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Abstract
Background  Acute myeloid leukemia (AML) is a 
hematopoietic malignancy which is biologically, 
phenotypically and genetically very heterogeneous. 
Outcome of patients with AML remains dismal, highlighting 
the need for improved, less toxic therapies. Chimeric 
antigen receptor T-cell (CART) immunotherapies for 
patients with refractory or relapse (R/R) AML are 
challenging because of the absence of a universal pan-
AML target antigen and the shared expression of target 
antigens with normal hematopoietic stem/progenitor cells 
(HSPCs), which may lead to life-threating on-target/off-
tumor cytotoxicity. CD33-redirected and CD123-redirected 
CARTs for AML are in advanced preclinical and clinical 
development, and they exhibit robust antileukemic activity. 
However, preclinical and clinical controversy exists on 
whether such CARTs are myeloablative.
Methods  We set out to comparatively characterize in 
vitro and in vivo the efficacy and safety of 41BB-based 
and CD28-based CARCD123. We analyzed 97 diagnostic 
and relapse AML primary samples to investigate whether 
CD123 is a suitable immunotherapeutic target, and 
we used several xenograft models and in vitro assays 
to assess the myeloablative potential of our second-
generation CD123 CARTs.
Results  Here, we show that CD123 represents a bona 
fide target for AML and show that both 41BB-based and 
CD28-based CD123 CARTs are very efficient in eliminating 
both AML cell lines and primary cells in vitro and in vivo. 
However, both 41BB-based and CD28-based CD123 
CARTs ablate normal human hematopoiesis and prevent 
the establishment of de novo hematopoietic reconstitution 
by targeting both immature and myeloid HSPCs.
Conclusions  This study calls for caution when clinically 
implementing CD123 CARTs, encouraging its preferential 
use as a bridge to allo-HSCT in patients with R/R AML.

Background
Acute myeloid leukemia (AML) is a biolog-
ically, phenotypically and genetically very 
heterogeneous malignant disease which 

results from the uncontrolled accumulation 
of differentiation-defective hematopoietic 
stem/progenitor cells (HSPCs) or imma-
ture myeloid cells.1 2 AML is one of the most 
common hematopoietic malignances, and 
its incidence increases with age.3 4 Intensive 
chemotherapy combos based on nucleoside 
analogs plus anthracyclines remain the stan-
dard front-line treatment of AML,5 followed 
by allogeneic HSPC transplant (allo-HSCT), 
based on patients’ eligibility, to consolidate 
complete remission (CR) and to prevent 
relapse.6 However, with the exception of a 
few molecular subgroups (the ‘so-called’ 
low-risk AMLs), relapses are common after 
consolidation therapy and/or allo-HSCT. 
Chemotherapy-related toxicity, refracto-
riness, and failure to eradicate leukemia-
initiating cells are the major mechanisms 
underlying AML progression and relapse.7–10 
Unfortunately, improved AML treatments 
have only experienced minor developments 
over the last four decades, and current 5-year 
event-free survival (EFS) remains ~20% in 
adults and <70% in children,11 12 highlighting 
the desperate need for safer and more effi-
cient therapeutics.

Immunotherapy has generated unprec-
edented expectations in cancer treatment. 
In AML, both CD33- and CD123-specific 
antibody-drug conjugates have been used for 
combination therapy with standard chemo-
therapy with improved EFS,13 14 and Bispe-
cific T-cell Engagers (BiTEs) for CD33 and 
Dual-Affinity Retargeting (DART) antibodies 
for CD123 are being clinically assayed.15 16 
Adoptive cellular immunotherapy based on 
the engineering of human chimeric antigen 
receptor T-cells (CARTs) redirected against 
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cell surface tumor antigens has shown robust clinical 
responses in patients with B-cell malignances, thanks to 
the high efficacy, specificity and persistence of CARTs.17–19 
However, the clinical implementation of AML-specific 
and safe CARTs for patients with refractory or relapse 
(R/R) AML is still awaiting. Strategies targeting AML 
using CARTs have proven more challenging than in B-lin-
eage malignancies because of two reasons: (1) the lack 
of a universal pan-AML target antigen due to the large 
disease heterogeneity, which hampers clinical implemen-
tation, since a wide range of CARs would be needed to 
cover the different leukemic phenotypes; and (2) the 
shared expression of immature target antigens between 
normal HSPCs and myeloid blasts, which compromises 
safety due to potential on-target/off-tumor cytotoxicity 
against HSPCs, leading to fatal aplasia.20 21

