to control subjects. While

aging was the greatest contributor to the brain transcriptomics

signature in our mouse models, a gene module of ‘‘immune

response’’ was significantly upregulated at 24months compared

to 12 and 3 months of age. This module was led by the top hub

genes including Trem2 and Tyrobp. Although the R47H risk

variant of the TREM2 gene has been defined as a genetic risk

factor of AD (Guerreiro et al., 2013; Jonsson et al., 2013), and

the triggering receptor expressed on myeloid cells 2/TYRO Pro-

tein Tyrosine Kinase Binding Protein (TREM2/TYROBP) signaling

are well known as regulators of microglial functions in the brain

(Deczkowska et al., 2018; Poliani et al., 2015; Rangaraju et al.,

2018; Song and Colonna, 2018), our study is the first to capture

the aging-mediated dysregulation of Trem2/Tyrobp and their

gene network (308 genes) using a unbiased systems-based

approach in animal models. Further validation of this gene mod-

ule in human brains, especially the upregulation in several

cortical brain regions of AD cases compared to controls from

both gene expression levels and protein levels, indicates the

common changes between aging and AD regarding immune re-

sponses led by TREM2/TYROBP signaling (Zhang et al., 2013),

although the validation using human aging brains without AD is

necessary when the datasets become available. In addition,

since the dysregulation of ‘‘EVs’’ module was predominantly

affected in agedmouse brains or in human AD brains, our results

imply the roles of EVs in maintaining CNS homeostasis and

contributing to neurodegenerative disease pathology including

AD. Dynamic brain functions rely upon communication among

different cell types, and EVs have emerged as key mediators of

such communication (Delpech et al., 2019). All cell types in the

brain could release EVs, which can either be taken up by neigh-

boring cells or released into the cerebrospinal fluid and blood

(Colombo et al., 2014). Thus, they display a harmonious benefi-

cial and detrimental role in response to CNS injury, mediating

inflammatory response and inflammation-related neuroprotec-

tion, spreading senescence, as well as propagating pathogenic

proteins such as Ab, a-synuclein, and tau (Basso and Bonetto,
12 Neuron 106, 1–16, June 3, 2020
2016; Coleman and Hill, 2015; Delpech et al., 2019; Effenberger

et al., 2014). Therefore, comprehensive investigation focusing on

the biology of EVs, including the biogenesis, release, action, and

the profiles of isolated EVs, will be extremely valuable.

Interestingly, age, APOE genotype, and sex interactively

impacted pathways led by unfolded protein response (UPR) in

the brain. The UPR pathway is activated to protect cells under

ER stress when the inability of cells to properly fold, modify,

and assemble secretory and transmembrane proteins leads to

the accumulation of misfolded proteins in the ER (Walter and

Ron, 2011). However, the maladaptive UPR signaling under

chronic ER stress alternatively commits cells to degeneration,

which is implicated in the etiology and pathogenesis of various

neurodegenerative disorders including AD (Pitale et al., 2017;

Scheper and Hoozemans, 2015). Our study suggests that the

signaling components of the UPR might be potential targets for

intervention and treatment of AD (Maly and Papa, 2014).

