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Protein-altering germline mutations implicate novel
genes related to lung cancer development
Xuemei Ji et al.#

Few germline mutations are known to affect lung cancer risk. We performed analyses of rare

variants from 39,146 individuals of European ancestry and investigated gene expression

levels in 7,773 samples. We find a large-effect association with an ATM L2307F

(rs56009889) mutation in adenocarcinoma for discovery (adjusted Odds Ratio= 8.82, P=
1.18 × 10−15) and replication (adjusted OR= 2.93, P= 2.22 × 10−3) that is more pronounced

in females (adjusted OR= 6.81 and 3.19 and for discovery and replication). We observe an

excess loss of heterozygosity in lung tumors among ATM L2307F allele carriers. L2307F is

more frequent (4%) among Ashkenazi Jewish populations. We also observe an association in

discovery (adjusted OR= 2.61, P= 7.98 × 10−22) and replication datasets (adjusted OR=
1.55, P= 0.06) with a loss-of-function mutation, Q4X (rs150665432) of an uncharacterized

gene, KIAA0930. Our findings implicate germline genetic variants in ATM with lung cancer

susceptibility and suggest KIAA0930 as a novel candidate gene for lung cancer risk.
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Lung cancer is a leading cause of cancer death in the U.S. and
worldwide and represents a major public health problem1.
Hereditary factors play a crucial role in lung cancer patho-

genesis2. The first wave of genome-wide association studies3

identified susceptibility regions and common variants for lung
cancer risk but have been restricted to analysis of more common
variants having allele frequencies of 1% or higher. Few previous
studies identified rare germline mutations responsible for lung
cancer etiology because this type of research requires large-
sample sizes and extensive genetic analysis. Although <1% of
most populations are carriers of a germline mutation that drives
cancer, such mutations can confer as much as an 80% lifetime
risk for developing cancer4 and influence between 3 and 10% of
cancers diagnosed yearly5. In addition, identification of cancer-
related mutations has provided potential targets for cancer
treatment and drug development. For example, the rare inherited
T790M mutation of EGFR is associated with greatly increased risk
for lung cancer in nonsmokers6. Individuals with this mutation
do not respond well to first-generation EGFR therapy7 and a
targeted approach is required for individuals carrying this
mutation8. Similarly, identification of germline mutations in
BRCA1 and BRCA2 led to the successful application of PARP
inhibition therapy for breast and ovarian cancer. Defining
germline mutations for lung cancer may also assist in early
detection and targeted prevention, similar to the benefit conveyed
in screening for deleterious BRCA1 and BRCA2 germline
mutations9,10.

The objective of this study was to identify reliable germline
mutations that highly affect lung cancer risk and to discover novel
genes that are involved in the etiology and development of lung
cancer. We analyzed two independent datasets comprising 39,146
individuals of European ancestry that have not been used pre-
viously for identifying low minor allele frequency (MAF) variants
occurring in <1% of the population to discover and verify
mutations having large effects increasing lung cancer risk. We
confirmed the genotyping fidelity of the selected germline
mutations in both datasets by repeatedly genotyping of
5,742 subjects of the discovery and replication phases and by
comparing the MAFs in unaffected individuals of our both
datasets to those in publically available datasets. In addition, in
order to investigate the significance and properties of our dis-
covered mutations, we analyzed the data in stratified subgroups
and ethno-geographic populations, evaluated biallelic two-hit
events in an additional dataset of European ancestry for available
variants and performed structure-based investigation of muta-
tions to evaluate their pathogenicity. We also explored whether
the discovered mutation-related isoforms are expressed in lung by
using RNA-seq data and isoform expression data, and elucidated
the role of the novel mutation-related genes in lung cancer
pathogenesis by studying gene expression data. Altogether, our
study identified and validated two novel mutations in genes that
significantly affect lung cancer etiology, offering insights for
understanding lung cancer mechanisms. Our findings may pro-
vide insights for targeted lung cancer screening and drug
development.

Results
Discovery of driver germline mutations with large effect. We
used the availability of two datasets, of which 5742 individuals
were genotyped on both platforms, to investigate germ-line
mutations with large effects on lung cancer risk. We removed the
overlapping 5742 individuals from the first case-control dataset
and used it as the discovery dataset. This dataset comprised the
28,878 individuals of European ancestry genotyped on the Illu-
mina Oncoarray. The second dataset, which consisted of 10,268

independent individuals of European ancestry genotyped on an
Affymetrix Axiome genotyping array, which was used as the
replication cohort. These data have also not been included in
prior studies. We used the discovery dataset to identify potential
rare variants linked with lung cancer susceptibility. The replica-
tion cohort was used for two validation aims, first the technical
validation by considering genotyping concordance between
platforms and second as an independent validation cohort for the
associations identified in the discovery cohort. Results from the
validation cohort have not been previously published except for a
targeted analysis of SNPs near hTERT on chromosome 5q11. The
study design is presented in Supplementary Fig. 1.

In the discovery series, to explore germline mutations
conveying a substantial increase on lung cancer risk, we
performed association analyses for mutations having MAF
<0.01, by using the discovery dataset (Supplementary Table 1).
Three mutations within the exome, including rs56009889,
rs150665432, and rs61816761 had association with P values of
<5.0 × 10−8 and OR values of more than 2.0 in the discovery
dataset when crude association analysis were performed (Supple-
mentary Table 2). We then validated these findings in an
independent non-overlapping case-control dataset consisting of
10,268 individuals of European ancestry.

