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Abstract: Visceral adipose tissue derived serine protease inhibitor (vaspin) is a member of the serpin
family and has been shown to have beneficial effects on glucose tolerance, insulin stability as well
as adipose tissue inflammation, parameters seriously affected by obesity. Some of these effects
require inhibition of target proteases such as kallikrein 7(KLK7) and many studies have demonstrated
vaspin-mediated activation of intracellular signaling cascades in various cells and tissues. So far,
little is known about the exact mechanism how vaspin may trigger these intracellular signaling events.
In this study, we investigated and characterized the interaction of vaspin with membrane lipids and
polyphosphates as well as their potential regulatory effects on serpin activity using recombinant
vaspin and KLK7 proteins and functional protein variants thereof. Here, we show for the first time that
vaspin binds to phospholipids and polyphosphates with varying effects on KLK? inhibition. Vaspin
binds strongly to monophosphorylated phosphatidylinositol phosphates (PtdInsP) with no effect on
vaspin activation. Microscale thermophoresis (MST) measurements revealed high-affinity binding to
polyphosphate 45 (Kp: 466 + 75 nM) and activation of vaspin in a heparin-like manner. Furthermore,
we identified additional residues in the heparin binding site in 3-sheet A by mutating five basic
residues resulting in complete loss of high-affinity heparin binding. Finally, using lipid overlay
assays, we show that these residues are additionally involved in PtdInsP binding. Phospholipids play
a major role in membrane trafficking and signaling whereas polyphosphates are procoagulant and
proinflammatory agents. The identification of phospholipids and polyphosphates as binding partners
of vaspin will contribute to the understanding of vaspins involvement in membrane trafficking,
signaling and beneficial effects associated with obesity.
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1. Introduction

The visceral adipose tissue derived serine protease inhibitor (vaspin, SERPINA12 according to the
serpin nomenclature [1]) was first identified in the Otsuka Long-Evans Tokushima fatty (OLETF) rat
type 2 diabetes model [2]. Vaspin serum levels are significantly higher in patients with obesity and
type 2 diabetes [3,4] and multiple lines of evidence indicate a compensatory and counteracting role
in obesity-related disorders and diseases (reviewed in [5]). Vaspin administration improves glucose
tolerance and adipose tissue inflammation in obese mice [6,7]. In the brain, central application of vaspin
reduced food intake and improved insulin sensitivity by regulating hepatic glucose production and
insulin signal transduction [8-10]. On the cellular level, vaspin was shown to exhibit anti-apoptotic and
anti-atherogenic potential in endothelial and smooth muscle cells [11-13] as well as anti-inflammatory
effects in adipocytes [14,15] and skin [16]. In vivo, transgenic overexpression of vaspin protects mice
from diet-induced adipose tissue inflammation while knockout mice exhibit deterioration of metabolic
functions in obesity [17]. Further anti-inflammatory effects in the liver have been in part associated
with vaspins interaction with the ER chaperon GRP78 [17].

There are two protease targets for vaspin known so far, both kallikrein-related peptidases,
kallikrein 7 (KLK7) and kallikrein 14 (KLK14) [7,18]. Vaspin inhibits target proteases by the classical
serpin suicide-substrate mechanism. The reactive center loop (RCL) is exposed on top of the vaspin
molecule and serves as bait for the target proteases. After RCL cleavage, the RCL is inserted into
the central 3-sheet A and the protease is translocated to the bottom of the vaspin molecule forming
a covalent complex. The active center of the protease is distorted and hence the protease becomes
inactivated [19]. Both, KLK7 and KLK14 cleave the vaspin RCL after Met378 [18,20]. Improvement
of glucose tolerance is dependent on vaspins serpin function and inhibition of KLK7 by vaspin is
hypothesized to prolong insulin action in the circulation and thereby contributes to improve glucose
tolerance in vivo, as insulin was found to be a substrate of KLK7 [7]. Furthermore, knockout of KLK7
in adipose tissue preserved insulin sensitivity in obesity by counteracting adipose tissue inflammation
under high-fat diet in vivo [21]. Both kallikrein proteases are also involved in the process of skin
desquamation. Dysregulated proteolytic activity, especially of KLK?7, is a major cause for inflammatory
skin diseases such as Netherton syndrome [22] and psoriasis [23]. Additionally, vaspin is highly
expressed in human skin and may contribute to regulation of kallikrein activities in this tissue [24].