Adoptive immunotherapy for AML is in advanced 
preclinical and clinical development using CD33-
redirected and CD123-redirected CARs (CD123 CARTs), 
and they exhibit robust antileukemic activity in vitro 
and in vivo.22–25 However, controversy exists on whether 
CD123-directed and CD33-directed CARTs are myeloab-
lative. Some groups raised safety concerns leading to 
the development of complex target antigen knockout 
in HSPC or T-cell suicide strategies to circumvent such 
a toxicity.23 26 In contrast, other groups showed a safety 
profile with limited on-target/off-tumor toxicity of such 
CARs.22 27–31 Here, we set out to characterize in vitro and 
in vivo the efficacy and the safety of 41BB-costimulated 
and CD28-costimulated CD123CARs, based on a clinically 
relevant single chain variable fragment (scFv) from the 
CSL362 monoclonal antibody (MoAb). Analysis of a large 
cohort of diagnostic and relapse AML primary samples 
revealed that CD123 is a suitable target for AML, and 
CD123 CARTs were very efficient in vitro and in vivo in 
eliminating both AML cell lines and primary cells, regard-
less of the costimulation motif. However, clonogenic 
assays and several xenograft models revealed that both 
41BB-costimulated and CD28-costimulated CD123 CARTs 
strongly ablate normal human hematopoiesis by targeting 
both HSCs and myeloid progenitors. This study calls for 
caution when clinically implementing CD123 CARTs and 
highlights its preferential use as a bridge to allo-HSCT in 
patients with R/R AML.

Materials and methods
Car design and vectors, lentiviral production and T-cell 
transduction
The anti-CD123 scFV derived from the clinically tested 
CSL362 MoAb was generated and cloned into the pCCL 
lentiviral-based second-generation CAR backbone 
containing a human CD8 transmembrane domain, a 
human costimulatory domain (either 41BB or CD28), 
CD3z endodomain, and a T2A–green fluorescence protein 
(GFP) cassette. The pCCL vector expressing GFP alone 
(MOCK vector) was used as a control. Chimeric antigen 
receptor (CAR)-expressing viral particles pseudotyped 

with vesicular stomatitis virus-G (VSV-G) were generated 
using HEK 293T cells with a standard polyethylenimine 
(PEI) transfection protocol. For each production, plasmid 
transfection was carried out using a 3:1 PEI:DNA ratio 
using 16 µg transfer vector, 16 µg of pSPAX2, and 8 µg 
VSV-G per plate, and viral particles were concentrated by 
ultracentrifugation as previously described.32 Peripheral 
blood mononuclear cells (PBMCs) were isolated from 
buffy coats from healthy volunteers by Ficoll-Hypaque 
gradient centrifugation. Buffy coats were obtained from 
the Barcelona Blood and Tissue Bank (BST) on institu-
tional review board (IRB) approval (HCB/2018/0030). 
T-cells were activated by plate-bound OKT3 and anti-
CD28 antibodies (BD Biosciences) for 2 days in the pres-
ence of interleukin (IL)-7 and IL-15 (10 ng/mL, Mitenyi 
Biotec).33 34 Surface expression of CAR123 was traced by 
fluorescence-activated cell sorting (FACS). CAR detection 
was confirmed by GFP expression and by using an Affi-
niPure F(ab')₂ Fragment Goat Anti-Human IgG (H+L) 
(Jackson ImmunoResearch). Activation and subsetting of 
lentivirally transduced T-cells were confirmed by surface 
staining with CD25/CD69 (data no shown) and CD3/
CD4/CD8, respectively.

Immunophenotyping of healthy HSPCs, primary AML samples 
and cell lines
Diagnostic immunophenotyping data for the most 
commonly expressed antigens in AML (CD123, CD33, 
CD13, CD34, CD15, c-kit, and CD66) were obtained for 
97 patients diagnosed at local hospitals: Germans Trias 
i Pujol (Barcelona, Spain), Hospital Clínico (Madrid, 
Spain), Hôpital Armand Trousseau (Paris, France) and 
Santa Creu i San Pau (Barcelona, Spain). CD123 expres-
sion was also compared in diagnostic-relapsed paired 
samples (n=68 patients) and in paired bulk leukemia–
leukemia stem cells (LSCs) (n=37 patients).35 Cell lines 
were stained with CD123-APC, CD33-BV-421, CD14-
PerCP-Cy5.5 and CD19-APC. The expression of CD123 
and CD33 antigens was prospectively compared in CD34+ 
HSPCs derived from healthy cord blood (CB, n=22), mobi-
lized peripheral blood (PB, n=10) and diagnostic primary 
AML samples (n=24). For HSPC subsetting, CD34+ cells 
were stained with CD34-PE or CD34-PE-Cy7, CD133-PE, 
CD19-FITC, CD90-APC, CD13-PE-Cy7 and CD71-
APC-Cy7, which allow for the identification and quan-
tification of immature HSCs (CD34++CD133+CD90+), 
myeloid progenitors (CD34+CD13++CD71−/low), eryth-
roid progenitors (CD34+CD71++CD13 low), and B-cell 
progenitors (CD34+CD19+CD71−CD13−). Isotype-
matched, non-reactive fluorochrome-conjugated MoAbs 
were always used as a fluorescence reference. All anti-
bodies were purchased from Beckton Dickinson. Cells 
were incubated with MoAbs (30 min at 4°C in the dark-
ness), then washed in phosphate-buffered saline (PBS) 
and analyzed in a FACSCanto-II flow cytometer equipped 
with FACSDiva software (Becton Dickinson).36–38 Deter-
mination of antigen density for CD33 and CD123 was 
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performed using BDQuantibrite-PE (Becton Dickinson) 
according to the manufacturer’s instructions.