Because the samples for the discovery and replication phase of
this analysis utilized different platforms, we were able to evaluate
the fidelity of the arrays by studying the 5742 individuals who were
genotyped using both genotyping platforms. The variants
rs56009889 and rs150665432 had excellent concordances of
99.95% and 99.08% for overall genotypes and 89.66% and
92.31% for the rare alleles, respectively, which confirmed their
genotyping fidelity in both datasets. However, genotyping for
rs61816761 showed poor concordance; this mutation was dropped
from further analysis (Supplementary Table 3). Additionally,
among unaffected individuals, the Minor Allele Frequencies
(MAFs) of rs56009889 and rs150665432 in both datasets were
comparable to the MAFs found for European populations in the
Exome Aggregation Consortium12, and were in agreement with
MAFs in the NHLBI GO Exome Sequencing Project and the
Trans-Omics for Precision Medicine Program (https://www.ncbi.
nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=150665432, https://www.
ncbi.nlm.nih.gov/projects/SNP/snp_ref.cgi?rs=56009889) (Supple-
mentary Table 4), which supported the reliability of the genotyping
data of rs56009889 and rs150665432 in both datasets.

In the independent replication series, rs56009889 (P= 0.34)
did not significantly associate with overall lung cancer risk
without adjustment (Table 1). However, strong evidence for
association was noted in the replication data for lung adeno-
carcinoma (LUAD) (P= 9.8 × 10−4) and women (P= 0.01) for
rs56009889. Results for lung cancer overall are less significant
after PC adjustment, but there is still a highly significant result for
the ATM−2307F association in LUAD (P= 1.18 × 10−15 for
discovery and P= 2.22 × 10−3 for replication (Table 1). The
variant rs150665432 showed a significant trend (P= 0.06) in the
much smaller replication dataset.

Histology and gender-specific lung cancer risk of ATM-
L2307F. rs56009889 maps within the ATM gene (Fig. 1a). This
mutation results in L2307F missense mutation in the FAT domain
that regulates ATM activity13, implying a putative functional
role. Consistent with the location of this mutation in a highly
conserved region that is critical for ATM function, in silico tools
such as SNPeffect 4.014 PolyPhen-215 Fathmm-XF (http://fathmm.
biocompute.org.uk/) and SIFT suggest a functional effect. Com-
pared to non-carriers (C/C), L2307F carriers (T/C+ T/T) had
statistically significant increased risk of lung cancer in the discovery
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dataset (adjusted odds ratios (ORs= 4.19, P= 3.56 × 10−7),
though the increased risk did not reach significance in the repli-
cation dataset (Table 2). Among females, L2307F was significantly
associated with lung cancer risk with ORs being 7.76 (P= 0.0002)
in the discovery dataset and 3.22 (P= 0.03) in the replication
dataset. Among males, L2307F showed a weakly significant asso-
ciation with lung cancer risk in the discovery dataset and no
association in the replication dataset (Fig. 2a and Supplementary
Table 5). Stratification analysis by histology indicated that L2307F
carriers had a significant 5.23-fold increased risk for lung adeno-
carcinoma (LAD) in the discovery dataset (P= 6.47 × 10−9) and a
2.48-fold increased risk in the replication dataset (P= 0.01), and
there was little evidence for association with the risk of lung
squamous cell carcinoma (LSQ) or of small cell lung cancer
(SCLC) in either dataset (Supplementary Table 5). Females car-
rying L2307F showed an 8.05-fold (P= 0.0001) and 4.69-fold (P=
0.004) greater risk of LAD in the discovery and replication datasets,
respectively (Fig. 2b and Supplementary Table 6). Notably, all the
L2307F homozygotes (N= 5), no matter what age, gender, and
smoking status, had LAD in this study (P= 0.004) (Fig. 2c).
Moreover, the association exhibited a dose-response relationship
between the number of mutated alleles and the LAD risk in the
discovery dataset (Ptrend= 5.44 × 10−9). A more significant role for
L2307F in LAD pathogenesis than in LSQ or SCLC is reflected in
the low mutant allele frequency of LSQ and SCLC in both datasets.
These results suggested the association between rs56009889 and
lung cancer risk was restricted to LAD and is especially prominent
in women.

Ethno-geographic lung cancer risk of ATM-L2307F. The ATM-
L2307F was found in 4.43% (MAF= 0.023) individuals from lung
cancer case control study from Israel, slightly higher in North
Americans (MAF= 0.002) and close to monomorphic in other
European countries (Supplementary Table 7). Consistent with
this observation, rs56009889 is much more prevalent in the
Ashkenazi Jewish population (https://gnomad.broadinstitute.org/
variant/11-108196896-C-T). We therefore investigated if the
association of rs56009889 and lung cancer risk was affected by
country of origin. In both Israeli and North Americans,
rs56009889 was significantly associated with the risk of lung
cancer, of LAD in general and especially in women. However, the
association was stronger in the Israeli case-control study than in
North Americans (Fig. 2d) and the lack of variant carriers meant
this analysis was not informative in Europeans. As shown in
Supplementary Table 7, the ORs for LAD risk among L2307F
carriers were 3.36 in North Americans (P= 0.004) and 6.74 in the
Israeli case control study (P= 3.38 × 10−6). The female carriage
of L2307F conferred an increased LAD risk with an OR of 3.81 in

North Americans (P= 0.04) and 17.15 for the Israeli (P= 0.006).
The replication data did not include a lung cancer study from
Israel.

