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Stratification and prediction of drug synergy based on target
functional similarity
Mi Yang 1,2,9, Patricia Jaaks3, Jonathan Dry4, Mathew Garnett3, Michael P. Menden 5,6,7,10 and Julio Saez-Rodriguez 2,8,10✉

Drug combinations can expand therapeutic options and address cancer’s resistance. However, the combinatorial space is enormous
precluding its systematic exploration. Therefore, synergy prediction strategies are essential. We here present an approach to
prioritise drug combinations in high-throughput screens and to stratify synergistic responses. At the core of our approach is the
observation that the likelihood of synergy increases when targeting proteins with either strong functional similarity or dissimilarity.
We estimate the similarity applying a multitask machine learning approach to basal gene expression and response to single drugs.
We tested 7 protein target pairs (representing 29 combinations) and predicted their synergies in 33 breast cancer cell lines. In
addition, we experimentally validated predicted synergy of the BRAF/insulin receptor combination (Dabrafenib/BMS-754807) in 48
colorectal cancer cell lines. We anticipate that our approaches can be used for prioritization of drug combinations in large scale
screenings, and to maximize the efficacy of drugs already known to induce synergy, ultimately enabling patient stratification.
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INTRODUCTION
In the quest for clinical efficacy, drug combinations are a
promising strategy in cancer treatment1,2. Targeting a signaling
pathway at one step may not be sufficient for reaching maximal
effects on pathway inhibition. Using one agent at higher dose
could be a short-term solution. However, higher dose leads to
increased toxicity and emergence of resistance to treatments.
Resistance mechanisms to monotherapy can occur by activation
of compensatory signaling. For example, the activation of ERK
signaling in melanoma when treated with BRAF inhibitors may
lead to paradoxical activation of CRAF3. Targeting BRAF and
downstream MEK at the same time proved to be beneficial for
overall patient survival4, by inhibiting the initial BRAF driver
mutation and paradox CRAF activation. Alternatively to inhibiting
two key proteins within the same pathway, a common strategy is
to inhibit in parallel two separate cancer pathways to maximize
drug efficacy. For example, parallel inhibition of ERK and AKT
could be beneficial as those pathways may be connected through
cross talks and feedback loops in breast cancer5. Given the
enormous space of potential drug combinations, strategies to
effectively predict their efficacy are highly desirable.
Many methods predict drug synergy using chemical structure

and genomic information6–8. Preuer et al.8 used deep learning to
predict synergy within the space of explored drugs and cell lines
(Pearson’s correlation of observed versus predicted synergy score
r= 0.73), but observed a much worse performance in predicting
untested drugs (r= 0.48) or untested cell lines (r= 0.57)8. Jaeger
et al.9 identified new drug combinations using network topology
of pathway cross-talk9. However, gene mutation information,
arguably the most actionable information in the clinic, was not
used. In the recent dialog on reverse-engineering assessment and
methods (DREAM) drug combination challenge10, the best

performing team used a protein–protein interaction network to
augment the genomic features based on their network distance
from drug targets. While the best performer achieved outstanding
predictability comparable to the level of experimental replicates,
synergy was predicted based on supervised machine-learning
algorithms. A common bottleneck for the application of all
supervised learning methods is the limited publicly available
combinatorial drug screening data. In practice, the combinatorial
explosion of drug pairs is the limiting factor to both the number of
experimentally tested drugs, and the number of tested cell lines.
In addition, tested combinations are driven by expert’s knowl-
edge, and therefore may be focused on known biological
examples and thereby bias the performance of supervised
learning.
Synergy of combination can be estimated from the effect of

single drugs. For example, in the NCI-DREAM Drug Sensitivity and
Drug Synergy Challenge7 the similarities on the effect of drugs on
gene expression was used to predict synergy. However, this
requires the generation of expression data upon treatment with
the drugs, which is relatively costly.
We here investigate if we can use only the similarities of single

drugs in their effect on cell survival to learn about the efficacy of
combinations. We propose a methodology for prioritizing drug
combinations and for cell line stratification based on the
functional similarity between two target proteins. For this, we
extend the notion of compound similarity to target similarity:
the functional similarity of a pair of target proteins is defined as
the correlation between the drug response upon perturbation of
those proteins, as a function of the activity of a set of essential
pathways. Pathway activities are computed from basal gene
expression, using data-derived gene sets, that have been
demonstrated to be more predictive than pathway-based gene
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sets11,12. Different cancer types may be driven by different cancer
pathways. Therefore, the similarity metric is context dependent.
Two target proteins that are functionally very similar are likely to
belong to the same signaling pathway; on the contrary,
functionally dissimilar proteins are likely to belong to unrelated
pathways. We find higher synergy likelihood when there is either
very high or very low similarity. Based on this information, we
build a compound prioritization methodology for high-
throughput screens, that does not require any data on the
response to any drug combination. Furthermore, we explore
context specific (breast and colorectal cancer) drug combinations
for their mode of actions based on known mechanistic insights
from the monotherapies, to predict synergy and potentially
enable patient stratifications in the clinic.