In vitro cytotoxicity assays and cytokine release 
determination
The cell lines THP-1, MOLM-13 and 697 were purchased 
from DSMZ (Germany) and expanded according to DSMZ 
recommendations. Primary AMLs and healthy CD34+ cells 
were obtained from the aforementioned hospitals and 
the BST, respectively (IRB approval: HCB/2018/0030). 
Target cells were incubated with CAR123 or MOCK 
T-cells at different effector:target (E:T) ratios for the 
indicated time periods. CART-mediated cytotoxicity was 
determined by analyzing the residual alive (7-AAD-) 
target cells at each time point and E:T ratio. For absolute 
cell counting, Trucount absolute count beads (Becton 
Dickinson) were used. Furthermore, FACS-sorted CD3+ 
mature T-cells from the bone marrow (BM) of CD123+ 
patients with AML were activated, transduced with 
CD123 CAR and tested against their autologous-matched 
CD123+ AML blasts. Target cells (1×105) were used for 
all cytotoxicity assays unless stated otherwise. Table  1 
shows the clinical–biological features of the CD123+ AML 
samples used for in vitro experiments. The production 
of the proinflammatory cytokines IL-2, tumor necrosis 
factor alpha (TNF-α) and interferon gamma (IFN-γ) was 
assessed by ELISA (Human ELISA SET, BD Biosciences) 
using in vitro supernatants harvested at 16 hours post-T-
cell exposure, and sera were collected from mice 10 days 
after CART infusion.

Colony-forming unit (CFU) assays
CB-derived CD34+ cells were exposed for 24 hours to 
either CD123 CARTs or MOCK T-cells (E:T 1:1) and then 
plated (2×103) onto serum-free methylcellulose H4435 
(Stem Cell Technologies). CFUs were then counted and 
scored after 12–14 days following standard procedures.

In vivo xenograft models for AML, HSPCs and CARTs
Non-obese diabetic-Cg-Prkdcscid Il2rgtm1Wjl/SzJ (NSG) 
mice (8–12 weeks old, Jackson Laboratory) were bred and 
housed under pathogen-free conditions in the animal 
facility of the Barcelona Biomedical Research Park. In 
experiments addressing CAR123 efficacy, mice were 
intravenously transplanted with 0.25×106 Luc-mCherry-
expressing patient-derived xenograft AML cells (PDX-
579)39 5 days before intravenous infusion of 3×106 of 
either 41BB-CD123 or CD28-CD123 CARTs derived from 
healthy PBMCs. Tumor burden was monitored at the 
indicated time points by bioluminescence (BLI) using 
the Xenogen in vivo imaging system (IVIS) 50 Imaging 
System (Perkin Elmer).32 In experiments addressing 
the myeloablative effect of CAR123, CD34+ HSPCs 
(0.1×106) were intra-BM transplanted in sublethally irra-
diated (2 Gy) NSG mice, followed by intravenous infu-
sion of 3×106 of 41BB-CD123, CD28-CD123 CARTs or 
MOCK T-cells either 1 day or 6 weeks after CD34+ trans-
plantation. BM and PB were FACS-analyzed for human 

chimerism at sacrifice. Cells were stained with anti-HLA.
ABC-PE and CD45-BV450. Engrafted mice were assessed 
for multilineage engraftment using anti-CD123-APC for 
myeloid cells, anti-CD19-BV421 for lymphoid cells, and 
anti-CD34-PE.Cy7 for immature cells. Human absolute 
engraftment in PB and BM was quantified using BD 
Trucount tubes according to manufacturer’s instructions.

Statistical analysis
For comparison of CD123 expression between paired 
‘diagnostic-relapse’ and ‘bulk leukemic cells-LSC’, 
the Mann-Whitney U test was used. For differences in 
antigen density and engraftment among groups, a one-
way analysis of variance test was used. For the remaining 
comparisons, Student’s t-test was used. All p values were 
considered statistically significant at <0.05 (*).