Previously, we demonstrated binding of vaspin to the negatively charged glycosaminoglycan
heparin. Binding of the glycosaminoglycan chain accelerates vaspin/KLK7 complex formation via
a bridging mechanism [25], bringing serpin and protease into close proximity and preferential
orientation [26]. In contrast to other serpins such as heparin cofactor II (SERPIND1) [27], plasminogen
activator inhibitor 1 (PAI, SERPINE1) [28] or antithrombin (AT3, SERPINC1) [29], which bind heparin
at the opposite side of the serpin molecule (in helix D), heparin binds to vaspin at a unique positively
charged patch located in the central B-sheet A. Residues Arg?!! and Lys®»” are key residues mediating
high-affinity heparin binding by vaspin (Kp: 21.6 + 2.5 nM) [25]. Furthermore, we have provided
evidence that a substantial amount of secreted vaspin is bound to heparan sulfates of the extracellular
matrix [25].

In this study, we investigated the interaction of vaspin with two other components of the
cell surface, phosphatidylinositol phosphates (PtdInsP) and polyphosphates (polyP). PtdInsPs are
important components of the plasma membrane and a group of negatively charged phospholipids
with different phosphorylation patterns of the inositol head group [30]. They are involved in diverse
functions such as membrane reorganization, endocytosis and signal transduction [31]. PolyPs on
the other hand are highly negatively charged linear polymers of up to 800 monophosphate units in
mammalian cells [32]. These have been shown to bind to serpins and accelerate protease inhibition in
a heparin-like manner, e.g., for protease Cls by serpin C1 esterase inhibitor [33]. Furthermore, polyPs
were shown to mediate procoagulant as well as proinflammatory effects [34]. The identification of
new vaspin-binding molecules associated with membrane trafficking, and cellular signaling may help
better understanding molecular mechanisms of cellular and tissue-specific effects reported for vaspin.
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2. Results

2.1. Vaspin Binds Membrane Phospholipids Phosphatidylinositol Phosphates and Phosphoserine

Vaspin is a highly basic protein with an isoelectric point (pI) of 9.3 and we have previously
reported its mechanism of binding to heparin and heparan sulfate proteoglycans of the extracellular
matrix [25]. Here, we investigated interactions of vaspin with negatively charged components of the
plasma membrane, focusing on phospholipids and other lipid species of the cell membrane. Simple
lipid overlay assays demonstrated specific binding of vaspin to phosphatidylserine (PS; Figure 1A)
and phosphoinositides, especially monophosphorylated phosphatidylinositol phosphates (PtdInsPs)
(Figure 1B). Weak signals were obtained for cardiolipin (CL) and sulfatide (S), while diacylglycerol
(DAG), phosphatidyl-ethanolamine (PE), -cholin (PC), -glycerol (PG), as well as cholesterol (Ch) and
many tested sphingolipids gave no detectable signal (Figure 1A).

“ ) D 4
A B C L P a0’ P NS pmolispot
N
TG sG M -GM1 Ptdins Ptdins
N Y
DAG S1P D-GD3 ® runsEP @9 v Ptdins(3)P
e
- PSG s 1 @ ® runs@p Qo oo PtdIns(4)P
c B P ® rensop 'Y X X K Ptdins(5)P
PS
Ch y
= Ptdins(3,4)P, ® o O Ptdins(3,4)P,
F& Lyso-PC
SPC 2 B Pdins(3,5)P, ® o Ptdins(3,5)P,
PC
LPA PC " X
PG O &  Ptdins(4,5)P, o © Ptdins(4,5)P,
M Blank
cL 4 & Pudins(3,4,5)P, PtdIns(3.4,5)P,