RESULTS
The fundamental concept underlying our approach is the
functional similarity in drug response profile with respect to a
set of essential pathways when targeting two proteins. We
illustrate its application with the data from the Genomics of Drug
Sensitivity in Cancer (GDSC) data13 composed of 990 cancer cell
lines, treated by 265 drugs, with deep molecular characterization
of the cell lines including gene expression, methylation, DNA
mutation, and copy number variation profiles. In addition, the
nominal target for the drugs is known. For our approach, the basal
gene expression profile of the cell lines, their response to the
drugs (IC50), and the nominal targets of the drugs are needed.

Profiling target functional similarity with matrix factorization
We first computed the activity of 11 pathways (EGFR, NFkB, VEGF,
JAK-STAT, TGBf, p53, Hypoxia, Trail, PI3K, TNFa, and MAPK) for all
cell lines from their basal gene expression, as provided by GDSC,
using Pathway RespOnsive GENes (PROGENy12, “Methods”, Fig.
1a). Next, we applied the Macau algorithm14 to find interactions
between the drugs’ nominal targets and pathway activities, as
described in Yang et al.15 (“Methods”, Fig. 1a). We considered two
target proteins, each targeted by a different drug, and took the
Pearson’s correlation between their interactions with all PROGENy
pathways. We defined this correlation as the functional similarity
of those two proteins. A pathway contains more information than
a single gene’s expression level. Therefore, functional similarity
based on a small subset of essential pathways is likely to be more
robust than using thousands of genes, of which the vast majority
are not involved in drug response or in cancer.

Functional similarity of drugs’ targets influences drug synergy
To answer the question whether the functional similarity of drugs’
targets affect synergy, we used the AstraZeneca drug combination
DREAM challenge data16, composed of 910 combinations and 85
cancer cell lines, which are also part of the GDSC panel. We
selected the 25 target proteins from GDSC that are also part of the
DREAM challenge data (Fig. 2a). There are 300 pairwise combina-
tions from the n= 25 proteins, from which we selected 99 pairs
where the two proteins are targeted by two different drugs in the
GDSC panel, since we are interested in drug combinations. We
considered the target pathway interaction matrix and for each
combination of targets, we computed the Pearson’s correlation of
the interaction score with the PROGENy pathways. The target
combinations were then ranked from the most correlated pair to
the most anticorrelated pair. For instance, the proteins BRAF and
MEK are in the same pathway (ERK signaling), have a functional
similarity of 0.74 (P= 0.0088) in skin cell lines, and are synergistic
within this cancer type17. We consider that if the similarity
between two target proteins is greater than 0.7 (Supplementary
Fig. 7), then inhibition of the proteins triggers similar effects.

Synergy scores in AstraZeneca dataset are derived from the
volume difference of an experimental five-by-five matrix (combi-
nations tested at different drug concentrations) and the theore-
tical Loewe additivity surface inferred from both monotherapies
(see “Methods”). To ascertain if target functional similarity can
influence drug synergy, we chose the breast tissue as it is the most
represented in the dataset (33 cell lines), and for each target pair,
we plotted the observed average synergy scores of the top three
synergistic drug1–drug2–cell triplets, against the target functional
similarity of this target pair (Fig. 2b). We observed that synergy
arises in both highly correlated and highly anti-correlated target
groups (Fig. 2b). Remarkably, very few synergistic target pairs were
found with a functional similarity close to zero (lowly correlated
target group).
We tested the significance of our observation on breast (33 cell

lines), colon (12 cell lines), and NSCLC (22 cell lines), by predicting
the average observed synergy score of the top synergistic
combinations using the absolute value of the target functional
similarity (Supplementary Fig. 1). For breast, colon and lung
tissues, the prediction performances (Pearson’s correlation) are
r= 0.23, r= 0.36, and r= 0.17, respectively. The trend is stronger
for colon compared to lung, which is why we chose to focus on
colorectal cancer cell lines.

External validation of the functional similarity metric
We further validated those trends on the NCI-ALMANAC dataset18.
We used functional similarity from Sanger data to predict the
synergy in NCI-ALMANAC. For 18 target pairs and 8 tissues in
common, the prediction performance is r= 0.35 (Supplementary
Fig. 2a), using the average functional similarity across all tissues to
predict the average synergy. The small number of targets (18
versus 99 in AstraZeneca data) makes the average across tissues
potentially more reliable than taking individual tissues. Although
the performance is exceptional for brain and colon tissues, r=
0.75 and r= 0.32, respectively (Supplementary Fig. 2c, d), and
failed for breast, r=−0.33.
These results made us hypothesize that target functional

similarity based on pathway activations is a metric that can be
used for compound prioritization: for any given target pair, the
more functional similar or opposite two proteins are, the most
likely synergy will arise. We reason that this could be due to
complementary mechanisms of synergy that take place: Mechan-
ism 1 (Synergy by similarity): When two drugs have similar
interaction profiles, they are most likely targeting some common
mechanism. In this case, synergy may be achieved by double hit of
the same pathway, or putatively inhibiting feedback loops.
Mechanism 2 (Synergy by compensation): In contrast, for function-
ally opposite proteins, when one pathway’s activation is correlated
with drug sensitivity for targeting one protein, it is also correlated
with resistance for targeting the other protein. This functional
landscape may prevent the activation of compensatory escape
pathways, and thereby increases the likelihood to observe
synergy.
We developed a workflow for ranking synergy enrichment (Fig.