Because populations in Israel mainly include Jews and Arabs16,
we then investigated whether L2307F had different prevalence
and associations between the two ethnic groups as derived from
genetic information (Supplementary Table 8). We observed that
the L2307 occurred in 7.99% in Ashkenazi Jews from Israel
(MAF= 0.042) and 8.53% in Ashkenazi Jews living in other
countries (MAF= 0.045), but had very a low frequency in
Arabian populations (Supplementary Table 9). In addition,
although L2307F had a significant association with the risk of
lung cancer and of LAD for Jews wherever they lived, the
association was more marked in the Israeli Jews than Jews in
other countries (Supplementary Table 8). Among L2307F
carriers, the ORs for LAD risk were 7.86 in Israeli Jews (P=
2.12 × 10−6) and 3.40 for the Jews living in other countries (P=
0.005). Female Jews carrying L2307F had a 16.01-fold LAD risk
(P= 0.008) in Israel and 4.23-fold risk in other countries (P=
0.03).

KIAA0930-Q4X is suggestively associated with lung cancer.
rs150665432, mapping within KIAA0930 (Fig. 1b), is located at
22q13.31. The rs150665432 mutation codes for Q4X which results
in the truncation of the full-length protein from 409 to 3 amino
acids (https://www.ncbi.nlm.nih.gov/protein/NP_056079.1?report
=graph). Compared to non-carriers (G/G), Q4X carriers (A/G+
A/A) had an increased lung cancer risk in both the discovery
(adjusted OR= 2.59; P= 1.15 × 10−18) and the replication data-
sets (adjusted OR= 1.69; P= 0.03) (Fig. 3a and Supplementary
Table 10). Additionally, all Q4X homozygotes in the discovery set
(N= 29) developed lung cancer (P= 2.29 × 10−8) (Fig. 3b), and
the number of mutated alleles showed a dose-response relation-
ship with lung cancer risk (Ptrend= 1.51 × 10−19) in the discovery
dataset (Table 2). No homozygotes were found in the replication
dataset. Stratification analysis showed that Q4X had a significant
risk in all strata: among females, males, smokers, non-smokers
(Supplementary Table 10), and of LAD, LSQ, and SCLC (Sup-
plementary Table 11) in the discovery dataset. In the replication,
none of the strata reached significance, likely reflecting the small
number of individuals with this uncommon variant in the subset
analyses. Although the frequency of rs150665432 in controls varies
non-significantly among geographic populations, ORs of the
association between Q4X and lung cancer risk were higher in
North American Countries (adjusted OR= 4.19; P= 3.27 × 10−16)
than in European Countries (adjusted OR= 1.65; P= 0.0003,
Supplementary Table 12).

Table 1 Allele-specific lung cancer risk for ATM-L2307F (rs56009889) and KIAA0930-Q4X (rs150665432).

Mutation Outcome Population Dataset Crude Adjust by PCsa

OR (95% CI) P OR (95% CI) P

rs56009889 Lung Cancer All Discovery 3.98 (2.40–6.61) 8.21E−09 3.15 (1.89–5.26) 1.04E−05
Replication 1.39 (0.70–2.73) 0.34 1.36 (0.69–2.68) 0.37

rs56009889 Lung Cancer Female Discovery 9.45 (3.39–26.34) 1.49E−07 6.81 (2.42–19.17) 0.0003
Replication 3.36 (1.22–9.26) 0.01 3.19 (1.16–8.82) 0.03

rs56009889 LAD All Discovery 8.15 (4.86–13.68) 2.74E−21 8.82 (5.18–15.03) 1.18E−15
Replication 3.00 (1.51–5.96) 9.76E−04 2.93 (1.47–5.82) 2.22E−03

rs150665432 Lung Cancer All Discovery 2.78 (2.27–3.39) 1.71E−25 2.61 (2.15–3.18) 7.98E−22
Replication 1.54 (0.98–2.42) 0.06 1.55 (0.98–2.44) 0.06

OR, 95% CI and P values were generated from logistic regression model.
aPCs are the principal components.
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Mutations and onset age of lung cancer. Carriers of L2307F
tended to be significantly older at lung cancer onset overall and in
all subsets except small-cell and squamous lung cancer in the
discovery data. For female lung AD, this effect was most pro-
nounced in the discovery dataset (69.37 ± 10.71 vs 62.78 ± 11.06,
P= 0.0007) and showed borderline significance in the replication