Furthermore, to our knowledge, our study is the first to report

the correlation of APOE genotype and Serpina3n/SERPINA3

gene expression in both mouse and human brains. Serpina3n/

SERPINA3 gene encodes a1-antichymotrypsin (ACT), which is

an acute phase serum glycoprotein belonging to a class of serine

protease inhibitors (Padmanabhan et al., 2006). ACT inhibits the

activity of chymotrypsin and cathepsin G, thus playing an impor-

tant role in inflammation, complement activation, and apoptosis

(Irving et al., 2000; Law et al., 2006). It has also been broadly re-

ported that ACT is elevated in AD brains, and may promote Ab

polymerization and amyloid formation (Abraham et al., 1988,

1990, 2000; McGeer et al., 1990; Pasternack et al., 1989),

consistent with our findings from the human brain datasets. In

the brain, it was reported that Serpina3n gene is expressed by

astrocytes and has recently been identified as a strong marker

for reactive and aged astrocytes in the mouse brain (Boisvert

et al., 2018; Zamanian et al., 2012). Interestingly, the oligoden-

droglia in the experimental autoimmune encephalomyelitis

mouse model displayed elevated Serpina3n expression (Falcão

et al., 2018). Notably, our study suggests an important role of

apoE4 in the regulation of Serpina3n expression in the brain,

although the underlying mechanisms remain unclear on how

apoE4 elevates the expression of Serpina3n, which cell types

are involved, and what the functional impacts linked to the

elevated Serpina3n in apoE4 mice are. The upregulation of Ser-

pina3n in APOE4 genotype might be related with the pathogenic

effect of apoE4 on astrocyte activation andmight thus contribute

to the role of apoE4 in AD pathogenesis (Fernandez et al., 2019;

Perez-Nievas and Serrano-Pozo, 2018; Zhu et al., 2012). Addi-

tionally, the Serpina3n gene expression was upregulated at

24 months compared to 12 months of age, suggesting the com-

mon effects of APOE4 and aging on astrocyte activation in the

brain (Boisvert et al., 2018; Zamanian et al., 2012). Interestingly,

in periphery such as liver and blood, the level of Serpina3n was

not elevated in APOE4 mice, indicating the upregulation of

APOE4 on Serpina3n expression is brain specific. Therefore, a

better understanding of the regulation of Serpina3n by APOE4

and aging in both the central nervous and periphery systems is

needed such that potential biomarkers, tractable pathways,

and drug targets can be defined for early diagnosis or to reduce

APOE4- and aging-related AD risk.
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ApoE lipoprotein particles in circulation play a critical role in

regulating the peripheral lipid metabolism. Although it has been

reported that apoE isoforms differentially impact peripheral lipid

metabolism in humans (Karjalainen et al., 2019; Phillips, 2014),

our study is the first to examine the APOE genotype effect on

blood metabolomics in a well-defined animal cohort. We found

distinct serum metabolite profiles in APOE2 mice with dramati-

cally upregulated lipid levels (including phospholipids and sphin-

golipids) compared to APOE3 and APOE4 mice, likely due to its

reduced binding affinity to apoE receptors including the LDL

receptor, which might consequently elevate apoE levels and

lipids in the blood (Kowal et al., 1990; Mahley, 2016; Rasmussen

et al., 2015; Schneider et al., 1981). This dramatic effect of

APOE2 on lipid levels is consistent with a recently published hu-

man study (Karjalainen et al., 2019). Interestingly, lower levels of

blood phospholipids are related to the phenoconversion from

normal to either amnestic mild cognitive impairment or AD (Map-

stone et al., 2014), suggesting that the protective effects of

APOE2 on AD risk might be associated with the elevated phos-

pholipid profiles. However, the role of APOE2 has been debated

on one hand to be protective against AD but on the other hand to

promote vascular disease (Lahoz et al., 2001; Wilson et al., 1994)

and the risk for type III hyperlipoproteinemia (Kowal et al., 1990;

Schneider et al., 1981) when combined with additional genetic or

environmental stress, e.g., obesity, high-fat diet, and different

races (Phillips, 2014; Zhao et al., 2017b). Further studies on

apoE isoform-specific effects on lipid metabolism and related

pathways offer great promise for a more comprehensive

understanding of APOE genotype effects on AD to establish

mechanism-based therapy. While the effect of sex on serum

metabolomics is not prominent in our study, it is possible that

the dominant effects of age and APOE genotype masked the

sex effects.