Figure 1. Vaspin affinity for immobilized membrane lipids. Shown are lipid overlay assays analyzing
binding of vaspin to a variety of membrane lipids with 100 pmol/spot of lipid immobilized on
each spot and 1 ug/mL vaspin was used for incubation of (A) membrane lipid and sphingo
lipid strips, (B) PtdIns lipid strip and (C) PtdIns array with serial dilutions of different PtdInsPs
from 100 pmol down to 1.56 pmol/spot as indicated. TG: triglyceride, DAG: diacylglycerol, PA:
phosphatidic acid, PS: phosphatidylserine, PE: phosphatidylethanolamine, PC: phosphatidylcholine,
PG: phosphatidylglycerol, CL: cardiolipin, SG: sphingosine, S1P: sphingosine-1-phosphate,
PSG: phytosphingosine, C: ceramide, SM: sphingomyelin, SPC: sphingosylphosphorylcholine,
LPA: lysophosphatidic acid, Myr: myriosine, M-GM1: monosialoganglioside-GM1, D-GD3:
disiaganglioside-GD3, S: sulfatide, P: psychosine, Ch: cholesterol, PtdIns: phosphatidylinositol,
PtdIns(3)P: phosphatidylinositol (3)-phosphate, PtdIns(4)P: phosphatidylinositol (4)-phosphate,
PtdIns(5)P: phosphatidylinositol (5)-phosphate, PtdIns(3,4)P;: phosphatidylinositol (3,4)-bisphosphate,
PtdIns(3,5)P,:  phosphatidylinositol (3,5)-bisphosphate, PtdIns(4,5)P,:  phosphatidylinositol
(2,4)-bisphosphate, PtdIns(3,4,5)P3: phosphatidylinositol (3,4,5)-trisphosphate.

Using a lipid array strip with increasing amounts of immobilized PtdInsPs confirmed these
results showing saturable binding especially for the three monophosphorylated PtdInsPs within the
concentration range tested (Figure 1C). Medium affinity was detected for PtdIns(3,5)P, and weak
binding for the other two bisphosphorylated PtdInsPs PtdIns(3,4)P; and PtdIns(4,5)P;,. PtdIns(3,4,5)P3
was bound with minimal affinity. There was no detectable signal for phosphatidylinositol indicating
importance of the number and position of phosphate moieties for vaspin binding.

2.2. PtdInsPs Do Not Affect KLK7 Inhibition by Vaspin

Since the most efficient binding was observed for monophosphorylated PtdInsPs, we studied
potential regulatory effects of the latter on the inhibition reaction of vaspin and target protease KLK7
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by analyzing complex formation via SDS-PAGE. As previously shown, vaspin forms a stable complex
with KLK7 with a molecular weight of 70 kDa. Furthermore, N-terminally and reactive center loop
(RCL) cleaved vaspin bands appear at molecular weights of 44 and 42 kDa (Figure 2A). In contrast to
heparin serving as a positive control, we did not observe any accelerating effect on complex formation
for all PtdInsPs tested. Densitometric quantification for 10-fold PtdInsP rather revealed a decrease in
complex formation (Figure 2B).
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Figure 2. Influence of PtdInsPs on vaspin/KLK7 complex formation and KLK7 activity. (A) SDS-PAGE
analysis of vaspin/KLK7 complex formation. Vaspin wt was incubated with x-fold excess of PtdInsPs
(0.1, 1 and 10-fold) or unfractionated heparin (ufh, 10-fold) as indicated. Notable and indicated bands
are: 1-vaspin-protease complex; 2-full-length vaspin; 3-N-terminally cleaved vaspin; 4-RCL- and
N-terminally cleaved vaspin; 5-KLK7. KLK7 was incubated with vaspin (at a molar ratio 3:1) for
2 min. Cp: control reaction after t = 0 min. (B) Densitometric quantification of complex formation
with and without PtdInsPs or ufh. Presented is the relative increase of complex band intensity
as x-fold over control (vaspin without PtdInsP). (C) Inhibition of KLK7 by vaspin was measured
under pseudo-first-order conditions (ligand/serpin ratio of 10). Presented is the relative increase in
second-order rate constant as x-fold over control (without PtdInsP or heparin). (D) KLK7 activity was
measured in presence of 10 or 100-fold excess of PtdInsPs. Presented is the relative KLK7 activity as
x-fold over control (without PtdInsPs). Data are presented as means + SEM. Statistical significance was
determined by one-way ANOVA followed by Dunnett’s post-hoc test. * p < 0.05, ** p < 0.001.

Interestingly, we observed more RCL-cleaved vaspin in the presence of PtdIns(3,4,5)P5 although
only weak binding indicated by the lipid overlay assay. Therefore PtdIns(3,4,5)P3 seems to affect
RCL cleavage by binding to KLK7. Additionally, the estimated stoichiometry of inhibition (SI) was
increased 3-fold. In order to more precisely evaluate PtdInsPs effects on vaspins inhibitory activity,
we measured KLK7 inhibition rates in the presence of 10-fold excess of PtdInsPs. Heparin again
served as an accelerating positive control. These data confirmed the gel-based results, as PtdInsPs did
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not increase the second-order rate constant of KLK?7 inhibition by vaspin (Figure 2C), while heparin
significantly increased the second-order rate constant 5-fold as shown before [25].