Results
CD123 represents a bona fide immunotarget for AML
We first analyzed by FACS the expression levels of the 
most common diagnostic myeloid markers in a cohort 
of 97 patients with AML at presentation. We found that 
CD123 was the most common and homogeneously 
expressed antigen (86.4%±26.8 of AML blasts) followed 
by CD33 (77.4%±32.1) (figure  1A). Important, in 82% 
of the patients with AML analyzed, >80% of the blasts 
were CD123+, while only 66% of the patients showed 
positivity for CD33 in >80% of the blasts (figure 1A). A 
target antigen for immunotherapy in AML should ideally 
be absent in HSPCs. CD123 and CD33 are both partially 
expressed in healthy CD34+ HSPCs,22 23 so we next quan-
tified the density (molecules/cell) of both antigens in 
fresh primary AML blasts (n=24), healthy CB-derived 
(n=22) and healthy mobilized PB-derived CD34+ HSPCs 
(n=10). Of note, 67% (16/24) of patients with AML 
displayed levels of CD123 significantly higher than those 
found in both CB-derived and PB-derived CD34+ HSPCs, 
while only 41% (10/24) of patients with AML displayed 
levels of CD33 that segregate them from CB-derived and 
PB-derived CD34+ HSPCs (figure 1B). This suggests that 
CD123 represents, a priori, a less myeloablative target 
than CD33. Of note, analysis of paired diagnostic (DX)-
relapse (RX) AML samples revealed that CD123 expres-
sion is maintained at relapse, and in AML-LSC (identified 
as CD34+CD38−)35 (figure 1C), reinforcing CD123 as a 
bona fide immunotarget for R/R AML.

41BB-based and CD28-based CD123 CARTs efficiently 
eliminate AML primary cells in vitro and in vivo
We next designed second-generation 41BB-based and 
CD28-based CD123CARs coupled in-frame with GFP 
through a T2A sequence (figure 1D and online supple-
mentary figure S1A). The expression of both 41BB-CD123 
and CD28-CD123 CAR in T-cells was confirmed through 
codetection of scFv and GFP (figure 1E and online supple-
mentary figure S1B) and did not affect the CD4:CD8 ratio 
(figure 1F). Importantly, activated (CD69+CD25+) T-cells 
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Table 1  Biological and cytogenetic-molecular characteristics of blasts from diagnostic patients with AML

Patient ID Diagnostic Cytogenetics Molecular
Age 
(years) Gender Blasts (%) Cd123 (%) Use

14 085 AML 46,XY NPM1+, FLT3-
ITD

42 M 87 80 AG density

14 176 AML-M1 46,XX Normal 44 F 83 75 AG density
ELISA

14 093 AML-M4 46,XX NPM1MUT, FLT3-
ITD

52 F 81 86 AG density

14 184 AML-M1 46,XX, t(8;21) AML1-ETO 14 F 90 84 AG density

14 268 AML 46,XY, inv(16) NPM1MUT, FLT3-
ITD

69 M 95 92 AG density
Autologous

14 269 AML-M5 47,XX,+8 Normal 64 F 92 90 AG density
ELISA

14 266 AML 46,XX,t(8;21) AML1-ETO, 
FLT3-ITD+

48 F 90 92 AG density
ELISA

14 123 AML 46,XY,t(3;3) Normal 28 M 42 77 AG density

14 185 AML 46,XY,inv(16) Normal 8 M 77 72 AG density

14 143  � AML-M1 46,XY Normal 43 M 90 90 AG density

14 156 AML 46,XY,11q23 MLL-AF6 1 M 88 100 AG density

14 144 AML 46,XY,del(7)(q22) Normal 61 M 88 98 AG density

14 141 AML-M5 46,XX, t(8;21) AML1-ETO 39 F 83 82 AG density

14 091 AML-M4 47,XX,+8 Normal 61 F 95 80 AG density

14 272 AML 46,XX NPM1MUT, FLT3-
ITD

44 F 73 88 Autologous

14 274 AML 46,XX, t(8;21) AML1-ETO 13 F 85 75 Autologous

ABT3974 AML 46,XY,+9, inv(16)
(p13;q22), der(17)t(11;17)
(q13;q25)

CEBPA, FLT3-
TKD, WT1

37 M 91 87 AG density

ABT5270 AML 46,XY NPM1, 
DNMT3A, IDH1

55 M 74 77 AG density

ABT4435 AML 46,XX IDH2, DNMT3A 70 F 24 96 AG density

ABT8326 sAML 44–45X-,Y, der(3),del(7)
(q22),der(8),add(12)
(p13),−18,add(21)(q28)

TET2, CALR 61 M 6 56 AG density

ABT7693 AML 46,XY NPM1, IDH1, 
PTPN11

45 M 80 99 AG density

ABT4470 AML 47,XX NPM1, IDH1, 
BCOR

72 F 71 76 AG density

ABT5718 AML 46,XX CEBPAbi, 
DNMT3A, TET2

52 F 34 65 AG density

ABT8597 AML NA NPM1, IDH1, 
NRAS

69 F 71 100 AG density

ABT3906 AML NA NPM1, FLT3-
ITDHIGH, IDH1

40 M 93 77 AG density

ABT4685 tAML 46,XX CEBPAbi, TET2, 
WT1

67 F 49 93 AG density

AG, antigen; AML, acute myeloid leukemia; F, female; M, male; sAML, secondary acute myeloid leukemia; tAML, therapy-related acute 
myeloid leukemia .

continuously expanded ~50-fold over a 10-day period, 
similar to MOCK T-cells (figure 1G), demonstrating that 
redirecting T-cells against CD123 does not hamper T-cell 
expansion.