1a), based on multitask learning through the following steps: (i)
Compute tissue specific interaction matrix between target
proteins and pathway activities using single drug screening data.
(ii) Find common target proteins between single drug screening
data and drug synergy data. (iii) Compute pairwise Target
functional similarity in single drug screening data for the selected
common targets. (iv) Keep target pairs with absolute Target
functional similarity greater than a certain threshold (e.g., 0.7). Our
method returns a ranking of experimentally untested drug
combinations from being likely to unlikely synergistic, which
ultimately enables a prioritization for future experiments (Supple-
mentary Data 1).
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Fig. 1 Methodology for drug synergy prediction and stratification. a (i) First, we compute activities scores for 11 pathways from gene
expression of cancer cell lines. It consists in multiplying the transcriptomics data by a loading matrix using PROGENy12. (ii) We then use the
Macau algorithm14 to predict multiple drugs’ responses simultaneously by uncovering the common (latent) features that can benefit each
individual learning task. We use as input features (side information) the PROGENy pathway scores) for the cell lines and the nominal target for
the drugs. Each side information matrix is transformed into a matrix of L latent dimensions by a link matrix. Drug response is then computed
by a matrix multiplication of the two latent matrices. (iii) Concurrently to drug response prediction, we derive the interactions between drug
features (targets) and cell line features (pathway activity), by multiplying the two link matrices. An association between protein X and pathway
Y means that activation of pathway Y correlates with drug sensitivity when targeting protein X. In case of causality, we can say that activation
of pathway Y confers sensitivity to any drug targeting protein X. The approach behind steps (i–iii) is described in detail in Yang et al.15. (iv)
These interactions allow us to define the functional similarity between two target proteins. In this example of breast tissue, the functional
similarity between proteins EGFR and AKT1 is the correlation of their interaction values with the 11 PROGENy pathways. As the final step of
the synergy prediction workflow, the derived target functional similarity informs us about the likelihood of synergy. (v) We use the Target
functional similarity metric for compound prioritization. b For synergy stratification workflow, we start with target pairs already known to be
synergistic. The value of the functional similarity between the target proteins reflects different synergy mechanisms. If the similarity is close to
1, synergy occurs by targeting the same signaling pathways. A similarity close to −1 suggests a synergy induced by compensation of escape
mechanism. We build specific synergy models for each case to predict synergy scores of cancer cell lines. Long arrows denote transition to a
new step and short arrows indicate direction of matrix multiplications.
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Stratifying cancer cell lines for synergistic combinations
As an addition to the synergy prediction workflow, we propose a
consecutive step to stratify cell lines from responders to
nonresponders. For this, we use the inferred synergy mechanism
and pathway activities of new samples to build specific models to
predict synergy for new drug combinations. The synergy
stratification workflow predicts the actual synergy scores on
samples for a given target pair for which synergy has been
described (either through experiments or from literature). For each
of the previously described synergy mechanisms, we built specific
models to predict synergy scores on new cancer cell lines
(“Methods”, Fig. 1b). We used delta pathway activity (delta PA), a
linear combination of pathway activity, single-nucleotide poly-
morphisms (SNP), and copy number variation (CNV) to predict
synergy. Therefore, our models stratify the cell lines based on their
“genomic context” (Methods). We only considered drug combina-
tion known to induce synergy, for the following reasons: (i) In
practice, we decide about stratification only after knowledge of
synergy potential. (ii) We predict synergy score with a linear
combination of pathway activities (Methods), a relative concept
that is not based on actual synergy scores, and therefore not
designed to predict the existence of synergy.
We propose a general framework to predict synergy scores

follows several key steps and we emphasize on the notion of
“target combination” which represents the dual inhibition of two
target proteins, regardless of the drugs that are used (Methods).
We applied our methodology to AstraZeneca drug combination
data for breast tissue and experimentally validated a predicted
synergistic drug combination for colorectal cancer cell lines.