To exclude regulatory effects of PtdInsPs on KLK7 we measured KLK7 activity in the presence
of different concentrations of PtdInsPs. We did not observe any effect of PtdInsPs on KLK7 activity
(Figure 2D).

2.3. High-Affinity PolyP 45 Binding Accelerates Vaspin-KLK7 Complex Formation

Previous studies have demonstrated polyphosphates activate the inhibitory action of serpin
towards Cls with submicromolar affinity (Kp: 450 nM) in a heparin-like manner [33]. Here, we
analyzed vaspin binding to polyphosphates with different length (polyPs and polyPss) and the
potential acceleration of the inhibition reaction for KLK7. The triphosphate did not affect complex
formation while a clear dose-dependent increase in complex band intensity was detected up to an
excess of 100-fold of polyP4s (100 uM, Figure 3A/B). With higher amounts of polyP,s, the complex
band intensity decreased again, revealing a bell-shaped dose-response curve, as previously observed
for heparin. Furthermore, a clear shift in electrophoretic mobility was observed for vaspin in the
presence of increasing polyP45 concentrations. In line with these observations, the second-order rate
constant for KLK? inhibition increased 5-fold in the presence of polyPs5 (Figure 3C). These findings
demonstrate that longer polyphosphate chains are able to accelerate protease inhibition by vaspin via
the bridging mechanism.
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Figure 3. Influence of polyphosphates on complex formation. (A) Shown is complex formation of
vaspin with KLK7 (protease/serpin molar ratio 3:1) with increasing concentrations of polyP; and
polyPys5 (0.8—400-fold as indicated) after 1 min. Notable and indicated bands are: 1-vaspin-protease
complex; 2-full-length vaspin; 3-N-terminally cleaved vaspin; 4-RCL- and N-terminally cleaved vaspin;
5-KLK?7. (B) Densitometric quantification of complex band intensities in relation to ligand/vaspin
ratio of SDS gels. (C) Inhibition of KLK7 by vaspin under pseudo first-order conditions in presence
of polyP,5 (polyP/serpin ratio of 10:1). Presented is the second-order rate constant as x—fold over
control (without polyP). (D) Binding of polyP,s5 to fluorescently labeled vaspin in submicromolar range.
The curve was derived from the measurement of the thermophoretic mobility after titration of polyPy5
to a constant vaspin concentration. Data are presented as means + SEM. Statistical significance was
determined by Student’s two-tailed ¢-test. ** p < 0.01.
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To determine the affinity of vaspin for polyPss we performed microscale thermophoresis.
This revealed high affinity binding with a dissociation constant (Kp) of 466 + 75 nM for the interaction
of vaspin with polyPys (Figure 3D).

2.4. PtdInsPs and Heparin Share the Same Binding Site

Previously, we identified key residues mediating high-affinity heparin binding in Arg?'! and
Lys®? with the R211A/K359A variant exhibiting a 10-fold decrease in heparin affinity. Still, residual
heparin binding was still observable indicating that more residues are involved in heparin binding [25].
To investigate whether this basic patch at the central sheet A is also relevant for the interaction with the
here newly identified binding molecules, we mutated all basic residues within the heparin binding site.
This yielded the K188A/K131A/R211A/K359A/R363A variant (referred to as non-heparin binding (NHB)
variant). We first determined thermal stability to exclude altered structural integrity and stability due
to the loss of five charged residues. The NHB variant had a less cooperative and sharp melting point
compared to the wild type, but the melting temperature was identical (74 °C, Figure 4A) indicating a
very stable and folded enzyme structure.
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Figure 4. Investigation of the PtdInsP binding site using a non-heparin binding (NHB) vaspin variant.
(A) Thermal stability of wt vaspin and NHB variant (K188A/K131A/R211A/K359A/R363A). Denaturation
was observed by nanoDSF plotting the intrinsic tryptophan and tyrosine fluorescence ratio of 350
nm/330 nm against temperature. (B) Complex formation of wt vaspin, R211A/K359A and NHB variant
in the absence (—) and presence of heparin (+; heparin/vaspin ratio of 10:1) for 1 min. Notable and
indicated bands are: 1-vaspin-protease complex; 2-full-length vaspin; 3-N-terminally cleaved vaspin;
4-RCL- and N-terminally cleaved vaspin; 5-KLK?. (C) Binding of the low-molecular weight heparin
clexane to wt vaspin, R211A/K359A and NHB variant. Data from the wt and R211A/K359A was
originally published in the Journal of Biological Chemistry: Ulbricht D, Oertwig K, Arnsburg K,
Saalbach A, Pippel ], Strater N and Heiker JT. Basic Residues of 3-Sheet A Contribute to Heparin
Binding and Activation of Vaspin (Serpin A12). | Biol Chem. 2017, 292, 994-1004, © the American
Society for Biochemistry and Molecular Biology. Curves were derived from changes in fluorescence (wt
or R211A/K359A) or thermophoretic mobility (NHB) after titration of enoxaparin to a constant vaspin
concentration. (D) Lipid strips incubated with wt vaspin (alone (=) or in presence of heparin, with a
molar ratio serpin/heparin of 1:1 or 10:1 as indicated) and vaspin variants. NHB: non-heparin binding
variant, con: control, uth: unfractionated heparin.
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In the following, we analyzed the effect of heparin on complex formation for variants R211A/K359A
and NHB. Activity of the two variants without heparin was comparable to wild type (Figure 4B).
We observed diminished complex acceleration by heparin for the NHB variant compared to
R211A/K359A variant and the wild type (Figure 4B, lane ‘+').