dataset (68.74 ± 10.49 vs 63.69 ± 10.31, P= 0.09, Supplementary
Table 13 and Fig. 4a). As ATM is more highly expressed at older
age17 the variant effects may be more pronounced at older ages,
but larger datasets are needed to validate this observation. No
consistent variation in age by genotypes of rs150665432 was
found overall or in subgroups (Supplementary Table 14).
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Fig. 2 ATM rs56009889 association with lung cancer risk. P values were determined by logistic regression analysis adjusted by age, gender, smoking
status and the principal components. a Stratified analyses of the association between rs56009889 and Lung cancer. Compared to non-carriers, L2307F
carriers had an increased risk of lung cancer with ORs being 4.19 in the discovery data (P= 3.56 × 10−7, n= 28872) and 1.31 in the replication data (P=
0.45, n= 10256). In females, L2307F carriers had a lung cancer risk with ORs being 7.76 in the discovery data (P= 0.0002, n= 10919) and 3.22 in the
replication data (P= 0.03, n= 4698). L2307F carriers had a significant 5.2-fold increased risk for lung adenocarcinoma (LAD) in the discovery data (P=
6.47 × 10−9, n= 19356) and a 2.5-fold increased risk in the replication data (P= 0.01, n= 7503). No associations of L2307F with the risk of lung squamous
cell carcinoma (LSQ) (n= 16853) or small cell lung cancer (SCLC) (n= 14746) were observed in the discovery data. No L2307F variants were observed in
LSQ or SCLC in the replication data. Colors indicate demographic and histological stratifications of the data. b Stratified analyses of the association between
rs56009889 and LAD. Females who carried L2307F had a >8-fold greater risk of LAD in the discovery dataset (P= 0.0001, n= 8056) and a 4.7-fold risk
of LAD in the replication data (P= 0.004, n= 3680). Never smoking females who harbored L2307F had a 7-fold greater risk of LAD in the discovery data
(P= 0.01, n= 2817) and a 3.8-fold risk of LAD in the replication data (P= 0.15, n= 1212). c Distribution of L2307F homozygotes. All the homozygotes of
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Biallelic two-hit events of ATM-L2307F. To understand the
interplay of ATM-L2307F and the somatic mutation profiles, we
utilized the germline and matched tumor data for 2127 lung
cancer patients of European ancestry in an additional, indepen-
dent MSK-IMPACT dataset (Supplementary Table 15). In this
study, germline L2307F was observed in 63 (3%) cases. The fre-
quency of germline L2307F was higher in LADs (P= 0.0009),
females vs male patients (P= 0.03), light-smokers (≤5 pack years)
vs heavy smokers (>5 pack years, P= 0.003) and patients with
EGFR oncogenic mutations vs cases without EGFR oncogenic
mutations (P= 0.001). 61 of 63 patients were L2307F hetero-
zygotes, and of these 29.5% patients showed loss of heterozygosity
(LOH) of the wild-type allele compared to 10% background LOH
(P= 0.0026) (Fig. 4b). KIAA0930 was not a gene included in the
468 cancer- associated genes targeted by the MSK-IMPACT study
and were unable to explore germline somatic interactions for this
gene in this dataset.

Mutation-related isoforms expression in lung tissue. Both ATM
and KIAA0930 have alternative splicing in various tissues, which
might cause certain exons of a gene to be excluded and thus fail to
translate to amino acid sequence in the related isoforms. To clarify
whether rs56009889 and rs150665432 are included in the isoforms
that are normally expressed in lung tissue and thereby may play a
functional role in lung, we investigated the isoform expression
of ATM and KIAA0930. ATM has eight isoforms encoding pro-
duce proteins with different length. L2307F causes an amino acid
(aa) change in the two isoforms ENST00000278616 and
ENST00000452508, producing the full-length isoforms of ATM
protein comprising 3056 aa long that include TAN, FAT, FATC,
and Phosphoinositide 3-kinase related kinase (PIKK) domains

(Fig. 5a). The Genotype-Tissue Expression (GTEx) project (Sup-
plementary Table 16 and Fig. 5b–c) and expression data from
Germany (Supplementary Table 17 and Fig. 5d) implied that that
both ENST00000278616 and ENST00000452508 are expressed in
normal lung tissue.

KIAA0930 has 10 isoforms that can produce proteins of
varying lengths, among which ENST00000251993 is the full-
length and canonical isoform (https://gnomad.broadinstitute.org/
gene/ENSG00000100364/transcript/ENST00000251993).
rs150665432 truncates the protein length of ENST00000251993
from 409 to 3 amino acids (Fig. 5e) and shortens the protein
length of another abundant isoform, ENST00000492273, from 85
to 3 amino acids. In addition, rs150665432 is included in 4 other
isoforms, including ENST00000417906, ENST00000488038,
ENST00000486640 and ENST0000049622, which are untrans-
lated transcripts. The ENST00000251993 and ENST00000488038
transcripts, which include rs150665432, are the primary tran-
scripts expressed in lung tissue in GTEx data (Supplementary
Table 18 and Fig. 5f–g), as well as in the data from Germany
(Supplementary Table 19 and Fig. 5h).

Gene expression in lung cancer and multiple cancer types. We
explored the role of the uncharacterized protein (http://www.
uniprot.org/uniprot/Q6ICG6) KIAA0930 in lung cancer patho-
genesis by investigating whether its expression was associated
with lung cancer development, comparing its expression to ATM,
a tumor suppressor protein. KIAA0930 was significantly over-
expressed in LAD (P= 0.004) and LSQ (P= 1.62 × 10−12) in The
Cancer Genome Atlas (TCGA) (Supplementary Fig. 2A–D).
KIAA0930 showed significant over-expression in lung cancer
compared to normal lung samples in an independent dataset
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from Harvard18 (P= 0.0005), while ATM showed limited varia-
bility (Supplementary Fig. 3 and Supplementary Table 20).
Additionally, we observed KIAA0930 expression was significantly
upregulated in the majority of carcinomas developing from epi-
thelial cells (Supplementary Table 21), suggesting that KIAA0930
is a carcinoma-associated candidate gene.