Application to the AstraZeneca breast data set
We tested our synergy models on different target pairs by
computing the Pearson’s correlation of observed versus predicted
synergy scores on all available cell lines. The observed synergy is
computed as the average of all drug combinations targeting a
given target pair, across all available cell lines. Therefore, for each
cell line, the observed average synergy may be computed for
different drug combinations since the matrix of drug-cell line
synergy is sparse.
We selected target pairs that fulfilled the following conditions:

(1) Observed synergy score19 of top hits must be greater than 20,
considered as a clear threshold for synergy16 (Fig. 2b). (2) Drug
combinations have had to be tested in at least 10 cell lines, owing
to the limitations of measuring performance by Pearson’s
correlation. (3) At least two different drug combinations for the
target pair were tested in each cell line, otherwise we excluded
the cell line. We focused on the target pairs rather than specific
drug pairs, in order to derive more robust insights.
This leaves us with the following seven target pairs: AKT/EGFR,

AKT/MTOR, BCL2/MTOR, EGFR/MTOR, AKT/BCL2, AKT/ALK, and
AKT/PARP1, each representing several distinct drug combinations
(3, 5, 3, 4, 4, 6, and 4, respectively). We applied our methodology
on those target pairs (“Methods”, Supplementary Text 1), and
obtained statistically significant prediction performances (Bayes
Factor and p value of the Pearson’s correlation of observed versus
predicted synergy scores, “Methods”) for the following pairs:
EGFR/MTOR (r= 0.43, BF= 6.36, p= 0.12), AKT/ALK (r= 0.33, BF=
5.81, p= 0.21), and AKT/PARP1 (r= 0.50, BF= 61.7, p= 0.01)
(Supplementary Table 1, Fig. 3). The average performance of all
seven pairs is r= 0.27 using Leave One Out Cross Validation
(“Methods”, Supplementary Table 1).
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Overall, among all target pairs, EGFR/MTOR was predicted with
Model 1 (synergy by similarity). AKT/ALK and AKT/PARP1 were
predicted using Model 2 (synergy by dissimilarity).

Independent experimental validation on colorectal cancer
cell lines
We then attempted to experimentally validate our synergy
stratification workflow in colorectal cancer. In order to ascertain
our method’s capability to detect synergy, we chose a drug
combination in the following way:
(i) We focused on drug combinations involving the protein

BRAF in colorectal cancer, which is frequently mutated in this
cancer type (~10% of The Cancer Genome Atlas (TCGA) patients20)
and can result in uncontrolled, non-EGFR-dependent cellular
proliferation21. Despite the success of BRAF inhibitors in mela-
noma, in colorectal cancer BRAF monotherapies largely fail to
demonstrate clinical efficacy in BRAFV600-mutants due to feedback
activation of EGFR22,23. BRAFV600 is the most common mutation for
BRAF (90% cases) where valine is substituted by glutamate in the
codon 600. Such mutation can lead to a 500-fold increased
activation, stimulating the constitutive activation of MEK/ERK
pathway in tumor cells24. Thus, there is a need for novel
combination therapies25–27 with BRAF inhibitors in colorectal
cancer.
(ii) We exclude combinations that target, on average, more than

three proteins, since too many targets can render the model less
precise. There are 101 targets in GDSC besides BRAF, and we
computed their functional similarities with BRAF. Insulin receptor
(IR) ranked first with a target functional similarity of 0.73 for the
BRAF/IR pair. Insulin has been described as promoting cell
proliferation in colorectal cancer by activating MAPK signaling28,

which could explain a similarity with BRAF. Therefore, we chose
BRAF/IR as a candidate for validation. We used Dabrafenib as a
BRAF inhibitor and BMS-754807 as a selective inhibitor of IR29.
(iii) Since BMS-754807 also targets insulin growth factor 1

receptor (IGF1R), we chose the proteins BRAF, IR, and IGF1R as
drug targets and derived the Delta PA to predict synergy
(“Methods”, Supplementary Fig. 4H, Supplementary Data 1).
We experimentally validated our methodology on newly

generated combination screenings with Dabrafenib and BMS-
754807 on 48 colorectal cancer cell lines from the GDSC panel. The
synergy score is computed with DeltaXMID (Methods). The
Pearson’s correlation of observed versus predicted synergy score
is 0.31 for all 48 cell lines (“Methods”, Supplementary Data 1,
Fig. 4a).
We further reasoned that inclusion of information about top

predictive pathways should increase the predictive power. In the
case of the Dabrafenib and BMS-754807, the most predictive
pathway is Hypoxia (Methods). KRAS mutation has been shown to
differentially regulate the hypoxic induction of HIF-1α and HIF-2α
in colon cancer30. Hence, for each drug combination, we
computed the Delta Pathway activities as a predicted synergy.
This is a vector of values with dimension the number of cell lines
that are concerned. To include the KRAS mutational status, we
simply add a binarised variable for wild-type and mutant KRAS cell
lines in addition to the previously computed scores. The
prediction performance rose to 0.4 (Fig. 4c). Accordingly, adding
BRAF mutation did not improve the performance (Fig. 4b), as
MAPK was not as highly ranked as Hypoxia pathway for this
combination. However, the performance rose to r= 0.5 (BF= 999,
p < 2.2e−16) by including BRAF status in the delta PA formula for
the subset of 26 KRAS mutant cell lines (Fig. 4d), suggesting an
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effect of BRAF mutations only when KRAS is mutated. This can
have clinical relevance for around 1% of TCGA colorectal cancer
patients have both KRAS and BRAF mutated20.