We then tested the functionality of our 41BB-CD123 
and CD28-CD123 CARs in vitro and in vivo (figure  2 
and online supplementary figure S1, S2). In vitro, both 
41BB-CD123 (figure  2A) and CD28-CD123 (online 
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Figure 1  Expression of CD123 in AML and design, detection and expansion CD123 CARTs. (A) Immunophenotyping of the 
indicated diagnostic myeloid markers in a cohort of 97 patients with AML at presentation. Each dot denotes an individual 
patient. Red circles identify patients with >80% of blasts positive for the indicated marker. (B) Comparative antigen density 
(measured as antigen molecules/cell) for CD123 and CD33 in primary AML samples (n=24), CB-derived (n=22) and PB-derived 
(n=10) CD34+ cells from healthy donors. AML blasts were identified as 7AAD−CD3−CD45+/lowCD123+CD33+. One-way analysis 
of variance; *p<0.05, **p<0.01, ***p<0.001. (C) Comparison of CD123 expression in 68 paired diagnostic-relapse AML samples 
(left panel) and in bulk tumor versus AML-LSC (n=37, right panel).33 (D) Scheme of the CD123 CAR structure. (E) CAR detection 
in primary T-cells using an antihuman IgG F(ab')2 antibody and GFP. (F) Successful CAR123 transduction and detection in CD4+ 
and CD8+ T-cells (n=3). (G) Robust expansion of activated T-cells transduced with either MOCK (black line) or CAR123 (red line) 
(n=3). AML, acute myeloid leukemia; CAR, chimeric antigen receptor; CART, chimeric antigen receptor T-cell; CB, cord blood; 
DX, diagnostic; GFP, green fluorescence protein; LSC, leukemia stem cell; PB, peripheral blood; RX,relapse.

supplementary figure S1C) CARTs, but not MOCK 
T-cells, specifically eliminated the CD123+ AML cell lines 
THP1 and MOLM13 in an E:T ratio-dependent manner 
(online supplementary figure S2) while sparing the 
CD123− B-ALL cell line 697. In fact, CD123+ AML cells 
barely survived exposure to CD123 CARTs in a 48-hour 
absolute number assay at a 1:1 E:T ratio (figure 2B and 
online supplementary figure S1C). We then examined in 
an autologous setting whether CD3+ T-cells deriving from 
patients with AML can be isolated, modified to express 
CD123 CAR, expanded and used as cytotoxic effector cells 

(figure 2C). Patient-derived CD123 CARTs were success-
fully generated from magnetic-activated cell sorting 
(MACS)-sorted CD3+ T-cells (>95% purity) and specifi-
cally eliminated autologous patient-matched CD123+ 
AML blasts (figure 2D). Important, both CD123 CARTs 
produced high levels of the proinflammatory cytokines 
IL-2, TNF-α, and IFN-γ on coculture with both AML cell 
lines (figure  2E and online supplementary figure S1D) 
and primary blasts (figure  2F), confirming their robust 
cytotoxicity.
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Figure 2  41BB-CD123 CARTs specifically target and eliminate CD123+ AML cells in vitro and in vivo. (A) Surface expression 
of CD123 (red) in THP-1, MOLM-13 and 697 cell lines. (B) Absolute counts of alive residual target cells measured by FACS 
in 48-hour cytotoxicity assays at 1:1 E:T ratio (n=3). Data are presented as mean±SEM; *p<0.05, **p<0.01, ***p<0.001. (C) 
Graphical cartoon of the experimental design for autologous cytotoxic assays. Normal CD3+ T-cells were FACS-purified from 
the BM of patients with AML (n=3), infected with CD123 CAR, expanded, and exposed to autologous total PBMCs (1:1 E:T). 
Residual CD123+ blasts were quantified 48 hours post-41BB-CD123 CART exposure. (D) Left: representative FACS analysis 
of the cytotoxicity assay. T-cells are shown in black and CD123+ blasts in blue. Right: absolute counts of alive AML blasts 
in 48-hour cytotoxicity assays at 1:1 E:T ratio (n=3). (E,F) ELISA showing robust secretion of proinflammatory cytokines by 
41BB-CD123 CARTs after exposure to CD123+ cell lines (E) and AML primary blasts (F) for 16 hours at 1:2 E:T ratio (n=3). 
(G) Experimental design to assess in vivo the efficacy of both 41BB-based and CD28-based CD123 CAR. NSG mice were 
intravenously injected with 2.5×105 Luc-expressing xenograft AML cells (PDX-579) followed 5 days after by a single intravenous 
injection of 3×106 CD123 CARTs (either 41BB or CD28) generated from healthy PBMCs. Tumor burden was monitored every 
7–10 days by BLI using IVIS imaging. (H) IVIS imaging of tumor burden monitored by BLI at the indicated time points. (I) 
Left: total radiance quantification (p/s/cm2/sr) at the indicated time points for 41BB-CD123 CARTs, CD28-CD123 CARTs and 
untreated mice. *P<0.05. Right: absolute counts of residual AML cells in PB and BM at endpoint. (J) T-cell persistence in PB 
and BM at endpoint. (K) In vivo quantification by ELISA of IFN-γ in PB sera collected in the acute phase (10 days post-CART 
infusion). *p<0.05. AML, acute myeloid leukemia; BLI, bioluminescence; BM,bone marrow; CART, chimeric antigen receptor 
Tcell; E:T, effector:target; FACS, fluorescence-activated cell sorting; IFN-γ, interferon gamma; IVIS, in vivo imaging system; 
ns, non-significant; NSG, non-obese diabetic-Cg-Prkdcscid Il2rgtm1Wjl/SzJ; PB, peripheral blood; PBMC, peripheral blood 
mononuclear cell.
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We next compared the cytotoxic activity of 41BB-CD123 
and CD28-CD123 CARTs in vivo using Luc-expressing 
CD123+ AML xenograft (figure  2G). NSG mice were 
transplanted with 0.25×106 Luc-expressing AML PDX cells 
5 days prior to intravenous infusion of 3×106 41BB-CD123 
or CD28-CD123 CARTs, and leukemia establishment was 
followed up weekly by BLI until disease signs were evident 
(figure  2H). While control mice increasingly showed 
aggressive disease and disseminated leukemia, CD123 
CART-treated mice showed extensive disease control 
across the experiment, regardless of the costimulation 
domain used (figure 2H1). Of note, T-cells persisted in 
PB and BM at sacrifice, although at higher levels in 41BB-
CD123 CART-treated mice, in line with the reported 
longer persistence/effector function of 41BB-costimu-
lated CARTs (figure 2J).40 Similarly, both CD123 CARTs, 
especially 41BB-costimulated CD123 CARTs produced 
high levels of the IFN-γ in vivo (figure 2K). Collectively, 
both 41BB-CD123 and CD28-CD123 CARTs have similarly 
potent and specific antileukemic activity against AML 
cells in vitro and in vivo.

