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Abstract
Identifying patients with locally advanced head and neck carcinoma on high risk of recurrence after definitive concurrent
radiochemotherapy is of key importance for the selection for consolidation therapy and for individualized treatment
intensification. In this multicenter study we analyzed recurrence-associated single-nucleotide polymorphisms (SNPs) in
DNA repair genes in tumor DNA from 132 patients with locally advanced head and neck carcinoma (LadHnSCC). Patients
were treated with definitive radiotherapy and simultaneous cisplatin-based chemotherapy at six partner sites of the German
Cancer Consortium (DKTK) Radiation Oncology Group from 2005 to 2011. For validation, a group of 20 patients was
available. Score selection method using proportional hazard analysis and leave-one-out cross-validation were performed to
identify markers associated with outcome. The SNPs rs1799793 and rs13181 were associated with survival and the same
SNPs and in addition rs17655 with freedom from loco-regional relapse (ffLRR) in the trainings datasets from all patients.
The homozygote major rs1799793 genotype at the ERCC2 gene was associated with better (Hazard ratio (HR): 0.418
(0.234–0.744), p= 0.003) and the homozygote minor rs13181 genotype at ERCC2 with worse survival (HR: 2.074, 95% CI
(1.177–3.658), p= 0.017) in comparison to the other genotypes. At the ffLRR endpoint, rs1799793 and rs13181 had
comparable prognostic value. The rs1799793 and rs13181 genotypes passed the leave-one-out cross-validation procedure
and associated with survival and ffLRR in patients with LadHnSCC treated with definitive radiochemotherapy. While
findings were confirmed in a small validation dataset, further validation is underway within a prospective biomarker study of
the DKTK.

Introduction

Definitive cisplatin-based radiochemotherapy of locally
advanced squamous cell carcinoma of the head and neck
achieves 5-year survival rates of about 30–50% in patients
with HPV-negative tumors, treated in prospective trials
[1, 2]. At such event rates radiation dose–response rela-
tionship is often the steepest and correlates positively with

higher radiation doses. At higher or lower event rates, larger
samples are needed to precisely determine development of
classifier for progression free and overall survival [3].
Cisplatin-based radiochemotherapy is one of the standard
treatment approaches in locally advanced head and neck
carcinoma [4]. Nuclear excision repair pathways are the
main mechanism to repair cisplatin–DNA adducts [5] and
also mitomycin C induced DNA interstrand cross-links [6].
Single-nucleotide polymorphism (SNP) in nuclear excision
repair as well as single or double strand break repair genes
have been observed in several retrospective analyses being
associated with a prognostic outcome of head and neck
cancer patients treated with radiotherapy (RTX) or
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radiochemotherapy (RT/CTX) at the clinical endpoints for
normal tissue toxicity, tumor response, or survival [7–13].
However, none of these SNPs plays any role in clinical
routine for treatment selection or prognosis prediction
so far.

A multicentre retrospective biomarker study on patients
with locally advanced squamous cell head and neck carci-
noma treated with definitive RT/CTX was initiated by the
partners of the Radiation Oncology Group of the German
Cancer Consortium (DKTK-ROG) with a purpose to
establish prognostic and/or predictive biomarkers [14, 15].
In the present study, the prognostic value of SNPs in repair
proteins relevant for the effectiveness of the combined
cisplatin and radiation therapy was analyzed on a cohort of
patients homogeneously treated with definitive radiotherapy
and concurrent chemotherapy. A separate group of patients
receiving cisplatin-based induction chemotherapy in addi-
tion to concurrent radiochemotherapy was used for
validation.