Comparison with supervised learning approaches
Supervised learning has long dominated the prediction of drug
pharmacological effect. However, its intrinsic reliance on training
data makes it difficult to predict in a data-sparse situation.
Furthermore, the prediction itself generally does not bring any
biological insights (Supplementary Table 1). Having these
differences in mind, we performed a comparison with our
hypothesis based method for synergy stratification (Supplemen-
tary Table 2).
In the AstraZeneca DREAM challenge, an ensemble of best

performing models was trained on the AstraZeneca DREAM
combinatorial data, and consecutively tested on an independent
combinatorial screen from Merck31, which achieved a weighted
mean correlation of 0.15–0.17. In comparison, we used our
synergy stratification workflow on the GDSC panel for hypothesis
generation and the AstraZeneca dataset for testing, considered
the setting of predicting synergy of new drugs on new cell lines
(Supplementary Fig. 5). For the seven target pairs (29 drug
combinations) from breast tissue, we were able to reach an
average drug-wise correlation of 0.27. Of note, the two methods
are of very different nature and have very different applications.
Therefore, prediction performances should not be compared
directly. In the DREAM challenge, synergy scores of drugs/samples
are predicted without any prior knowledge of whether a drug
combination leads to synergy or not. In contrast, in our synergy
stratification workflow, we assumed a synergy potential and

consecutively predict the stratification based on pathway activity
and mutational profiles.

DISCUSSION
In this paper, we presented an approach with two workflows, one
for drug synergy prediction and one for synergy stratification. Our
approach only requires basal gene expression, drug-response
(IC50) of monotherapy, and information on drug targets, to
prioritize drug combinations. In contrast to most prediction
methods, neither information on synergy of drug combinations,
nor on the effects of single agents on gene expression, is needed.
The synergy prediction workflow can be a powerful framework for
compound prioritization in large scale drug screenings. For
instance, only testing drugs targeting two functionally very similar
or very opposite proteins (|correlation| > 0.7) could significantly
reduce the search space, therefore decreasing the cost of drug
combination screens. We validated our result on the NCI-
ALMANAC dataset18. Our other workflow for synergy could
potentially be used to maximize the drug efficacy of drugs
already known to induce synergy, by choosing on which cells (and
eventually patients) to apply them. Indeed, knowing that a pair of
compounds can be synergistic does not tell us on which patients it
will occur. As real world use case, we envision that for any drug
combination described as synergistic, this method could poten-
tially inform about the subset of patients most likely to benefit,
based on their transcriptomics profiles, provided enough good
quality data to apply the methods.
We introduced the notion of functional similarity between two

target proteins. This metric sheds lights on two scenarios where
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drug synergy occurs: when drugs are targeting functionally similar
proteins (EGFR/MTOR) and when they are targeting functionally
opposite proteins (AKT/ALK and AKT/PARP1). We hypothesize that
combinations of functionally similar targets may lead to synergy
due to inhibition of compensatory feedback loops and/or
increases target inhibition, whilst functionally dissimilar targets
are more likely to be synergistic by targeting potential escape
mechanisms. Our results support that synergy occurs and is much
easier predicted when the targets are functionally very similar or
very opposite. Portraying the interaction between target proteins
and pathway activities allowed us to recognize the different
synergy cases. We then built models by leveraging interpretable
gene expression signature (i.e., pathway activity scores) as
biomarkers of synergy, and thereby increase potency and reduce
the risk of toxicities in humans. Our method enables to stratify
responders within a tissue type based on the genomic and
transcriptomic profile. Based on that, we applied our method to
seven target pairs (representing 29 drug combinations) in breast
cancer cell lines. Finally, we predicted and validated a drug
combination synergy (Dabrafenib/BMS-754807) on 48 colorectal
cancer cell lines.
There are several limitations to this study that can be the focus

of future work: (i) The synergy models are simple and could be
extended to take into account non-linear effects of pathways
adding coefficients to each pathway and including logic (AND/OR)
gates. But this would require an extensive training set. (ii) In this
present work, target functional similarity is defined with respect to
11 PROGENy pathways, which do not necessarily capture all
cancer mechanisms. Besides, only a few cell lines have been used
for perturbation experiments to represent each tissue, which does
not necessarily capture the whole complexity of the cancer
specific signaling mechanism. Expanding this geneset to include
more pathways, as well as using more cell lines for each cancer
type is likely to improve our models. (iii) In order to predict
synergy of new compounds, drug targets have to be profiled by
large scale monotherapy drug screening experiments across
hundreds of cell lines. Thus, to increase the space of combinations,
we require the corresponding monotherapy data. This cost
provides important gains, as cost for monotherapy grows linearly,
but exponentially for combinations. (iv) There is currently limited
tissue specific publicly available drug synergy data. Such datasets
could be highly valuable to further refine our and other
approaches.
Our study findings are aligned to those of the DREAM drug

combination challenge7, where synergy was found to be highly
context dependent. In our case, we predicted synergy with a linear
combination of pathway activities. Bansal et al.7 predicted synergy
from single-compound perturbation data. They found that
synergy occurs for drug pairs which induce very similar or very
opposite gene perturbation statuses. We used single-compound
drug response data and the Macau algorithm to compute the
target functional similarity, which reflects the similarity of drug
response changes for different pathways after targeting a specific
protein. We found that compounds that have very similar or very
opposite functional profiles tend to be more synergistic. We used
the inferred synergy mechanism and pathway activities to predict
synergy of new compounds.
We compared our synergy stratification workflow with state-of-