In conclusion, our comprehensive data support unique and

interactive molecular pathways underlying the three major risk

factors for AD andmap the landscape regarding how they collec-

tively drive AD risk. These resources provide therapeutic insights

into treating AD and will facilitate discovery and validation

research in model systems and humans.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Serpina3n R&D systems Cat# AF4709; RRID:AB_2270116

a-tubulin Sigma Cat# T9026; RRID:AB_477593

b-actin Cell Signaling Technology Cat# 4967L; RRID:AB_330288

CD68 Abcam Cat# ab125212; RRID:AB_10975465

IBA1 WAKO Cat# 019-19741; RRID:AB_839504

Chemicals

Trizol Trizol Trizol

RNeasy Mini Kit RNeasy Mini Kit RNeasy Mini Kit

Critical Commercial Assays

AbsoluteIDQ p180 kit Biocrates https://biocrates.com/absoluteidq-

p180-kit/

cBot and HiSeq 3000/4000 PE Cluster Kit Illumina RRID: SCR_010233

TruSeq RNA Sample Prep Kit v2 Illumina RRID: SCR_010233

HiSeq 3000/4000 sequencing kit Illumina RRID: SCR_010233

HCS v3.3.52 collection software Illumina RRID: SCR_010233

Mouse Serpina3 ELISA kit Cusabio Cat# CSB-E13727m

RNAscope�Multiplex Fluorescent Reagent

Manual Assay Kit v2

ACD Cat #323100

Deposited Data

Raw data and analysis for brain

transcriptomics

This paper https://doi.org/10.7303/syn20808171

Raw data and analysis for serum

metabolomics

This paper https://doi.org/10.7303/syn20808172

Mayo Clinic human brain RNA-seq raw data (Allen et al., 2016) https://www.synapse.org/ Synapse ID:

syn5550404

ROSMAP human brain RNA-seq raw data (Bennett et al., 2018) https://www.synapse.org/ Synapse ID:

syn3219045

Human brain proteomics raw data (Ping et al., 2018) https://www.synapse.org/ Synapse ID:

syn10183278

Mouse reference genome mm10 Genome Reference Consortium http://useast.ensembl.org/Mus_musculus/

Info/Annotation

Experimental Models: Organisms/Strains

Mouse/apoE2-TR (B6.129P2-

Apoetm1(APOE2)Mae N9)

Taconic Biosciences RRID: IMSR_TAC:1547

Mouse/apoE3-TR (B6.129P2-

Apoetm2(APOE3)Mae N8)

Taconic Biosciences RRID: IMSR_TAC:1548

Mouse/apoE4-TR (B6.129P2-

Apoetm3(APOE4)Mae N8)

Taconic Biosciences RRID: IMSR_TAC:1549

Oligonucleotides

Mouse Serpina3n ACD Cat #430191

DapB ACD Cat #310043

Ppib ACD Cat #313911

Software and Algorithms

RTA version 2.7.3 Illumina RRID: SCR_010233

R version 3.4.2 R Core Team https://www.R-project.org/

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

MAP-RSeq version 2.1.1 (Kalari et al., 2014) http://bioinformaticstools.mayo.edu/

research/maprseq/

TopHat version 2.1.0 (Kim et al., 2013) https://ccb.jhu.edu/software/tophat/

index.shtml

Bowtie version 1.1.2 (Langmead et al., 2009) https://sourceforge.net/projects/bowtie-

bio/files/bowtie/1.1.2/

RSeQC version 2.6.2 (Wang et al., 2012) http://rseqc.sourceforge.net/

featureCounts version 1.4.6-p5 (Liao et al., 2014) http://subread.sourceforge.net

CQN version 1.24.0 (Hansen et al., 2012) https://bioconductor.org/packages/

release/bioc/html/cqn.html

Partek Genomics Suite version 6.6 Partek https://www.partek.com/

Ingenuity Pathway Analysis version 2019-

05-15

QIAGEN https://digitalinsights.qiagen.com/

products/ingenuitypathway-analysis

WGCNA version 1.61 (Langfelder and Horvath, 2008) https://horvath.genetics.ucla.edu/html/

CoexpressionNetwork/

Rpackages/WGCNA/

anRichment version 0.82-1 (Langfelder and Horvath, 2008) https://horvath.genetics.ucla.edu/html/

