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Ferroptosis inhibitors

Inhibitors Mode of action
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Cells are the basic building blocks of living systems; the mechanisms governing their division, differentiation, and death are critical for life. Until the mid-20th century, the 
death of cells was thought to be largely uncontrolled. Recent decades have revealed that regulated cell death is ubiquitous in the development and homeostasis of virtually all 
multicellular organisms and is dysregulated in environmental and genetic diseases.

Ferroptosis is a form of regulated cell death driven by iron-dependent lipid peroxidation: ferroptosis can be induced or suppressed by specific pharmacological and genetic 
perturbations. Peroxidation of phospholipids, which compose the lipid bilayers that make up cellular membranes, is the key driver of ferroptotic death (Stockwell et al., 2017). 
Regulation of ferroptosis involves controlling the abundance of key phospholipid substrates, the factors that drive their peroxidation, and the factors that eliminate these lipid 
peroxides.

The substrates for peroxidation during ferroptosis are phospholipids with polyunsaturated acyl tails (PL-PUFAs) (bottom left) because of their intrinsic susceptibility to 
peroxidation chemistry. These PL-PUFAs are generated by enzymes such as ACSL4 and LPCATs (blue, bottom left) that activate and incorporate free PUFAs into phospholip-
ids. PUFAs can be scavenged from the environment and dietary sources and can be synthesized from the basic building block acetyl CoA, through the action of acetyl CoA 
carboxylase (ACC) (blue, bottom left). Energy stress and AMPK suppress ferroptosis by inhibiting ACC (orange, bottom left) (Lee et al., 2020).

Once PL-PUFAs are incorporated into membrane environments, iron-dependent enzymes and labile iron use molecular oxygen (O2) to do a peroxidation reaction, generat-
ing PL-PUFA-OOH (yellow pathway). Iron-dependent enzymes found to drive ferroptosis include lipoxygenases and cytochrome P450 oxidoreductase (POR) (Zou et al., 2020). 
Labile iron is imported through the transferrin receptor 1 (TfR1) and stored in ferritin. Ferritin can be degraded through an autophagy-like process known as ferritinophagy, 
which releases labile iron and facilitates the peroxidation reaction driving ferroptosis (yellow, top left). Radiation can also directly stimulate lipid peroxidation, and radiotherapy 
likely works in part through triggering ferroptosis (Lei et al., 2020; Ye et al., 2020). In contrast, Prominin2 suppresses ferroptosis by facilitating the formation of multivesicular 
bodies containing ferritin-bound iron and, as a consequence, exporting iron out of cells (yellow, top left) (Brown et al., 2019).

There are three pathways for eliminating peroxidized PL-PUFAs (orange, middle and bottom right): the GPX4-glutathione axis (Stockwell et al., 2017), the FSP1-CoQ10 axis 
(Bersuker et al., 2019; Doll et al., 2019), and the GCH1-BH4 axis (Kraft et al., 2020):

• GPX4 uses the cysteine-containing tripeptide glutathione to eliminate phospholipid peroxides (orange, middle). Glutathione itself is generated from cysteine, which 
can either be obtained from methionine through the transsulfuration pathway or from extracellular cystine through system xc

- (purple, top middle), which exchanges 
intracellular glutamate for extracellular cystine; cystine is the oxidized disulfide of the amino acid cysteine (Stockwell et al., 2017). System xc

- is a central hub for regu-
lation of ferroptosis, as CD8+ T cell-derived interferon-g (IFN-g) triggers ferroptosis in cancer cells upon immunotherapy by downregulating SLC7A11, one of the two 
genes that composes system xc

-. In contrast, NRF2 upregulates SLC7A11, thereby protecting from ferroptotic cell death.
• Reduced coenzyme Q10, also known as ubiquinol, suppresses the formation of PL-PUFA-OOHs. FSP1 (formerly known as AIFM2) regenerates ubiquinol from ubiqui-

none (orange, bottom right), which is generated through the mevalonate pathway (Bersuker et al., 2019; Doll et al., 2019). FSP1 can be activated by PPARa (orange, 
right), which is under the control of the MDM2/MDMX complex (blue, right), independent of p53 (Venkatesh et al., 2020).

• GCH1 generates the metabolite tetrahydrobiopterin (BH4), which has a dual function in generating reduced CoQ10 (ubiquinol) and remodeling lipids to disfavor lipid 
peroxidation (Kraft et al., 2020). Furthermore, monounsaturated fatty acids (MUFAs), when incorporated into phospholipids through the action of ACSL3, act through 
an unknown mechanism to suppress ferroptosis (orange, bottom right).

There are several ferroptosis-inducing compounds, lipids, and proteins (see Ferroptosis Inducers Table), as well as inhibitors of ferroptosis (see Ferroptosis Inhibitors Table). 
Lipid peroxidation and key ferroptosis regulators can be detected using dyes, assays, molecular markers, and antibodies (see Ferroptosis-Related Assays and Tools).

Our increasing understanding of the mechanisms underlying the connections between metabolism, lipid peroxidation, and ferroptosis, the availability of tools to study this 
form of cell death, and its emerging physiological functions promise a wealth of future advances in exploiting ferroptosis for the understanding and treatment of disease.
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ABBREVIATIONS

ACC, acetyl coenzyme A carboxylase; ACSL3, acyl coenzyme A synthetase long-chain family member 3; ACSL4, acyl coenzyme A synthetase long-chain family member 4; AMPK, 
AMP-activated protein kinase; BH2, dihydrobiopterin; BH4, tetrahydrobiopterin; BSO, buthionine sulfoximine; CoA, coenzyme A; Fe, iron; FSP1, ferroptosis suppressor protein 1; 
GCH1, GTP cyclohydrolase 1; GCS, glutamylcysteine synthetase; GLS, glutaminase; GPX4, glutathione peroxidase 4; GSH/GSSG, glutathione; GSR, glutathione S-reductase; 
GSS, glutathione synthetase; HMG CoA, 3-hydroxy-3-methylglutaryl CoA; HNE, hydroxynonenal; IKE, imidazole ketone erastin; INF - g, interferon gamma; LPCAT3, lysophospha-
tidylcholine acyltransferase 3; LOX, lipoxygenase; MDA, malondialdehyde; MDM2, mouse double minute 2; MDMX, mouse double minute 4; MUFA, monounsaturated fatty acid; 
NRF2, nuclear factor E2-related factor 2; OXPHOS, oxidative phosphorylation; PPARa, peroxisome proliferator activated receptor alpha; PE, piperazine erastin; PL, phospholipid; 
POR, cytochrome P450 oxidoreductase; PUFA, polyunsaturated fatty acid; TBARS, thiobarbituric acid reactive substances; TCA, tricarboxylic acid; TfR1, transferrin receptor 1; 
YAP, Yes-associated protein
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