Materials and methods

Study population and treatment

Patients of the DKTK-ROG biomarker study with loco-
regionally advanced head and neck squamous cell carci-
noma of the oral cavity, oro- and hypopharynx, who were
treated with definitive radiotherapy and simultaneous
chemotherapy from 2005 to 2011 at six partner sites, were
eligible for the present study. This study included 158
patients. The characteristics of the patients were pre-
viously described [14]. The following clinical factors
describing the extent of disease and general criteria of
each patient were obtained before definitive radio-
chemotherapy: age, gender, lymph node category, p16
expression, tumor site, and the logarithm of the combined
gross tumor volume of the primary tumor and involved
lymph nodes log(GTVtotal) [14]. Patients without available
genomic DNA for translational research centrally pre-
pared in Dresden from formalin-fixed paraffin-embedded
(FFPE) specimens of the primary tumor, had to be
excluded (n= 23). In addition, patients without GTV
measurements as a major prognostic clinical factor (n= 1)
or by missing or unequivocal genotype data from SNP
analysis (n= 2, sample call rate= 98.5%) were excluded.
Patients documented by the DKTK-ROG, who received
induction cisplatin-based chemotherapy and definitive
radiotherapy with concurrent cisplatin-based chemother-
apy during the same time period were eligible as a vali-
dation group. Ethical approvals for retrospective analyses
of the clinical and biological data were granted by the
ethics committees of all DKTK partner sites.

SNP selection and genotyping assays

Genomic DNA samples extracted from the FFPE-tumor
probes were used to genotype eight SNPs localized in six
genes. The genomic DNA was extracted from 5 μm thick
FFPE sections using the QIAamp DNA FFPE tissue kit
(Qiagen, Hilde, Germany). The analyzed genes included the
nucleotide excision repair pathways ERCC2 (XPD)
(rs1799793, rs13181, rs50871), ERCC5 (XPG) (rs17655),
ERCC1 (rs11615), nonhomologous end-joining repair
XRCC6 (rs2267437) as well as ATM (rs4988023), and
single strand break repair XRCC1 (rs25487). The selection
of these SNPs is based on a thorough literature search in
PubMed performed in mid-2016. Only SNPs with existing
data on a prognostic association with outcome of carcinoma
after definitive radiochemotherapy and toxicity were inclu-
ded. References that led to the inclusion of the different
SNPs were as follows: [8, 11, 16] for rs1799793, [7, 8, 12]
for rs13181, [9] for rs4988023, [11, 17] for rs17655, [8] for
rs25487, [18] for rs50871, [19] for rs2267437, and [20] for
rs11615, respectively.

TaqMan allele discrimination assays were run on the
ABI 7700 Sequence Detection System (Applied Biosys-
tems, Rotkreuz, Switzerland) to determine the genotypes
which use the TaqMan 5′-nuclease chemistry to amplify and
detect specific polymorphisms in purified genomic DNA
samples. Each assay enabled genotyping of individuals for
an SNP and consists of two sequence-specific primers as
well as two TaqMan minor groove binder probes with
nonfluorescent quenchers. The probes are labeled with VIC
and FAM dyes to detect the Allele 1 and Allele 2 sequences,
respectively. Genotyping of SNPs was performed 2–3 times
(n) for each SNP using the TaqMan allelic discrimination
assays (rs50871, C_958480_10 (n= 2); rs1799793,
C_3145050 (n= 2); rs13181, C_3145033_10 (n= 2);
rs17655, C_1891743_10 (n= 3); rs11615, C_2532959_1
(n= 2); rs2267437, C_15872242_20 (n= 3); rs4988023,
C_33307846_10 (n= 2); rs25487, C_622564_10 (n= 2))
all from Thermo Fisher Scientific, USA, on an ABI Prism
7900 HT Sequence Detection System (Applied Biosys-
tems). The following cycling conditions were used: 10 min
at 95 °C, 45 cycles of 95 °C for 15 sec, and 60 °C for 1 min.
About 5 ng of each genomic DNA were utilized per poly-
merase chain reaction in a volume of 5 μl. The analysis was
done by using the SDS2.2 software package from Applied
Biosystems. The full prognostic genotype information at
each SNP locus was classified by two dummy variables
rsSNP-1 and rsSNP-2. The rsSNP-1 contrasts the homo-
zygote major allele phenotype against the heterozygote or
homozygote minor alternatives, while the rsSNP-2 contrasts
the homozygote minor genotype against the two other
genotypes. This genetic model free approach also recom-
mended [21] was selected, because there was not enough a
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priori evidence available to justify a specific genetic model
for a given SNP.