CoexpressionNetwork/GeneAnnotation/

index.html

VisANT version 5.51 (Hu et al., 2013) http://visant.bu.edu/home2.htm

MATLAB MathWorks https://www.mathworks.com/products/

matlab.html

Prism 7.0 GraphPad Software https://www.graphpad.com/

Other

Resource website This paper http://www.gbulab.com/searchlinks
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact, Guojun Bu

(bu.guojun@mayo.edu). This study did not generate new unique reagents.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Mice
ApoE-targeted replacement (apoE-TR) mice in which murine Apoe gene locus is replaced with human APOE2, APOE3, or APOE4

gene (Sullivan et al., 1997) were obtained from Taconic Biosciences. Animals were housed under controlled temperature and lighting

conditions and were given free access to food and water. Male and female apoE-TR mice at 3, 12 and 24 months of age were sacri-

ficed (n = 8 mice/genotype/sex/age group). Mice were anesthetized with isoflurane and blood was collected from the inferior vena

cava. After transcardial perfusion with phosphate-buffered saline (PBS, pH 7.4), the brains were collected and divided along the

sagittal plane. Cortex from left hemisphere was snap-frozen in liquid nitrogen immediately and further stored at �80�C for RNA

extraction and RNA-Seq. Blood was stored at 4�C overnight and then centrifuged at 1000 x g for 10 minutes. The serum was

collected and stored at�80�C for metabolomics study. All animal procedures were approved by the Mayo Clinic Institutional Animal

Care and Use Committee (IACUC) and were in accordance with the National Institutes of Health Guide for the Care and Use of

Laboratory Animals.

Humans
The RNA sequencing data of the ROSMAP (Bennett et al., 2018) and Mayo Clinic post mortem brain samples (Allen et al., 2016; Allen

et al., 2018a) were used for genemodule preservation analyses. Briefly, 150 AD (cogdx = 4, BraakR 4, CERAD% 2), 78mild cognitive

impairment (MCI; cogdx = 2, Braak R 4) and 85 no cognitive impairment (NCI, control; cogdx = 1, Braak % 3, CERAD R 3) white,

non-Hispanic samples from prefrontal cortex of ROSMAP cohort were analyzed. ForMayo Clinic cohorts, the data of temporal cortex

from 82 AD and 77 controls, and the cerebellum from 82 AD and 76 controls were analyzed. Additionally, we analyzed the module

preservation using the previously published protein expression profiles from dorsolateral prefrontal frontal cortex and anterior cingu-

late gyrus of 10 AD and 10 controls subjects measured by liquid chromatography-tandem mass spectrometry (Ping et al., 2018).
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METHOD DETAILS

Brain tissue RNA extraction, library preparation and sequencing
Total RNA were extracted from the cortex using Trizol reagent (Thermo Fisher Scientific, Waltham, MA) and cleaned using RNeasy

spin columns with DNase treatment (QIAGEN, Hilden, Germany) to remove contaminating genomic DNA. The RNA concentrations

were determined by NanoDropTM Spectrophotometers (Thermo Fisher Scientific, Waltham, MA). The RNA integrity numbers (RIN)

were measured using an RNA chip on an Agilent Bioanalyzer (Agilent Technologies). The RIN values of all the RNA samples were

R 7, thus all samples were approved for library preparation and sequencing. RNA libraries were prepared from 200 ng of total

RNA using the TruSeq RNA Sample Prep Kit v2 (Illumina, San Diego, CA) according to the manufacturer’s instructions, employing

poly-A mRNA enrichment using oligo-dT magnetic beads. The final adaptor-modified cDNA fragments were enriched by 12 cycles

of PCR using Illumina TruSeq PCR primers. The concentration and size distribution of the completed libraries were determined using

a Fragment Analyzer (AATI, Ankeny, IA) and Qubit fluorometer (Invitrogen, Carlsbad, CA). Libraries were randomized for sequencing

lanes and flow cells, and were sequenced following Illumina’s standard protocol using the Illumina cBot and HiSeq 3000/4000 PE

Cluster Kit, yielding 40 to 75 million fragment reads per sample. Each fragment was sequenced as 50 3 2 paired end reads on an

Illumina HiSeq 4000 using HiSeq 3000/4000 sequencing kit and HCS v3.3.52 collection software. Base-calling was performed using

Illumina’s RTA version 2.7.3.