Discussion
Carcinogenesis is a stepwise process characterized by the
accumulation of mutations, including germline and somatic
alternations19. Identification of cancer-related driver germline
mutations can provide targets for personalized cancer screening,
prevention9,10 and treatment and drug development20. A chal-
lenge in analysis of rare variants is having enough samples to
accurately identify genotypes linked with genetic susceptibility.
Here, we have used a large-genotyping resource in a two-phased
study; a discovery phase to identify potential variants, followed by
a replication phase to confirm the fidelity of genotyping and to
evaluate the robustness of observed differences between cases and
controls. Using this approach, we report large-effect associations
with two variants; a rs56009889 germline mutation, where we
observed a reproducible association in LAD and a suggestive
association with the rs150665432. A case only analysis in the
MSK-Impact study of rs56009889 reinforced the link between this
polymorphism and LAD and particularly in females.

Both rs56009889 and rs150665432 are coding mutations, a
missense variant in ATM-L2307F and a stop-gain variant
KIAA0930-Q4X and both appear included in the full-length
isoforms of genes. Individuals homozygous for ATM germline
mutations can develop Ataxia Telangiectasia, which includes
susceptibility to cancer within its disease spectrum, and muta-
tions in ATM in a heterozygote state have been implicated in

cancer susceptibility21. The functional impact of ATM-L2307F
remains ambiguous; in silico predictions suggest this variant
may impact function, but it is reported by Clinvar as “likely
benign” or “benign” (https://www.ncbi.nlm.nih.gov/clinvar/
variation/127430/) and has not been associated with Ataxia
Telangiectasia. Here, we observed a strong association between
this variant and LAD and particularly women. ATM-L2307F
was found to have high prevalence in Ashkenazi Jews and the
association with lung cancer was stronger in a population from
Israel. Similar to harmful BRCA founder mutations that also
have high prevalence in Ashkenazi Jews22 and are used in
clinical practice23 the association between ATM-L2307F and
LAD may be clinically relevant to this population.

Mechanistically, L2307F is predicted to be deleterious by in
silico analysis and defective ATM proteins are known permit
the accumulation of new mutations24. ATM is a tumor sup-
pressor gene, can recognize and repair damaged or broken
DNA strands, and help maintains the stability of other genes
(https://ghr.nlm.nih.gov/gene/ATM). It is noteworthy that all
L2307F homozygotes had LAD and we observed an excess of
LOH in tumors of allele carriers relative to non-carriers
implying that biallelic loss might be important in this process.
TCGA also reported that the most frequent pathogenic germ-
line variants in LAD were heterozygous variants in ATM,
occurring in aggregate among 1.2% of cases25. The Tumor
Sequencing Project, investigating 188 LAD cases, also found
that ATM was one of the most common genes that somatically
mutated in LAD26. It remains to be tested if variants in other
populations also contribute to lung cancer susceptibility, or if
L2307F co-occurring with other clearly pathogenic ATM
mutations increases lung cancer risk beyond that experienced
by heterozygotes.
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expression from GTEx data (n= 427). c A heatmap showing ATM isoforms expression from GTEx data. b ATM isoforms expression from Germany data
(n= 6). e ENST00000251993 is the full-length and canonical isoform of KIAA0930. rs150665432 can truncate its protein length from 409 to 3 aa.
f KIAA0930 isoforms expression from GTEx data (n= 427). g A heatmap showing KIAA0930 isoforms expression from GTEx data. h KIAA0930 isoforms
expression from Germany data (n= 6). Boxplots in this figure were the visualization representing three quartiles (25%, median: 50%, and 75%) of the data
set that are calculated using the percentile function, and the minimum and maximum values of the data set that are not outliers. Outliers are detected using
the interquartile range method. Data points are labeled as outliers if they lie 1.5 times the interquartile range above or below the end points of that range.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-15905-6 ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:2220 | https://doi.org/10.1038/s41467-020-15905-6 | www.nature.com/naturecommunications 9

www.nature.com/naturecommunications
www.nature.com/naturecommunications


We additionally identified a suggestive association of KIAA0930-
Q4X with increased risk for lung cancer. KIAA0930 is an unchar-
acterized protein (http://www.uniprot.org/uniprot/Q6ICG6) and its
function has not been fully investigated. The rs150665432 - Q4X
mutation appears to comprise a loss of function allele, which is
included in the full-length isoform of KIAA0930. This gene is
expressed in normal lung, and KIAA0930 expression is significantly
upregulated in lung cancer and other carcinomas developing from
epithelial cells, suggesting KIAA0930 might play a role in the
development of those carcinomas. Also, data in The Human Pro-
tein Atlas showed that KIAA0930 expression significantly affects
survival in patients with carcinomas (https://www.proteinatlas.org/
ENSG00000100364-KIAA0930/pathology), such as liver, renal or
endometrial cancer, which also supports a role of KIAA0930 as a
carcinoma-associated candidate gene. Nevertheless, this association
must be studied further to ensure its robustness and the mechanism
by which the stop-gain mutation Q4X increases risk remains
unclear.

In conclusion, we have used large-case control and case only
collections of lung cancer to discover and validate high-risk, low-
prevalence germline mutations. Elements of our study design,
such as replicating results in an independent dataset, analyzing
the data by geographic populations and ethnicities, confirming
the genotyping fidelity, comparing MAFs of the mutations in our
datasets to those in public sequencing datasets, in silico analysis
and performing LOH exploration contribute to the robustness for
our results. The elevated genetic risks associated with these var-
iants imply potential clinical benefits in using these variants for
the identification of individuals who would benefit most from
screening programs, as well as suggestions for therapeutic targets.
The identification of the novel lung cancer-related germline
mutations could greatly advance our understanding of lung
cancer etiology.