the-art supervised learning (Supplementary Text 2, Supplementary
Table 1) and highlighted the pros and cons for each methodology:
(i) Naive supervised learning approaches are easy to implement,
do not require extensive domain expertize (although still highly
valuable), and can be used for all possible prediction settings
(Supplementary Fig. 5). However, they require an extensive set of
drug combination drug response data as training set. (ii) For our
synergy stratification methodology, linear combination of path-
way activities is well suited for biological interpretation. However,

it can only be used in drug-wise setting and requires significant
domain knowledge and literature evidence.
In terms of translatability to the in vivo setting, supervised

learning needs combination data of the organism of interest for
training, whereas our method requires the target functional
similarity to be built based on monotherapy data on the organism
of interest. We attempted to test our methodology to Novartis
PDX data32, but it was not possible due to the fact that the drug
targets and gene expression were not predictive of the single drug
response, with prediction performance at random level. Therefore,
we could not derive a robust and reliable interaction matrix/Target
functional similarity from this data15. The random performance of
single drug response prediction on Novartis PDX data32 might be
explained by (i) the high level of missing values of the drug
response matrix (64%), (ii) the model system could be so complex
that transcriptomics alone does not reflect the underlying biology
enough to be predictive of drug response, and (iii) that
measurements could have been inaccurate, owing to a lack of
standardization for this new technology. When larger and more
mature datasets of this kind become available, it will be possible
to test our approach on such an in vivo context.
Palmer and Sorger33 stated that successful drug combination in

tumor shrinkage are mostly due to targeting unrelated pathways,
without any real synergy. They define drug action similarity by the
correlation of single drug response data, which resembles our use
of target—pathway based similarity score. They concluded that
highly correlated independent drug responses can explain the
majority of combination clinical trial (synergy), whereas lowly
correlated independent drug responses makes independent
action of drugs the dominant mechanism in clinical populations
(additivity). While the analysis is different as we used cell line data,
there are commonalities in our findings.
Our method focuses on the putative drug target, whilst many

compounds may target multiple proteins and in particular at high
drug concentrations off-target effects are pervasive. Notably, our
method is generalizable to multiple targets. We can consider all
targets’ interaction values with the pathways and correct for
different affinities of the drugs for each putative target, as well as
the significance of the interaction values. More complex modeling
will be necessary as synergy can arise from different target pairs,
as well as multiple hypothesis testing will pose another challenge.
In summary, exploring the interactions between drug targets

and signaling pathways in a tissue specific manner can provide a
novel in-depth view of cellular mechanisms and drug modes of
action, which can ultimately rationalize drug combination
strategies in cancer. Target functional similarity could be used as
a metric for compound prioritization. Synergy by similarity
hypothesis could be a rational for first-line treatment, while
synergy by opposite effect could potentially fit patients having
acquired resistance.

METHODS
Matrix factorization with Macau
Macau trains a Bayesian model for collaborative filtering by also
incorporating side information on rows and/or columns to improve the
accuracy of the predictions14 (Fig. 1a). Drug response matrix (IC50) can be
predicted using side information from both drugs and cell lines. We use
target protein as drug side information and transcriptomics/pathway as
cell line side information. Each side information matrix is then transformed
into a matrix of L latent dimension by a link matrix. Drug response is then
computed by a matrix multiplication of the two latent matrices. Macau
employs Gibbs sampling to sample both the latent vectors and the link
matrix, which connects the side information to the latent vectors. It
supports high dimensional side information (e.g., millions of features) by
using conjugate gradient based noise injection sampler.
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Pathway activities
We transformed the transcriptomics data into pathway activity scores
using PROGENy (Fig. 1a, Supplementary Fig. 8). PROGENy is a data driven
pathway method aiming at summarizing high dimensional transcriptomics
data into a small set of pathway activities. PROGENy leverages hundreds of
publicly available gene expression perturbation experiments. In the chosen
experiments, cancer cell lines have been treated by a perturbation agent
which activates or inhibits one of the PROGENy pathways. After computing
the gene expression z-scores of the Perturbed—Control, we fit a multiple
linear model of the z-scores as a function of the pathway statuses. The
z-scores represents the change in gene expression, and we aim at
determining the role of the pathway activation statuses in this change. We
derive a weight matrix, which is the contribution of each pathway for the
gene’s expression changes. For new gene expression samples where we
want to estimate the pathway activities, we multiply the gene expression
matrix with the weight matrix. Therefore, for a given sample, the activity
score of a certain pathway is the sum for all genes involved in this
pathway’s signature, of the product of the gene’s expression by its weight.
PROGENy derives pathway signatures from the genes that are altered
when perturbing a pathway instead of solely from the genes within the
pathway as described in literatures. Schubert et al.12 found that the most
representative genes of a pathway in the PROGENy weight matrix are often
not the pathway components themselves.
This improves the estimation of pathway activities compared to

knowledge based gene sets12. We used the following 11 PROGENy
pathways: EGFR, NFkB, TGFb, MAPK, p53, TNFa, PI3K, VEGF, Hypoxia, Trail,
and JAK-STAT.