Additionally, we investigated heparin binding of vaspin and variants by microscale thermophoresis.
The dissociation constant of the NHB variant for the low-molecular weight heparin enoxaparin was
significantly decreased by 10-fold compared to the R211A/K359A variant and by 100-fold compared to
the wild type (12 uM vs. 1 uM vs. 100 nM, respectively; Figure 4C), demonstrating complete loss of
high affinity binding to heparin.

To investigate PtdInsP binding, vaspin wild type (free and in presence of heparin) and
non-heparin-binding variants were analyzed using lipid overlay assays. The presence of heparin (molar
ratios of heparin/vaspin of 1 and 10) and mutations of heparin binding residues (R211A/K359A or
NHB variant) decreased vaspin binding to PtdInsPs (Figure 4D). Notably, the presence of an equimolar
concentration of heparin (21 nM and thus corresponding to the Kp for heparin) already significantly
prevented phospholipid binding.

The five basic residues, which were mutated in the NHB variant, generate a distinct strong positive
electrostatic potential (Figure 5). In the crystal structure of vaspin, a sulfate ion is bound to this site,
coordinated by Lys'®, Arg?!! and Arg3®® (Figure 5D) [7]. Vaspin was crystallized in the presence of
0.1 M ammonium sulfate. It appears likely that one of the phosphate ions of polyphosphates or the
PtdInsPs binds in a similar manner to this binding site.
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Figure 5. Heparin and phosphate ion binding site of vaspin. (A,B) Electrostatic potential at the
molecular surface of vaspin (PDB 4IF8) [7] as viewed from the opposite sides. A large area of strong
positive potential is visible in the orientation depicted in (B). Potential values < —8 kT/e are colored in
red and values > +8 kT/e in blue. The electrostatic potential was generated with the program APBS [35].
The protein orientation in (B) is the same as that of (C), showing the protein fold and the basic residues
generating the strong positive electrostatic potential. The reactive center loop (RCL, red) is flexible in
the crystal structure and modeled here for orientation. Five basic resides are present in the area of the

-

distinct positive potential (C) and a sulfate ion is coordinated by three side chains (D).
3. Discussion