On-target/off-tumor targeting of immature HSPCs and myeloid 
progenitors render both 41BB-CD123 and CD28-CD123 CARTS 
severely myeloablative in vitro and in vivo
There is controversy on whether CD123-redirected T-cells 
are myeloablative. To prospectively assess the potential 
myelotoxicity of CD123 CARTs, we first addressed in vitro 
whether exposure to CD123 CARTs hampers the viability 
and clonogenic capacity of CD34+ HSPCs (figure  3A). 
As compared with MOCK T-cells, both CD123 CARTs 
induced a massive reduction in CD34+ cell counts in 
a 72 hours (E:T ratio 2:1) assay (figure  3B). Similarly, 
CD34+ HSPCs pre-exposed to either CD123 CARTs (E:T 
ratio 1:1) for only 24 hours showed 50%–80% reduction 
in their clonogenic capacity (figure 3D).

We next assessed the myeloablative potential of both 
41BB-CD123 and CD28-CD123 CARTs in vivo using 
xenograft models of human hematopoietic reconstitu-
tion. In an initial set of experiments, sublethally irradi-
ated NSG mice were reconstituted with 0.1×106 CD34+ 
HSPCs, and 6 weeks later, when human multilineage 
engraftment was established, mice received 3×106 
41BB-CD123, CD28-CD123 CARTs or MOCK T-cells 
(figure 3E). Human engraftment was biweekly analyzed 
in PB (figure  3F) and BM (figure  3G) over 6 weeks. 
MOCK T-cell-treated mice consistently showed increased 
myeloid (HLA-ABC +CD45+CD123+CD33+), B-lymphoid 
(HLA-ABC+CD45+CD123 CD19+) and immature (HLA-
ABC+CD45+CD34+) hematopoietic engraftment than 
that observed on the day of CART infusion. In contrast, 
both 41BB-CD123 and CD28-CD123 CART-treated mice 
showed an impaired multilineage engraftment in both 
PB and BM (figure 3F). However, in this xenograft model 
of existing hematopoiesis, CD28-based CD123 CARTs 
proved less myeloablative than 41BB-CD123 CARTs.

Next, we assessed the capacity of both CD123 CARTs 
in preventing de novo establishment of normal 

hematopoiesis by transplanting sublethally irradiated 
NSG mice with CD34+ HSPC and either 41BB-CD123, 
CD28-CD123 CARTs or MOCK T-cells 1 day after 
(figure  3H). Long-term multilineage human engraft-
ment was found in both PB and BM in MOCK T-cell-
treated mice; however, human hematopoiesis was barely 
reconstituted in both 41BB-CD123 and CD28-CD123 
CART-treated mice (figure 3I), indicating that both 41BB-
CD123 and CD28-CD123 CARTs prevent healthy hemato-
poietic reconstitution.