Serum metabolites detection
Serum samples were analyzed using the AbsoluteIDQ p180 kit (Biocrates Life Sciences AG, Innsbruck, Austria) according to the user

manual. Briefly, after the addition of 10 ml of the supplied internal standard solution to each well on filterspot of the 96-well extraction

plates, 10 ml of each serum sample, quality control (QC) samples, blank, zero sample, or calibration standard were added to the

appropriate wells. All the serum samples were randomly distributed in different plates during detection. The plates were then dried

under a gentle stream of nitrogen. The samples were derivatized with phenyl isothiocyanate (PITC) for the amino acids and biogenic

amines, and dried again. Sample extract elution was performed with 5 mM ammonium acetate in methanol. Sample extracts were

diluted with either 40%methanol in water for the UPLC-MS/MS analysis (15:1) or kit running solvent (Biocrates Life Sciences AG) for

flow injection analysis (FIA)-MS/MS (20:1).

Mouse tissue preparation for validation experiments
Mice were deeply anesthetized with isoflurane prior to transcardial perfusion with saline. Brains was removed and bisected along the

midline. One half of each brain was drop-fixed in 10% neutral buffered formalin (Fisher Scientific) overnight at 4�C for in situ hybrid-

ization and histology, and the other half was snap-frozen in liquid nitrogen and stored at �80�C. Livers were collected as well. For

biochemical analysis, the brain and liver tissues were homogenized and lysed in RIPA (Fisher Scientific) buffer, supplemented by

protease inhibitor (cOmplete) and phosphatase inhibitor (PhosSTOP) and ultracentrifuged at 50,000 g for 30 min at 4�C. The
supernatant was collected as RIPA soluble fraction and stored in �80�C.

Histology and immunohistochemistry
The brain samples fixed in 10% formalin were embedded in paraffin wax, sectioned in a coronal plane at 5 mm thickness andmounted

on glass slides. Sections were collected from the same brain region for all animals, and brain regions were confirmed under the

microscope by comparing sections to images on the Allen Mouse Brain Atlas site. The tissue sections were de-paraffinized in xylene

and rehydrated in a graded series of alcohols. Antigen retrieval was performed by steaming in distilled water for 30 min, and endog-

enous peroxidase activity was blocked by incubation in 0.03% hydrogen peroxide. Sections were then immunostained using the

DAKO Autostainer (DAKO) and the DAKO EnVision+HRP system. The stained slides were dehydrated, coverslipped and scanned

with the Aperio Slide Scanner (Aperio). The following primary antibodies were used: anti-CD68 (Cat# ab125212, Abcam, 1:2500)

and anti-IBA1 (Cat# 019-19741, Wako, 1:2500) antibodies. A technician blinded to sample groups performed immunohistochemical

staining. Data collection and quantification of immunoreactivity were performed blindly by another technician.

In situ hybridization
In situ hybridization was performed on freshly cut Formalin-Fixed Paraffin-Embedded 5mm sections using RNAscope� Multiplex

Fluorescent Reagent Manual Assay Kit v2 (Cat #323100, ACD) according to the manufacturer’s protocol with ACD probes for mouse

Serpina3n (Cat #430191; target NM_009252.2, 745-2005bp), DapB (negative control Cat #310043; target EF191515, 414-862bp),

and Ppib (positive control Cat #313911; target NM_011149.2, 98-856bp). The probes were detected using AKOYA Biosciences

fluorophores Opal 620, diluted 1:750 in TSA Buffer (ACD). The slides were counterstained with DAPI (ACD) for 2 min at RT before

mounting.