Interactions between drug target and pathway activities
The core result from which we derive the target functional similarity is the
interaction matrix between drug targets and pathway activities. We
computed those interactions between target proteins and signaling
pathway activation status with respect to drug response (IC50) by
multiplying the 2 link matrices βD and βC and averaging across 600 Gibbs
samplings (Fig. 1a). We then repeated this process 40 times and took the
average value. This interaction can be defined as the importance for those
two entities to be simultaneously involved in order to have an impact on
drug response15, e.g., how the simultaneous activation of a certain
pathway and targeting a certain protein can be associated with drug
response. For instance, a strong interaction between protein MEK1/MEK2
and pathway EGFR in pancreatic cancer is interpreted as follows: activation
of the EGFR pathway correlates with sensitivity when targeting MEK1/
MEK2. If this were a causal relationship, it could mean that EGFR pathway
activation confers sensitivity to any drug targeting protein MEK1/MEK2.
We used the GDSC cell line panel that contains drug response (IC50)

data of 265 drugs on 990 cell lines. For each of the 16 tissues (with more
than 20 cell lines), we computed the interaction matrix between drug
targets and pathway activities using the multitask learning algorithm
Macau14,15. Our algorithm tries to learn multiple tasks (predicting multiple
drugs) simultaneously and uncovers the common (latent) features that can
benefit each individual learning task34. We used manually curated target
proteins for the drug (Supplementary Data 3), and gene expression derived
pathway scores for the cell lines. The interaction matrix gives hints about
the drug’s mode of action, by uncovering in which condition (pathway
status) targeting a certain protein correlates with higher drug sensitivity.
To assess the robustness of the prediction, we produced 40 interaction

matrices and randomly selected 36 to take the average and repeated this
process 50 times. The average correlation between any pair of matrices
from a random draw among those 50 matrices is r= 0.998 (sd= 0.0005).
We next sought to determine how much the functional similarity varies
based on the interaction matrices. We randomly select two protein targets
and computed their functional similarity across the 50 interactions
matrices, and repeated this experiment 1000 times. For target pairs with
a similarity greater than 0.4 (0.7), the average coefficient of variation of the
functional similarity is 7% (3%). We deem that a coefficient of variation
around 5% for a single pair is reasonable since we use the functional
similarity to generate hypotheses and not for actual predictions. Finally, we
tested the correlation between the functional similarities of the selected
target pairs with the drug synergy score as shown in Supplementary Fig. 1.
The mean correlation across 50 interaction matrices is 0.22 (sd= 0.014) for
breast and 0.45 (sd= 0.06) for colon tissue.

Significance of the synergy prediction result
In order to assess the significance of the predicted synergy on breast and
colorectal tissues (Supplementary Fig. 1), we estimate p values by
simulating random data. Therefore, we randomly shuffled the drug
combination labels for each tissue 1000 times and generated a null
distribution of no synergy. We defined the p value as the number of times
our model’s correlation is greater or smaller (two-tailed test) than the
random models expected distribution of correlations divided by 1000. For
reference values of r= 0.23 (breast) and r= 0.36 (colon), the corresponding
p values are p= 0.065 and p= 0.045, respectively.
We then estimated a Bayes Factor (BF) to compare the performance of

the model on each tissue based on 1000 random samples. Specifically, the
BF is calculated as the ratio of number of samples on which the reference
performance is better than the null model and the number of samples on
which the null model is worse than the reference performance. The choice
of this metric is that it is independent of the sample size. For reference
values of r= 0.23 (breast) and r= 0.36 (colon), the BF are 21.7, and 11.1,
considered strong evidence for both.

Significance of the synergy stratification result
To assess the synergy stratification result from AstraZeneca breast dataset
(Fig. 3), we randomly shuffled the cell lines labels independently for each
drug combination following the same procedure. The two-tailed p values
are: p= 0.12 (EGFR/MTOR), p= 0.21 (AKT/ALK), and p= 0.01 (AKT/PARP1).
All p values are significant at false-discovery rate (FDR) < 25%. The BF are
6.36 (EGFR/MTOR), 5.81 (AKT/ALK), and 61.7 (AKT/PARP). We used the same
procedure to assess the significance of synergy stratification on 48
colorectal cancer cell lines (Fig. 4), the p values are: p= 0.15 (Fig. 4a), p=
0.13 (Fig. 4b), p= 0.01 (Fig. 4c), and p < 2.2e−16 (Fig. 4d). All p values are
significant at FDR < 25%. The BF are: 29 (Fig. 4a), 8.1 (Fig. 4b), 994 (Fig. 4c),
and 999 (Fig. 4d).