Finally, to further characterize the myeloablative effects 
of CD123 CARTs, we exposed total CD34+ HSPCs to either 
CD123 CARTs or MOCK T-cells for 48 hours at 1:1 E:T 
ratio, and quantified afterwards whether the myeloab-
lative effects were CD34+ subset-specific (figures  3A, 
4A). We found a significant loss of both immature/early 
HSPCs (CD34 ++CD133+CD90+) and myeloid progen-
itors (CD34 +CD13+CD71 low), while B-cell progenitors 
(CD34 +CD19+CD13-CD71−) and erythroid progenitors 
(CD34+CD71+CD13 low) were unaffected by CD123 
CARTs exposure (figure  4A). Of note, CD123 CART-
mediated cytotoxicity correlated well with the expression 
levels of CD123 in the different CD34+ subsets (figure 4C). 
Collectively, our results suggest that CD123 CARTs ablate 
human hematopoiesis by targeting both early/immature 
HSPCs and myeloid progenitors.

Discussion
AML is a very heterogeneous stem cell malignant disease 
characterized by the progressive acquisition of (epi)
genetic alterations resulting in a clonal rapid expan-
sion of differentiation-defective HSPC in BM and PB.1 
Unfortunately, the prognosis of AML remains unfavor-
able, especially in patients >60 years old, due to common 
relapses, disease refractoriness and treatment-related 
toxicities.41 Unfortunately, improved AML treatments 
have only experienced minor developments over the last 
four decades, reinforcing the high-demand for new ther-
apeutics with improved efficacy and reduced toxicity.20 23 
In this context, the undisputable clinical improvements 
of cancer immunotherapy have not gone unnoticed in 
AML and undoubtedly represent the great hope of the 
next decade in the treatment of AML. In fact, immuno-
therapeutic targeting in AML is already well advanced 
in clinical trials using MoAb, antibody–drug conjugates, 
BiTEs, DARTs and CAR T-cell therapies against CD33 
and CD123.13–16 20 22 29 However, clinical progress and 
regulatory approval of such immunotherapies have been 
hampered by the challenge to find a specific and safe 
targetable surface antigen.41 42

CD33 and CD123 are the most extensively explored 
antigens for AML and blastic plasmocytoid dendritic 
cell neoplasm immunotherapy.42 43 In this study, we 
aimed to better characterize the suitability of CD33 and 
CD123 in a large cohort of diagnostic and relapse AML 
primary samples. We show that CD123 represents a bona 
fide target for AML with a potentially safer profile than 
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Figure 3  Both 41BB-CD123 and CD28-CD123 CARTs eliminate healthy CD34+ HSPCs in vitro and in vivo. (A) Experimental 
scheme for in vitro assessment of CAR123 cytotoxicity on healthy CD34+ cells. (B) Representative FACS showing the residual 
CD34+ HSPCs (red) after exposure to CAR123 CARTs or MOCK T- cells for 72 hours at an E:T ratio of 2:1. (C) Absolute 
quantification of remaining alive CD34+ cells after exposure to either 41BB-CD123 or CD28-CD123 CARTS (72 hours, E:T 2:1). 
(D) Clonogenic assays performed with residual alive CD34+ HSPCs after 24 hours of coincubation with either 41BB-CD123 
CARTs, CD28-CD123 CARTs or MOCK T-cells (E:T 1:1) (n=3 donors). (E) Schematic representation of the in vivo experimental 
plan. CD34+ cells were intra-BM transplanted into NSG mice, and 6 weeks later, the level of human engraftment was assessed 
by FACS analysis in PB and BM. Mice then received 3×106 of either CD123 CARTs (41BB or CD28) or MOCK T-cells. PB 
bleedings were performed biweekly and PB/BM were analyzed at sacrifice (6 weeks after CART infusion). (F,G) Analysis of 
murine PB (F) and BM (G) multilineage reconstitution (CD19+ B lymphoid, CD123+ myeloid and CD34+ immature) at the 
indicated weeks post-CART infusion. Final engraftment (POST) of myeloid, B lymphoid and immature HSPCs is presented as 
fold change in comparison to pre-CART/MOCK infusion (PRE). (H) Schematic representation of the in vivo experimental plan. 
CD34+ cells were intra-BM transplanted into NSG mice, followed the day after by infusion of either 3×106 CD123 CARTs (41BB 
or CD28) or MOCK T-cells. Mice were sacrificed 6 weeks after and PB and BM were analyzed. (I,J) Analysis of murine PB (I) and 
BM (J) multilineage reconstitution (CD19+ B lymphoid, CD123+ myeloid and CD34+ immature) 6 weeks after CART infusion. 
*P<0.05, **P<0.01, ***P<0.001. BM, bone marrow; CART, chimeric antigen receptor T-cell; E, erythroid colony-forming unit; E:T, 
effector:target; FACS, fluorescence-activated cell sorting; G, granulocytic colony-forming unit; GEMM, granulocytic, erythroid, 
myelomonocytic colony-forming unit; GM, granulomonocytic colony-forming unit; HSPC, hematopoietic stem/progenitor cell; 
M, monocytic colony-forming unit; NSG, non-obese diabetic-Cg-Prkdcscid Il2rgtm1Wjl/SzJ; PB, peripheral blood.
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Figure 4  CAR123-mediated cytotoxicity is CD34 subset 
specific. (A) Flow cytometry characterization of different 
subsets of CD34+ HSPCs post CD123 CART exposure. 
Left: identification of CD34+ HSPCs and CD123 CARTS. 
Middle right: identification of CD90+ CD133+ early-immature 
CD34+ HSPCs (turquoise dots), CD13−CD71−CD19+ B-
lymphoid CD34+ HSPCs (green dots), CD13++CD71 dim 
myeloid CD34+ HSPCs (gray dots) and CD13lowCD71++ 
erythroid CD34+ HSPCs (black dots). (B) Absolute 
quantification by FACS of the different CD34+ subsets (as 
identified in A) on exposure to CD123 CARTS or MOCK T-
cells (48 hours, E:T 1:1) (n=3). (C) MFI levels of CD123 in the 
different CD34+ cell subsets (n=3). *P<0.05. CART, chimeric 
antigen receptor T-cell; FACS, fluorescence-activated cell 
sorting; MFI, mean fluorescence intensity.