Methods
Study subjects. The OncoArray consortium, which was used in the discovery
phase, is a network created to increase understanding of the genetic architecture of
common cancers. The Dartmouth component of the Oncoarray consortium used
genotyping data from 57,776 samples, obtained from 29 lung cancer studies across
North America and Europe, as well as Asia27, along with additional samples from
head and neck cancer patients that were included to improve genotype calling for
rare variants. The OncoArray consortium participants who were lacking disease
status (because they were not part of the lung cancer-related studies), who were
close relatives (second-degree relatives or closer) or who were duplicate individuals
or other subjects, or who had a low call rate of genotype data, or who did not pass
quality control (QC), or who were non-European, were excluded from the current
study. There were 5742 participants in the OncoArray consortium who were also
genotyped in the replication phase, and therefore these samples were excluded
from the analysis in the discovery phase. Finally, 28,878 European-descent parti-
cipants from 26 studies, including 15,851 lung cancer cases and 13,027 healthy
controls, were included in the discovery dataset of the current case-control study.

The 25 studies in the current discovery dataset included the Alpha-Tocopherol
Beta-Carotene Cancer Prevention Study (ATBC), Canadian screening study
(CANADA), Cancer de Pulmon en Asturias (CAPUA), Copenhagen lung cancer
study (COPENHAGEN), Environment and Genetics in Lung Cancer Study
Etiology (EAGLE), The Carotene and Retinol Efficacy Trial (FHCRC), Liverpool
Lung Cancer Project (FIELD), German lung cancer study (GERMANY), Harvard
Lung Cancer Study (HSPH), The IARC L2 Study (IARC), Israel study (ISRAEL),
The Kentucky Lung Cancer Research (KENTUCKY), MD Anderson Cancer
Center Study (MDACC), The Malmö Diet and Cancer Study (MDCS), Multiethnic
Cohort Study (MEC), New England Lung Cancer Study (NELCS), The Nijmegen
Lung Cancer Study (NIJMEGEN), Norway Lung Cancer Study (NORWAY),
Northern Sweden Health and Disease Study (NSHDC), The Prostate, Lung,
Colorectal and Ovarian Cancer Screening Trial (PLCO), RESOLUCENT study
(RESOLUCENT), Tampa Lung Cancer Study (TAMPA), Total Lung Cancer:
Molecular Epidemiology of Lung Cancer Survival (TLC), The Mount-Sinai
Hospital-Princess Margaret Study (TORONTO), The Vanderbilt Lung Cancer
Study (VANDERBILT), whose details were shown in Supplementary Table 22.
Among the 26 studies, 13 studies, including ATBC, CAPUA, COPENHAGEN,
EAGLE, FIELD, IARC, MDCS, NIJMEGEN, NORWAY, ISRAEL, NSHDC,
GERMANY and RESOLUCENT, obtained samples from Europe. Another
13 studies, including CANADA, FHCRC, HSPH, KENTUCKY, MDACC, MEC,

NELCS, PLCO, TAMPA, TLC, TORONTO, and VANDERBILT, recruited subjects
from North America.

We used the Affymetrix Axiome array study11 from the Transdisciplinary
Research in Cancer of the Lung consortium in the replication phase. The
Affymetrix Axiome array study was a large-pooled sample, assembled from 10
independent case-control studies, including Mount-Sinai Hospital-Princess
Margaret (MSH-PMH), Multiethnic Cohort, Liverpool Lung Project, Nurses’
Health Study and National Physicians Health Study, the European Prospective
Investigation into Cancer and Nutrition (EPIC) Lung, the Prostate, Lung and
Ovarian Cancer Screening Trial, Carotene and Retinol Efficacy Trial, Russian
Multi-Cancer Case-Control Study, Melbourne Collaborative Cohort Study and
Harvard Lung Cancer Study. Of the 12651 subjects in the Affymetrix Axiome array
study, the participants who were lacking disease status, or who were non-European,
or whose samples had lower call rate (missing genotype calls >0.05), were excluded.
Finally, the replication dataset of the current case-control study comprised 10,268
European-descent participants, including 4916 lung cancer cases and 5352 healthy
controls.

All studies were reviewed and approved by institutional ethics review
committees at the involved institutions.

Demographic characteristics. Descriptive statistical analyses were conducted to
characterize the study population of lung cancer cases and controls in both dis-
covery and replication datasets. The difference between cases and controls in the
distribution of age at diagnosis, gender and smoking status were evaluated using
the χ2 test. Statistical analyses were performed with Statistical Analysis System
software (Version 9.3). Principal component analysis (PCA) was performed based
on GWAS data with the EIGENSTRAT program for both discovery and replication
datasets (Supplementary Fig. 4A–B), respectively. To calculate these principal
components (PCs), we analyzed GWAS data after excluding the sex chromosomes,
variants with MAF less than 0.05 and after sampling SNPs that were uncorrelated
with each other.

Association analysis. We performed association analyses for the mutations
having Minor Allele Frequencies (MAF) <0.01. Case-control association tests for
genotyped data were conducted using 1-degree-of-freedom Cochran-Mantel-
Haenszel tests with the application of PLINK version 1.9 to discover the germline
mutations with large effects on lung cancer risk. In order to investigate the
mutations that altered protein sequence, we only keep the mutations within the
exome to do further analysis.