Building specific models for each synergy hypothesis
The core idea of the synergy stratification workflow is to predict the
synergy score using the pathway context in addition to drug target
information. We believe that synergy is not only due to the drugs’
properties, but also dependant on the signaling context.

Synergy Model 1 (maximizing drug sensitivity). For functionally similar
target pairs (Mechanism 1), we rank the pathways based on their sensitive
or resistant interaction profile with respect to the drug targets. We
postulate that synergy is maximized under a pathway condition where
both drugs’ effects are maximized. The optimal condition for synergy is
therefore when pathways associated with drug sensitivity are upregulated,
and pathways associated with drug resistance are downregulated
(Supplementary Fig. 3). As a consequence, if two target proteins have
strong functional similarity, e.g., high correlation between their interaction
profile with pathway activities, synergy is maximized when the sensitizing
pathways are activated and pathways conferring resistance not activated.
We predict synergy by taking the average of the top N sensitive pathway
scores, subtracted by the average of the top M resistant pathway scores.
Therefore, for each cell line, we introduce the concept of delta PA to
predict synergy:

Delta PA ¼
PN

1 ðTop sensitive pathwaysÞ
N

�
PM

1 Top resistant pathwaysð Þ
M

±genomics:

(1)

We compute the average pathway score for both sensitive and resistant
groups. Each group should include a minimum of one to a maximum of
three pathways. We select the top pathways with group membership
thresholds determined by cross validation. If applicable, we include in the
formula the genomic information which can be mutation (SNP) or CNV. For
instance if protein EGFR is targeted, we include CNVEGFR. Group member-
ship parameters are defined using cross-validation.

Synergy Model 2 (maximizing drug resistance). For functionally opposite
target pairs (Mechanism 2), when a pathway’s activation is associated with
resistance for one target protein, it is also associated with sensitivity for the
other target protein, to compensate. Two drugs can be individually
ineffective, but more effective when combined. Therefore, synergy may
arise in a situation of drug resistance. This could be explained by the fact
that if a cell line is resistant for one (or both) of the drugs, there is “more
opportunities” to be synergistic. When both drugs kill a given cell very
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efficiently, there is no synergy, as both drug A alone, drug B alone and
combination A+ B can kill all the cells. Unsurprisingly, resistance
biomarkers were found to be predictive of synergy in the recent
AstraZeneca DREAM challenge16. Therefore Delta PA should maximize
the pathways conferring resistance and minimize the sensitizing pathways.
The formula becomes

Delta PA ¼
PM

1 ðTop resistant pathwaysÞ
M

�
PN

1 ðTop sensitive pathwaysÞ
N

±genomics:

(2)

Model 2 is less likely to suit functionally similar pairs (Mechanism 1). If the
two drugs have similar functional profile, maximizing the resistance
scenario equals increasing the dose of the same inefficient drug, thus,
unlikely to improve the outcome. Likewise, Model 1 is less suitable for
Mechanism 2, as maximizing the sensitizing pathways is the same as
prioritizing a situation where drug 1’s sensitive effect outweighs drug 2’s
resistant effect. Thus, Mechanism 2’s core idea would become obsolete, as
by definition, the resistance scenario must prevail in case of escape
mechanism. Of note, having an opposite functional profile does not imply
Mechanism 2. An opposite pathway-response profile for two targets, offers
the “functional scenario” for the cell to escape the damage induced by one
drug. Yet, there could still be a scenario which maximizes the sensitizing
pathways. This corresponds to two drugs targeting completely indepen-
dent pathways, which is more due to independent actions rather than
additivity or synergy33.

General framework for predicting synergy score
Step 1: For two given target proteins T1 and T2, find their interactions with
the PROGENy pathways using Macau (Supplementary Fig. 4).
Step 2A: If available, use literature to guide the choice of Model, e.g., if

we know that a drug combination is synergistic when a pathway X is
activated, the model would be the one which gives a positive sign for
pathway X. Otherwise go to Step 2B.
Step 2B: Compute the functional similarity between T1 and T2 (Pearson’s

correlation between T1 and T2’s interactions with the pathways).
If the correlation is close to 1, use Model 1 to define the Delta PA

formula.
If the correlation is close to −1, use Model 2 to define the Delta PA

formula.
If the correlation is between −0.4 and 0.4, it is an undetermined case.
Step 3: Find top sensitive and top resistant pathways (as previously

described in synergy models). Take into account literature evidence in
choice of pathways (for known drugs or targets). If a pathway is described
as important in literature but does not appear in top three of a group, we
include it, as well as any pathway separating the first from the one of
interest, while respecting the limit of three pathways per group.
Step 4: In case of multiple drugs representing the same target pair, as in

the AstraZeneca DREAM data set, keep the drugs that are specifically
targeting the two proteins of interests, while removing those having off
target effects (at least 3 drug pairs left).
Step 5: Use the Delta PA formula to predict synergy of a drug

combination targeting T1 and T2. The pathway activities of the formula are
computed by PROGENy on the cell lines of interest.
More details about the cross validation procedure and synergy score

computation are in Supplementary Methods and Supplementary Fig. 6.
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