Western blotting
Equal amounts of protein from RIPA fraction of homogenized tissue lysates were resolved by SDS-PAGE and transferred to PVDF

membranes. After the membranes were blocked, proteins of interest were detected with a primary antibody. The membranes

were then probed with an HRP-conjugated secondary antibody and visualized using the Odyssey infrared imaging system (LI-COR).
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The following primary antibodies were used: anti-Serpin3n (Cat# AF4709, R&D systems, 1:1000), anti-a-tubulin (Cat# T9026, Sigma,

1:5000), and anti-b-actin (Cat# 4967L, Cell Signaling Technology, 1:2000) antibodies.

Serpina3 ELISA
The Serpina3 level in mouse serum was measured using a commercial ELISA kit (Cat# CSB-E13727m, Cusabio) according to the

instructions provided by the manufacturer. Briefly, the serum samples were diluted 500 folds with Sample Diluent buffer and

100 mL of samples were added into the antibody-coated plate for 2 hours incubation at 37�C. 100 mL of Biotin-conjugated detection

antibodies were then added into the plate and incubated for 1 hour at 37�C. The plate was washed and incubated with 100 mL HRP-

avidin for 1 hour at 37�C. After washing, 90 mL TMBwere added into the plate with 20minutes incubation at 37�Cwith protection from

light. 50 mL of the Stop Solution were applied before colorimetric absorbance measurements were taken at 450 nm using a Synergy

HT plate reader (BioTek).

qPCR analysis
Reverse transcription of RNAwas performed using iScript Reverse Transcription Supermix (Biorad). cDNAwas added to a reactionmix

(10 ml final volume) containing gene-specific primers and SYBR green supermix (Biorad). All samples were run in duplicates and were

analyzed with QuantStudioTM 7 Flex Real-Time PCR System (ThermoFisher Scientific). The relative gene expression was normalized to

Gapdh controls and assessed using the 2�DDCT method. Primer sequences and information are as follows (50–30): Gapdh:

AGGTCGGTGTGAACGGATTTG (forward) and TGTAGACCATGTAGTTGAGGTCA (reverse); Serpina3n: Mm.PT.58.6333775 (Inte-

gratedDevice Technology, IDT, CA);Wdfy1: Mm.PT.58.13459241 (IDT);Alkbh6: Mm.PT.58.7880283 (IDT);C4b: Mm.PT.58.42828296.g

(IDT); Pcdhb9: Mm.PT.58.14060200.g (IDT); Plekhb1: Mm.PT.58.10308025 (IDT).

QUANTIFICATION AND STATISTICAL ANALYSIS

RNA and metabolites quantification, quality control and normalization
RNA sequencing reads were processed using the Mayo Clinic RNA sequencing analytic pipeline, MAP-RSeq Version 2.1.1 (Kalari

et al., 2014). Briefly, reads were aligned to the mouse reference genome mm10 using TopHat version 2.1.0 (Kim et al., 2013) and

Bowtie version 1.1.2 (Langmead et al., 2009). Quality control (QC) was performed using RSeQC version 2.6.2 (Wang et al., 2012).

Gene counts were generated using featureCounts version 1.4.6-p5 (Liao et al., 2014). One 12 months APOE2 male sample failed

the pipeline and was excluded from further analysis. For the remaining 143 sample, conditional quantile normalization (CQN) was

applied to raw gene counts to remove unwanted sources of variability caused by GC-content, gene length, sample-specific system-

atic biases and global distortions that affect the overall distribution of gene counts (Hansen et al., 2012). Based on the bimodal

distribution of the CQN-normalized and log2-transformed reads per kb per million (RPKM) gene expression values, genes with

log2 RPKM of �1 or more in at least one sample were considered expressed above detection threshold. Using this selection

threshold, 19,120 genes were included in the downstream analyses. Principal component analysis (PCA) identified two sample

outliers: a 3 month-old APOE4 male, and a 12 month-old APOE4 female, both were excluded from downstream analyses.