Previous work has already provided evidence for vaspin binding to heparin and heparan sulfate
proteoglycans in the extracellular matrix [25]. Here, we investigated phosphorylated membrane lipids as
potential novel binding partners for vaspin. Our study revealed strong binding to monophosphorylated
PtdInsPs, while bis- as well as triphosphorylated PtdInsPs were weakly bound and binding of
unphosphorylated PtdIns was not observable. This indicates that binding of vaspin to PtdInsPs is
both dependent on the presence and localization of the charged phosphate moiety of the phospholipid,
as multiple phosphate groups, e.g., of PtdIns(3,4,5)P; rather decreased affinity. We tried to determine
affinity by MST measurements using PtdInsPs up to concentrations of 50 uM, but could not obtain
binding curves (data not shown). These observations together with heparin competition in the lipid
overlay assay indicate affinity for PtdInsPs in the higher uM range. These findings are in line with
previously reported affinity of protein C inhibitor (PCI, SERPINAD5) for PtdInsP [36]. So far, vaspin and
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PCI are the only serpins, which were shown to bind to membrane lipids and both with highest affinity
for monophosphorylated PtdInsPs. Other heparin binding serpins such as ol-antitrypsin (A1AT,
SERPINA1) and antithrombin (AT3, SERPINC1) do not bind to membrane lipids [36]. Phospholipid
binding is often mediated through specific domains such as pleckstrin homology or phox homology
domains, which preferably bind bis- and triphosphorylated PtdInsPs (reviewed in [37]). Although
vaspin does not possess such domains, we provide experimental evidence that monophosphorylated
phospholipid binding is mediated via basic residues of the heparin binding site of vaspin. Both, the
presence of heparin and mutations of heparin-binding basic residues decreased affinity to PtdInsPs.
Wahlmiiller et al. as well as Malleier et al. also demonstrated the involvement of the heparin binding
site of PCI in membrane lipid binding [36,38]. Thus, our results provide strong evidence that the
heparin binding site of vaspin is involved in PtdInsP binding with electrostatic interactions and
selective stereospecific recognition of the PtdInsP headgroup mediating vaspin binding. PtdInsPs
recognition without a specific domain has been previously shown for a variety of other proteins, e.g.,
the MARCKS (myristoylated alanine-rich C-kinase substrate) proteins [39,40], c-Src (cellular sarcoma
non-receptor protein tyrosine kinase; [41]) or GAP43 (growth-associated protein 43; [40,42]).

The biological function of PtdInsPs is diverse and ranges from signal transduction to membrane
transport (reviewed in [31]) with phospholipids recruiting proteins to the plasma membrane.
Dysregulation of PtdInsP dynamics or impairment of protein binding to PtdInsPs contribute to
human pathologies such as cancer or diabetes [43,44]. The interaction of proteins with membrane
lipids induces recruitment and activation of the endocytic and secretory system [45-47] where PtdInsPs
are distinctly enriched in specific cellular compartments (reviewed in [37]). Intracellular trafficking
is mediated by PtdIns(4)P, representing the regulatory phospholipid in the Golgi apparatus, while
PtdIns(3)P is mainly located in the endosomes [48]. Both serve as co-receptors for the recruitment of AP-1
and AP-2 clathrin adaptors [49] and therefore are relevant during transfer from the Golgi to the plasma
membrane and subsequent secretion to the extracellular space. PtdIns(4)P also serves as precursor for
PtdIns(4,5)P; [50] and the latter is enriched in the plasma membrane and essential for clathrin-mediated
endocytosis. Together with PtdIns(3,4,5)P; it is also involved in transduction of signaling events and
activation of intracellular kinases such as protein kinase B (AKT) and phosphoinositol-dependent
kinase 1 (PDK1) [51]. Therefore, vaspins interaction with cell surface PtdInsPs may contribute to
activation of intracellular signaling events such as the AKT pathway in endothelial [11] and liver
cells [17] or adipocytes [52], whether dependent or independent of insulin. This has also been proposed
for the PtdInsP-binding serpin PCI, which has been shown to activate the AKT-pathway, acting as
an extracellular but also intracellular serpin [36]. It is unclear, whether vaspin effects on intracellular
signaling pathways are furthermore mediated by cell-surface receptors. Additionally, intracellular
functions of vaspin, as proposed for PCI [36] or as reported for nuclear «l-antichymotrypsin (ACT,
SERPINA3) on cell-cycle progression in hepatic cells [53] have not been investigated so far and may
also rely on binding of cytoplasmic membrane lipids. Vaspin binding to bis- and triphosphorylated
PtdInsPs was rather weak, yet effects on KLK7-mediated RCL cleavage by PtdIns(3,4,5)P; indicate
that binding of PtdIns(3,4,5)P3 by vaspin may be underestimated. Still, we found no indications that
PtdInsPs play a role in accelerating KLK?7 inhibition by vaspin. In contrast to other serpins such as
antithrombin or heparin cofactor II, no allosteric activation by low-molecular weight cofactors has
been described for vaspin so far. This is in line with previous results demonstrating a prerequisite of
>20 units of the polysaccharide chain of glycosaminoglycans for the bridging effect and acceleration
of the inhibition reaction [25]. This was also described for other serpin-protease combinations such
as antithrombin-factor Xa, antithrombin-thrombin and protein Z-dependent protease inhibitor-factor
Xa [54-56] as a heparin chain length of >20 is necessary for the bridging mechanism. It remains unclear
whether interaction of vaspin with KLK7 and PtdInsPs occurs simultaneously in vivo. Together with
the established inhibition of target proteases and binding of cell surface receptors, the interaction with
membrane lipids has to be considered in future work investigating cellular functions of vaspin.
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Polyphosphates are another class of highly and negatively charged molecules. Previous studies
have shown that the serpin Cl-esterase inhibitor (C1-INH, SERPING]1) is activated by polyPi39 in a
dose-dependent manner in contrast to monophosphates [33] and also inhibition of factor VII-activating
protease (FSAP) by plasminogen activator inhibitor 1 (PAI, SERPINE1) is increased by polyPg¢s [57].
Here, we reported for the first time high-affinity binding of vaspin to polyP,s with a Kp of 466 nM,
which is comparable to results obtained for C1-INH [33]. KLK? inhibition was unaffected by short chain
polyP3; while a dose-dependent increase of complex formation was detected in presence of polyPys.
The polyP-mediated increase in inhibition rate was equal to the heparin-induced rate-acceleration,
as also previously observed for C1-INH [33].