Outcome definition

The first endpoint of this study was overall survival and the
second endpoint freedom from loco-regional relapse
(ffLRR). Survival time and time to loco-regional relapse
were determined as time point from start of radiotherapy till
time of death or loco-regional recurrence, or last follow-up.

Statistical analysis

Classifier building and leave-one-out cross-validation

A prognostic six-parameter classifier was built from the
genotypes of eight SNPs in seven candidate genes asso-
ciated with base excision, nucleotide excision, and DNA
double strand break repair along with standard clinical
covariates. A score selection method for proportional hazard
regression with leave-one-out cross-validation (LOO-CV)
was used to assure internal validity [22, 23]. The six-
parameter model with the highest score χ2 statistic prevalent
in more than 60% of the leave-one-out training datasets was
further evaluated. The LOO-CV approach was performed
using the SAS macro described by Rushing et al. [24]. The
PHREG and LIFETEST procedures were used from SAS
version 9.4 [22]. Model selection and classifier calibration
was performed on a training dataset, leaving each time the
i-th patient out. The i-th patient was than classified as high
or low risk depending on its predictive risk score according
to the classifier from the training dataset. This procedure
was repeated for each patient. The maximum number of
parameters included into the classifier built on the training
dataset was limited to six variables. The procedure PHREG
selects under the score option the subset of six variables
with the highest likelihood score statistic. If less than six
parameters were selected in more than 60% of the training
datasets, the number of covariates included into the classi-
fier was reduced to the number of covariates fulfilling the
former criterion. Patients with covariates leading to a higher
than the median hazard in the training dataset, were clas-
sified as high risk. This procedure was repeated for patient i
= 1 to N (N= number of patients in this study).
Kaplan–Meier survivor functions in the high and low-risk
groups were compared with a log-rank test, the Wilcoxon
test. In addition, survival and loco-regional recurrence
analysis was performed using the proportional hazard ana-
lysis. The validity of the proportional hazards assumption
was assessed by a Kolmogorov-type supremum test (pro-
cedure PHREG from SAS).

The Hardy–Weinberg equilibrium of the alleles at an SNP
position was analysed using a goodness-of-fit χ2 test [23].

Linkage disequilibrium between genotype distributions of
two SNPs was characterized by the Pearson’s correlation
coefficient from a 3 × 3 contingency table [25]. The strength
of the correlation between genotypes was tested by Fisher’s
exact test (procedure FREQ, SAS).

Results

Characteristics of the eligible patients from the DKTK-
ROG biomarker study involving a total of 158 patients with
complete clinical data for multivariable analyses and DNA
available for SNP-genotyping are shown in Table 1a. A set
of 132 patients formed the basis of the present study
(exclusion due to unavailability of DNA biomaterial). In
eight patients without p16 immunohistochemical staining
results, the average prognostic p16-effect was considered by
a p16-dummy variable. The total radiation doses applied
ranged from 68.4 to 74.0 Gy, median 72.0 Gy. Endpoints
for this biomarker study were 5-year-overall survival as the
first and freedom from loco-regional progression as the

Table 1 (a) Patient characteristics and clinical prognostic factors of
patients from the DKTK-ROG definitive radiotherapy biomarker study
with genotyping. (b) Validation group for the survival risk factor
model. Patients received cisplatin-based induction chemotherapy plus
definitive radiotherapy and concurrent chemotherapy and were
registered by the DKTK-ROG.

(a)

Gender (female, male) 23/109

Age (median, range) [years] 58.1 (39.2–81.9)

Lymph node category (N0, N1, N2, N3) 24/7/95/6

T stage (T2, T3, T4) 16/34/82

UICC Stage (III, IV) 12/120

Concurrent chemotherapy (cisplatin-based,
mitomycin C-based)

108/24

p16 expression (negative, positive, missing) 106/18/8

GTVtotal (median, range) [cm3] 37.3 (5.6–221.8)

Tumor site (oral cavity, oropharynx,
hypopharynx)

24/66/42

(b)

Gender (female, male) 1/19

Age (median, range) [years] 55.2 (41.0–72.7)

N stage (N0, N1, N2, N3) 1/8/11/0

UICC Stage (III, IV) 0/20

Concurrent chemotherapy (cisplatin-based,
mitomycin C-based)

20/0

p16 expression (negative, positive, missing) 18/2/0

GTVtotal (median, range) [cm3] 38.3 (8.1–204.0)

All numbers represent patient counts, except the rows headed by age
and GTVtotal. The 7th edition of the UICC classification was applied.