To infer Jewish versus Arabic Ancestry in the study from Israel, we used the
program AIPS28 (https://morgan1.dartmouth.edu/~f000q4v/html/aips.html),
which enables us to infer ancestry membership using a distance-based analysis to
account for geogenetic subpopulation structure. The analysis includes populations
of known origin from 22 European populations including Ashkenazi Jewish, and
Palestinian, Druze and Bedouin populations who were labeled as Arab. The
detailed results were shown in Supplementary Table 9.

We estimated the association between the risk of lung cancer and the selected
germline mutations by computing the ORs and 95% confidence intervals (CIs) in
univariate and multivariate logistic regression analyses in both datasets. In the
multivariate logistic regression model, OR and 95% CI were adjusted by age,
gender, smoking status (never and ever) and the PCs. To control for possible
population structure, we adjusted for three PCs in the discovery dataset because the
P values of anova statistics for population differences between Control and Case
were 2.18E-05, 0.0001 and 0.018 for 1st PC, 2nd PC and 3rd PC respectively. We
adjusted for two PCs in the replication data set for which there were no
eigenvectors that varied significantly between cases and controls (The P value of
anova statistics for population differences between Control and Case for 1st PC and
2nd PC were 0.287 and 0.189, respectively.).

We further stratified the association of the selected germline mutations and
lung cancer risk by gender and smoking status. We also estimated the association
between the selected SNP variants and the risk of LAD, lung squamous cell
carcinoma or small cell lung cancer, respectively, in univariate and multivariate
logistic regression analyses. A full listing of variants that we identified in the
discovery phase by histology is provided in supplementary Table 23. There were
four mutations including rs17843743, 3:9970073, rs150665432, and rs61816761
with small cell lung cancer that reached the criteria of P values of less than 5.0 ×
10−8 and OR values of more than 2.0 in the discovery dataset. However, among
unaffected individuals, the MAFs of none of the new mutations in replication
dataset were comparable to those in discovery dataset.

We further stratified the association in the discovery dataset by geographic
populations in univariate and multivariate logistic regression analyses. Based on the
MAF of rs56009889 and the location of the study sites in the discovery dataset, we
categorized all the studies to three subgroups, including Israeli among which
rs56009889 had the highest MAF, population in other European countries, and
North Americans. We then investigated the association in Jews of the discovery
dataset by geographic populations in univariate and multivariate logistic regression
analyses. Since the frequency of rs150665432 in controls varies non-significantly
between geographic populations, we categorized all the studies to two subgroups,
including population in European countries and North American countries, to
calculate the associations of rs150665432 and lung cancer risk in different
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geographic populations. Statistical analyses for were performed with SAS 9.3 in
both discovery and replication phase; a p-value of <0.05 was considered to be
significant.

Meta-analyses were performed with the application of R package ‘meta’ (http://
www.imbi.uni-freiburg.de/lehre/lehrbuecher/meta-analysis-with-r) that combined
test statistics and standard errors across studies. A fixed effect model was used to
combine the studies in meta-analysis.

Genotyping, quality control, and the reliability. A novel technology, developed
by Illumina to facilitate efficient genotyping was used to genotype OncoArray
samples27. Quality control steps follow the approach described previously for the
OncoArray29. Briefly, samples with low-genotyping rates and poor genotyping
assays (judged by success rate, or genotype distributions that deviated from
expectation by Hardy Weinberg equilibrium) were excluded based on Standard
quality control. SNPs, showing departure from Hardy-Weinberg equilibrium in the
controls (P-value < 1 × 10−6) or lower call rate (missing genotype calls >0.05) or
samples with less than 95% call rate were excluded. 533,631 variants for OncoArray
samples passed quality control procedures and were included as valid markers, of
which 105,736 variants, whose MAF was <0.01 were rare variants. Genotyping
395,745 SNPs from samples of the Affymetrix study was performed using a custom
Affymetrix Axiom Array (Affymetrix, Santa Clara, CA, USA), which contains a
comprehensive panel of key GWAS markers, rare and low-frequency variants and
indels11. The datasets were built using the Genome Reference Consortium Human
build 37.

In order to validate the reliability of genotyping data, we compared the MAFs of
the selected germline mutations in unaffected individuals of the discovery and the
replication datasets, respectively, to those in public sequencing projects or datasets
including the Exome Aggregation Consortium (ExAC)12, the NHLBI GO Exome
Sequencing Project (GO-ESP) and the Trans-Omics for Precision Medicine
(TOPMed) Program. ExAC is a released public exome sequencing dataset with
variations on 60,706 unrelated individuals. GO-ESP is an exome sequencing project
that included European American and African American participants. TOPMed
sequenced the DNA of people from diverse ethnic backgrounds, with 50% being of
European descent and 30% of African descent.

Concordance analysis. We confirmed the genotyping fidelity of the selected
germline mutations in the OncoArray platform and the Affymetrix platform,
respectively, by considering the concordance of these genotypes between the two
platforms. A total of 5742 subjects in the OncoArray consortium were duplicate
individuals in the Affymetrix data. Even though the 5742 subjects were excluded in
the discovery dataset and included in the replication dataset, we calculated the
concordance of genotyping between the OncoArray consortium and the Affymetrix
study for the selected germline variants in the 5742 individuals whose genotyping
results were available for both platforms.

The concordance rate was based on the agreement between OncoArray
genotyping and Affymetrix genotyping, and we considered the general
concordance and concordance between the rare alleles only29. Supplementary
Table 24 describes the genotype frequencies in different situations of agreement
between OncoArray genotyping and Affymetrix genotyping.

The general concordance rate was estimated using the genotype frequencies,
which were in agreement between OncoArray genotyping and Affymetrix
genotyping, incorporating all genotype frequencies (n).