Polyphosphates have been found present in various cell types, such as platelets [58], mast cells [59]
and also tumor cells [60]. When platelets become activated, part of the polyP pool is released as
short chain polyphosphate polymers of 60-100 residues [34], while others are presented as polyP
nanoparticles on the cell surface of activated platelets and mast cells [61]. Acting as protein-like
chaperons, they play a protective role in stress-induced protein aggregation and proteostasis (reviewed
in [62]). Contrary, they function as procoagulant as well as proinflammatory mediators in activated
platelets [34,61] and induce apoptosis in endothelial cells [63]. Expression of vaspin as well as
knockout of KLK?7 in adipose tissue has been shown to counteract local and systemic inflammation
in obesity [17,21]. Here, binding of polyP may guide and accelerate vaspins interaction with target
proteases such as KLK7 and thus regulate proinflammatory proteolytic activity. Furthermore, it
may also antagonize direct inflammatory action of polyP by acting as a scavenger and preventing
interaction with cell surface receptors such as receptor for advanced glycation end products and P2Y1
purinergic receptor [64]. Both consequences of polyP binding may contribute to previously report
anti-inflammatory effects in obesity, and experiments using non-binding vaspin variants in future
studies will address these potential contributions of interaction with cell surface molecules. So far,
a physiological link between polyP, vaspin and potentially obesity has not been described. PolyP
concentrations of 850 pmol/mg protein have been measured in human plasma [65]. A recent study,
using a new method of determining plasma polyP in cryoprecipitate, for the first time reported plasma
polyP levels in a cohort of 200 metabolically healthy subjects in three body mass index categories
(normal weight, overweight and obese) [66]. Surprisingly, they found a negative correlation of plasma
polyP levels and BMI, yet it remains to be seen, whether this negative correlation holds true in patients
suffering from obesity-associated metabolic diseases such as dyslipidemia, hyperglycemia, insulin
resistance or diabetes.

Together, we identified novel non-protease binding partners of vaspin. These findings add to
the expanding signaling repertoire of this intriguing member of the serpin family and binding to
these components should be considered in addition to protease inhibition and cell-surface receptor
binding when investigating and interpreting intercellular effects mediated by vaspin in various cells
and tissues.

4. Materials and Methods

4.1. Materials

Human KLK7 and bacterial thermolysin were purchased from Biolegend and R&D systems,
respectively. Fluorogenic peptide NFF3 (Mca-RPKPVE-Nva-WR-K(Dnp)-NH;) was from AnaSpec
and peptide substrate ortho-aminobenzoic acid (Abz)-KLFSSK-glutaminyl N-[2,4-dinitrophenyl]
ethylenediamine (Q-EDDnp) was a kind gift of Prof. Dr. Maria A. Juliano (Escola Paulista de Medicina,
Universidade Federal de Sao Paulo, Brazil). Phosphatidylinositol phosphates (PtdInsPs) and lipid
strips were from Echelon Biosciences. Unfractionated heparin (ufh) with an average molecular weight
of 18 kDa, sodium triphosphate pentabasic (polyPs3) and sodium phosphate glass, type 45 (polyPs5)
were from Sigma-Aldrich. Enoxaparin (Clexane™) was from Sanofi. Recombinant human vaspin
wild type and variants as well as human KLK7 was expressed in and purified from E. coli as described
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previously [20]. The non-heparin binding (NHB) vaspin variant K188A/K131A/R211A/K359A/R363A
was generated by site directed mutagenesis, sequentially adding the mutations for the amino acid
exchanges R363A, K131A and K188A to the previously described R211A/K359A variant [25].