CD33. Not only is the most common and homogeneously 
expressed antigen in AML, but also its expression is also 
fully retained at relapse and in AML-LSC. This lack of 
antigen plasticity, a phenomenon widely observed during 
the progression and relapse of acute leukemias,44 further 
strengthens the potential of CD123 as immunotarget 

for AML. More importantly, a target antigen for immu-
notherapy in AML should ideally spare HSPCs. Previous 
studies about the expression of CD123 in CD34+ HSPCs 
have provided conflicting results based on the source of 
CD34+ cells and the MoAb used.20 22 29 Here, we demon-
strate that CD123 is expressed in both CB-derived and 
PB-derived CD34+ HSPCs; however, in contrast to CD33, 
which discriminates more poorly AML from either CB-de-
rived or PB-derived CD34+ HSPCs, two-thirds of patients 
with AML express CD123 at levels significantly higher 
than those in healthy CD34+ cells, suggesting CD123 as a 
safer target than CD33 for AML.

Extensive evidence supports CD123 targeting as a ther-
apeutic approach for AML. First, major phenotypical 
(immature, granulocytic and monocytic) and cytogenetic 
(FLT3- and NPM1-mutated) AML subgroups express 
CD123.35 45 46 Second, CD123+ AML cells are capable of 
initiating leukemogenesis when transplanted in immuno-
deficient mice, thus marking AML-LSC.47–49 Third, the 
presence of CD34+ CD38 CD123+cells in AML at presen-
tation is associated with lower disease-free and overall 
survival and failure to achieve complete remission.50 51 
Fourth, CD123 expression enhance AML cell prolifera-
tion and induces downregulation of CXCR4, favoring 
the egress of BM AML-LSCs into the circulation.52 Based 
on this background, we prompted to characterize and 
compare in vitro and in vivo the efficacy and safety profile 
of the second-generation 41BB-based and CD28-based 
CD123CARs derived from the clinically tested CSL362 
humanized MoAb.14 53 Regardless of the costimulation 
motif, CD123 CARTs were very efficient in vitro and in 
vivo in eliminating both AML cell lines and primary cells, 
even at relatively low E:T ratios. Importantly, however, 
CD123 CARTs ablated existing normal human hema-
topoiesis and prevented the establishment of de novo 
hematopoietic reconstitution by directly targeting both 
myeloid progenitors and early/immature HSPCs, with 
subsequent functional consequences in all downstream 
normal hematopoietic progenitors, rendering severe 
impairment of multilineage hematopoiesis in BM and 
PB. This study adds information to the existing contro-
versy about the myeloablative potential of CD123 CARTs. 
Despite several reports showing a limited cytotoxic effect 
on CD34+ HSPCs,22 25 29 our data support the work by 
Gill and coworkers who reported a myeloablative in vivo 
potential of 41BB-based CD123 CARTs on CD34+ HSPCs.

The myeloablative effects observed here were not 
limited to the 41BB-based CD123 CARTs but were simi-
larly observed with the CD28-costimulated CD123CARTs. 
Previous studies used different sources of CD34+ cells, 
different vector designs, and distinct CD123 scFvs. There-
fore, current conflicting data may be attributed to distinct 
vector architectures, CAR-binding affinity, target density, 
source of healthy CD34+ cells, or even experimental 
designs.31 The robust myeloablative effects reported in 
this study calls for caution when clinically implementing 
CD123 CARTs. Unfortunately, however, immunother-
apies for AML different from CARTs, such as DARTs or 
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CD123-directed MoAbs, resulted in limited clinical effi-
cacy unable to control the disease in the medium–long 
term.14 54 55 A potentially safer clinical approach to circum-
vent myeloablation would be the use of potent CD123 
CARTs to achieve CR followed by allo-HSCT as a rescue 
therapy. Finally, alternative sources of effector cells, such 
as natural killer (NK) cells, cytokine-induced killer (CIK) 
cells or Vδ1 γδ T-cells (DOTs) are being explored in order 
to better control the in vivo persistence of CD123 CAR 
bearing cells.56 57
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