Metabolites from 144 serum samples were analyzed using four sets of QC as described in (St John-Williams et al., 2017). First, low/

mid/high level QC samples provided by Biocrates Life Sciences AG were prepared and analyzed on each plate as recommended by

themanufacturer. These QC samples were used for technical validation of each kit plate. Briefly, metabolites with > 40%ofmeasure-

ments below the lower limit of detection (LOD) were excluded from the analysis. To adjust for batch effects, a correction factor for

each metabolite in a specific plate was obtained by dividing the metabolite’s QC global average by the QC average within the plate.

Using each metabolite’s LOD/2 value followed by log2 transformation, we imputed the < LOD values.

Differential gene expression, hierarchical clustering and pathway analysis
Differential gene expression analyses were performed by Partek Genomics Suite (Partek Inc., St. Louis, MO) using CQN-normalized

log2RPKM values. Gene expressions between different APOE genotypes, ages and sexes were compared using Analyses of

Variance models (ANOVA) while adjusting for sequencing depth per sample, which significantly affected the variation in the gene

expression values (mean F ratio > 1.5). The Bonferroni correction was applied to adjust for multiple testing. Differentially expressed

genes (DEG) were defined by thresholds of Bonferroni-adjusted p value < 0.05 and |fold change| (FC) R 1.2. Hierarchical clustering

was performed in MATLAB using the Clustergram function based on standardized Euclidean distance metric. Volcano plots were

generated in MATLAB using –log10 (p value) as y axis and ± log2 (|FC|) as x axis. Pathway analyses of differentially expressed genes

were performed using Ingenuity Pathway Analysis (QIAGEN Inc., https://digitalinsights.qiagen.com/products/ingenuity-pathway-

analysis) (Kr€amer et al., 2014).

Weighted gene co-expression network analysis of the mouse transcriptomes
Weighted gene co-expression network analysis (WGCNA) was performed using residual expression values calculated from adjusting

for sequence coverage. Based on the relationship between power and scale independence, the power of 8 was chosen to build

scale-free topology using signed hybrid network. We set the minimum modules size as 30, and merged modules whose correlation

coefficients were greater than 0.6 (mergeCutHeight = 0.4). Each module was summarized by the first principal component of the
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scaled module expression profiles, termed module eigengene (ME). For each module, the module membership (MM) was defined as

the correlation between gene expression values and ME. Intramodular hub genes are genes with the highest connectivity to other

genes within a given module, and were selected based on the p values of MM. To assess the correlation of modules to APOE

genotype, age and sex, we defined the APOE2 genotype as 0, APOE3 as 1, and APOE4 as 2; 3 months of age as 3, 12 months

as 12, and 24 months as 24; male as 0 and female as 1. Modules were annotated using R package anRichment. MEs of selected

modules were compared between APOE genotypes, ages and sexes using boxplots showing maximum and minimum values after

Tukey’s test. Gene-gene connections among top hub genes were visualized using VisANT version 5.51 (Hu et al., 2013).

Module preservation analysis in human RNA samples
The preservation of the mouse modules were tested in the RNA sequencing data of the ROSMAP prefrontal cortex and Mayo Clinic

temporal cortex and cerebellum human post mortem brain samples. With the prefrontal cortex data from ROSMAP, we performed

CQN normalization on the raw genes counts of these samples. Based on the bimodal distribution of the CQN-normalized and log2-

transformed RPKM gene expression values, we removed genes whose average expressions in AD, MCI and control were all < 0,

leaving 15,439 expressed genes. With the available temporal cortex samples from Mayo Clinic cohort, we performed CQN normal-

ization on the raw genes counts of these samples, and removed genes whose average expressions in AD and control were both < 1,

leaving 17,176 expressed genes.We calculated residual expression values of these genes from adjusting for the effects of RIN, which

significantly contributed to the variation of the gene expression values (mean F ratio > 1.5). For the available cerebellum samples from

Mayo Clinic cohort, after CQN normalization of the raw gene counts, we removed genes whose average expressions in AD and

controls were both < 1, leaving 21,459 expressed genes. We calculated residual expression values of these genes from adjusting

for the effects of RIN (mean F ratio > 1.5). The human genes were matched to the mouse gene names in order to perform module

preservation analysis. Separate module preservation analyses were performed for the three datasets using WGCNA. In all analyses,

module definitions from the mouse network were used as reference to calculate the z-summary statistics for each module. Z

summary score > 2 suggests moderate preservation, and Z summary score > 10 suggests strong preservation. The MEs of selected

modules were compared between disease groups using Mann-Whitney U tests.