General concordance= (a+ e+ i)/n.
The concordance of rare alleles was estimated using the genotype frequencies of

the minor/minor and major/minor, which were in agreement between Oncoarray
genotyping and Affymetrix genotyping, incorporating all genotype frequencies
other than the genotype frequency of major/major. Concordance of rare Allele=
(i+ e)/(n−a).

Analysis of the differences in age. Student t-test was used to evaluate the dif-
ferences in age at onset of lung cancer between different genotypes of the selected
germline mutations in cases. We then evaluated the differences in age at onset with
stratified by gender, smoking status and histology of lung cancer.

Germline-somatic integrated analysis. A dataset was comprised of 2686
advanced lung cancer patients who were recruited at Memorial Sloan Kettering
Cancer from January 2014 until May 2016. In this dataset, 2127 cases were of
European ancestry and selected for the current analysis. The frequency of Jewish
heritage in this population is reported to be about 18%, but we did not have
sufficient information from the targeted sequencing panel to infer ancestry. The
germline analysis was performed in an anonymized method using a deterministic
hash algorithm and samples were assigned a unique identifier to link germline and
somatic data for integrated analysis. Tumor and blood DNA from patients were
sequenced by Integrated Mutation Profiling of Actionable Cancer Targets (MSK-
IMPACT). This assay captures the coding exons and select introns of 468 cancer-
associated genes. LOH in the tumor was evaluated for total, allele-specific, and
tumor purity and ploidy, using FACETS version 0.5.6. The background LOH rate
was estimated using synonymous variants in the same gene. Statistical significance
was computed using fisher exact test.

RNA-seq and splicing analysis. We performed mRNA-seq analysis with using
RNA-seq data from the human normal lung tissues that were adjacent of human
lung invasive mucinous adenocarcinoma of six patients. The patients were enrolled
from Germany, so that the data was called Germany data in this study. The RNA
sequencing reads were obtained by high throughput sequencing and downloaded
from Gene Expression Omnibus (GEO). We used bowtie2 to align RNA sequen-
cing reads with quantifying isoform abundances with RSEM v1.2.22. In addition, to
confirm the isoform expression of ATM and KIAA0930 in lung, we also used lung
tissue-specific Isoform expression values from the GTEx v7 dataset using RSEM.
All of 427 lung samples that had isoform expression values are used. We plot raw
isoform quantification values with R. After isoform-level transcripts per million
(TPM) estimates were transformed via log2 (1+ TPM), hierarchical clustering was
performed on the correlation matrix in R, using the heatmap.2 package from gplots
version 3.0.1.1.

Structure-based prediction. With using SNPeffect 4.014, we explored TANGO
that is a statistical mechanics algorithm to predict protein aggregation based on the
physics-chemical principles of β-sheet formation30. PolyPhen-215 was applied to
predict the functional effects of the germline mutations. We used Fathmm-XF18 to
perform accurate prediction of the functional consequences of the mutations with
applying machine learning method.

Gene expression. TCGA level 3 RNA-seq data and clinical patient data related to
19 cancer types, composing of LAD that included 515 tumor samples and 59
normal samples, lung squamous cell carcinoma (LUSC) that included 503 tumor
samples and 52 normal samples, bladder urothelial carcinoma (BLCA), breast
invasive carcinoma (BRCA), cervical squamous cell carcinoma (CESC), cho-
langiocarcinoma (CHOL), colon adenocarcinoma (COAD), esophageal carcinoma
(ESCA), glioblastoma multiforme (GBM), head and neck squamous cell carcinoma
(HNSC), kidney renal clear cell carcinoma (KIRC), kidney renal papillary cell
carcinoma (KIRP), liver hepatocellular carcinoma (LIHC),pancreatic adenocarci-
noma (PAAD), prostate adenocarcinoma (PRAD), rectal adenocarcinoma (READ),
Sarcoma, Thymoma, thyroid carcinoma (THCA), were used to investigate whether
or not the expression of ATM or KIAA0930 were associated with the primary
cancer. In all, 7570 samples, including 6930 tumor samples and 640 normal
samples, were included in the analysis. The significance of difference in gene
expression levels between tumor and normal samples was estimated by comparing
generating Transcripts per million (TPM) expression values, employing UALCAN
to perform t-test31.

Harvard lung expression data18 included the mRNA expression values for
12,600 genes that was rescaled and normalized from the raw expression data by a
rank-invariant scaling method, in order to removing the batch differences. A total
of 203 samples, including 127 LADs, 21 lung squamous cell carcinomas, 20 lung
carcinoids, 6 small cell lung cancer and 17 normal lung specimens, were consisted
in the study and performed with microarray analysis. Of the 12,600 genes, both
ATM and KIAA0930 were included. Additionally, exon 2 and 5 of ATM were
analyzed without corresponding whole gene expression changes. We used t-test to
evaluate the differences in gene expression levels of ATM exon 2 and 5 and
KIAA0930, respectively, between lung cancer and normal lung samples, in general
and within each histologic type.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data that support the findings of this study are available. The access numbers are
“phs001273” for Oncoarray study, “phs001681.v1.p1” for the Affymetrix study, and
“phs001783.v1.p1” and “phs001858.v1.p1”for the MSK-IMPACT study in dbGAP. The
source data underlying Figs. 1–4 are provided as a Source Data file.

Code availability
No unreported software and custom computer code were used to generate results.
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