4.2. Lipid Overlay Assays

Hydrophobic membranes (spotted with 100 pmol of various lipid species per spot) or PtdIns
arrays (with serial dilutions of different immobilized PtdIns ranging from 100 to 1.56 pmol/spot) were
blocked with Pierce™ Protein free (TBS) blocking buffer (Thermo Scientific, Waltham, MA, USA)
at room temperature for 1 h. Then, membrane lipid strips were incubated with 1 pg/mL vaspin
at room temperature for 1 h. Incubation with mouse anti-vaspin antibody VP63 (AdipoGen) was
followed by anti-mouse antibody (CST#7076P2, Cell Signaling Technology, Danvers, MA, USA). Bound
protein was detected via enhanced chemiluminescence using a Gbox documentation system (Syngene,
Bangalore, India).

4.3. Complex Formation

Complex formation of vaspin and KLK7 was performed as previously described [20]. Vaspin was
incubated with 3 uM recombinant KLK7 (molar ratio protease/serpin 3:1) in the presence or absence of
PtdInsPs (molar ratio PtdInsPs/vaspin 0.1, 1 or 10), ufth (molar ratio ufth/vaspin 10) or polyP (polyP; or
polyP45 1-200 molar excess) for 1 min.

Proteins were separated using SDS-PAGE and gels were stained using Coomassie Brilliant Blue.
Band intensities were determined by densitometric quantification (Gene tools software, Syngene) and
were normalized to the reaction without PtdIns, ufh or polyP. Stoichiometry of inhibition (SI) was
estimated from band intensities as previously described [20].

4.4. Kinetics

In order to determine inhibition rates of vaspin for KLK7, a discontinuous assay was applied
as described before [20]. Briefly, commercial KLK7 was activated according to the manufacturer’s
protocol. Inhibition of KLK7 by vaspin was measured under pseudo-first-order conditions using
19.2 nM KLK7, vaspin, PtdInsP/ufh/polyP (molar ratio 1:10:100) and 30 uM fluorogenic peptide NFF3
or 9 uM ABZ. Residual KLK7 activity was measured after 1 min (in the presence of ufh or polyP) or
after 20 min of incubation time on a FlexStation3 Multi-Mode Microplate Reader (Molecular Devices,
San Jose, CA, USA). The second-order rate constants were determined as described previously [20]
and normalized to the reaction without ligand.

4.5. Microscale Thermophoresis (MST)

MST measurements were performed as described previously [25]. Human vaspin and vaspin
variant K188A/K131A/R211A/K359A/R363A were labeled using the Monolith NT protein amine-reactive
labeling kit RED-NHS (NanoTemper Technologies, Munich, Germany). Average labeling efficiency
was 1 and labeled proteins were stored in the MST buffer (50 mM Tris, 150 mM NaCl, 10 mM MgCl,
and 0.05% Tween 20, pH 7.6) at —20 °C. Labeled vaspin proteins were titrated with serial dilutions
of enoxaparin (2.6 nM-1.4 mM in MST buffer with 0.1% (w/v) BSA) or polyPss5 (4.7 nM-39 uM in
MST butffer). Binding of enoxaparin and polyP,5 was measured using 100 nM or 50 nM of labeled
protein, respectively. All measurements were performed at room temperature in premium capillaries
(NanoTemper Technologies) at least in triplicates. Data was analyzed using NanoTemper analysis
software and GraphPad Prism?7 (GraphPad) determining thermophoretic mobility. The fitting function
is derived from the law of mass action as previously described in detail [67,68].
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4.6. Nano Differential Scanning Fluorimetry (NanoDSF)

Thermal stability was determined using the Prometheus NT.48 device as previously described [69].
Protein was loaded into nanoDSF standard capillaries at a concentration of 0.1 mg/mL. Protein solutions
were heated from 20 to 95 °C. Unfolding was measured monitoring intrinsic tryptophan and tyrosine
fluorescence at 330 and 350 nm.

4.7. Statistical Analysis

Data are presented as means + SEM. Statistical analyses were performed using GraphPad Prism?7
(GraphPad). Statistical significance was determined by Student’s two-tailed t-test or by one-way
ANOVA followed by Dunnett’s post-hoc test when comparing multiple groups. p values < 0.05 were
considered to be significant.
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