Module validation in human proteomics samples
We downloaded the previously published protein expression profiles from human dorsolateral prefrontal frontal cortex and anterior

cingulate gyrus and calculated residual expression values of these samples from adjusting for the effects of batch and race, both

significantly contributing to the variation of the protein expression values (mean F ratio > 1.5). To validate the pink and blue mouse

modules in the human proteomics datasets, we matched the protein names to the module gene names, and calculated MEs of the

matched proteins using WGCNA. The MEs of the pink and blue modules were compared between AD and control samples using

Mann-Whitney U tests.

Differential metabolite expression analysis
Differential metabolite expression analyses were performed using Partek Genomics Suite (Partek Inc., St. Louis, MO). Metabolite ex-

pressions between differentAPOE genotypes, ages, and sexeswere compared using ANOVA. TheBonferroni correctionwas applied

to adjust for multiple testing. Differentially expressed metabolites (DEM) were defined by thresholds of Bonferroni-adjusted p

value < 0.05 and |FC|R 1.2. Hierarchical clusteringwas performed inMATLAB using theClustergram function based on standardized

Euclidean distance metric.

Metabolite co-expression network analysis
WGCNAwas performed using themetabolite expression values. Based on the relationship between power and scale independence,

the power of 16 was chosen to build scale-free topology using unsigned network. We set the minimum modules size as 5, and

merged modules whose correlation coefficients were greater than 0.85 (mergeCutHeight = 0.15). Each module was summarized

by ME. Hub metabolites were selected based on the p values of MM. To assess the correlation of modules to APOE genotype,

age and sex, we defined the APOE2 genotype as 0, APOE3 as 1, and APOE4 as 2; 3 months of age as 3, 12 months as 12, and

24 months as 24; male as 0 and female as 1. MEs of selected modules were compared between APOE genotypes, ages, and sexes

using boxplots showing maximum and minimum values after Tukey’s test. The connections among top hub metabolites were

visualized using VisANT version 5.51 (Hu et al., 2013).

Statistical analyses for validation experiments
All data were reported as mean values ± SEM unless elsewise indicated. In order to ensure that results were valid in the presence of

non-normal distributions, or differing variances between groups, nonparametric Mann-Whitney tests and Kruskal-Wallis tests with

Dunn’s multiple comparison tests were used to compare outcomes. With sample size < 8, one-way ANOVA was used to compare

outcomes among groups. All statistical tests were two-sided. The statistical tests used for each analysis, the numerosity of the

experiments, and the significance levels were reported in the caption of each figure.
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DATA AND CODE AVAILABILITY

Mouse transcriptomic and metabolomics data are available via the AD Knowledge Portal (https://adknowledgeportal.org). The AD

Knowledge Portal is a platform for accessing data, analyses, and tools generated by the Accelerating Medicines Partnership

(AMP-AD) Target Discovery Program and other National Institute on Aging (NIA)-supported programs to enable open-science prac-

tices and accelerate translational learning. Data is available for general research use according to the following requirements for data

access and data attribution (https://adknowledgeportal.synapse.org/#/DataAccess/Instructions).

See the following links for data access:

Transcriptomics: https://doi.org/10.7303/syn20808171

Metabolomics: https://doi.org/10.7303/syn20808172

For additional information, see the APOE-TR study (https://adknowledgeportal.synapse.org/Explore/Studies?Study=syn8391648)

ADDITIONAL RESOURCES

Our mouse transcriptomic and metabolomics datasets are also available and can be visualized in the website https://www.gbulab.

com/searchlinks.
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