GTVtotal combined gross tumor volume of the primary tumor and
positive lymph nodes.

ERCC2 gene single-nucleotide polymorphism as a prognostic factor for locally advanced head and neck. . .



second endpoint. A total of 65 patients died during follow-
up and 53 had a documented loco-regional recurrence. A
group of 20 patients was separately documented by the
DKTK-ROG. Patients who had received cisplatin-based
induction chemotherapy followed by concurrent cisplatin-
based definitive radiochemotherapy for squamous cell head
and neck carcinoma during the same time period were
available as a validation group for the prognostic survival
risk model. Their characteristics are shown in Table 1b. The
total radiation doses applied ranged from 70 to 72 Gy in this
group of patients. Eleven patients died during follow-up,
while only five experienced a loco-regional recurrence. This
event number was too low for validation of the loco-
regional relapse endpoint.

The allele frequencies of the evaluated candidate SNPs are
shown in Table 2 for the 132 patients from the DKTK-ROG
biomarker study. No deviations from Hardy–Weinberg equi-
librium were observed for all eight SNPs (Table 2). The
genotype of rs13181 was correlated with rs1799793. The
Pearson’s correlation coefficient was 0.68 for 95% confidence
interval (95% CI: 0.59–0.79), p < 0.0001, Fisher’s exact test.
This genotype correlation based on the correlation of the
rs1799793-1 and rs13181-1 contrast variables (rPearson=
0.70), while rs1799793-1 and rs13181-2 showed only a slight
correlation (rPearson= 0.29). Homozygote major alleles at both
loci were observed in 40 patients, heterozygote alleles in 46,
and homozygote minor at both loci in 12 patients. There were
no notable correlations between the alleles of the other pairs
of SNPs (with absolute values of rs < 0.20) except for the pair
rs11615 and rs1799793 (rPearson= 0.36 (95% CI: 0.23–0.53),
p < 0.0001, Fisher’s exact test).

For the identification of clinical or SNP markers asso-
ciated with survival or loco-regional recurrences, a score
selection method for proportional hazard regression with
LOO-CV was used [22, 23]. The identified six markers for
overall survival and freedom from loco-regional recurrence
are shown in Table 3. The Fig. 1 shows the cross-validated
Kaplan–Meier survival curves according to this six-
parameter classifier, that was highly predictive (p <
0.0005, log-rank test).

The six identified markers were analyzed in detail using
univariate proportional hazard analysis. From the clinical
covariates the logarithm of the total gross tumor volume und
p16 were related to survival at a p value < 0.05. Two SNPs
were associated with survival, rs1799793-1 (p= 0.0031) and
rs13181-2 (p= 0.017). The hazard ratio (HR) for survival
according to rs1799793 was 0.418 (95% CI: 0.234–0.744)
comparing the major GG genotype with the pooled AA or
GA genotypes (Fig. 2a). The rs13181 homozygote minor
genotype CC was associated with an HR of 2.074 (95% CI:
1.177–3.658) for survival in comparison to AC as well as AA
and identified a subgroup of 17% of patients with a worse
prognosis. The survival curves according to rs13181-2 are
depicted in Fig. 2b. Multivariable analysis using forward
selection from the identified six markers revealed that log
(GTVtotal), rs1799793-1, and the type of concurrent che-
motherapy, cisplatin vs. mitomycin C were simultaneously
correlated with survival at p < 0.05 (Table 5).

The association of the SNP markers rs1799793-1 and
rs13181-2 with survival was also analyzed in the validation
dataset of 20 patients receiving induction chemotherapy.
The rs13181-2 was associated with survival (p= 0.030,
score χ2 test) and the HR was 9.0 for the homozygote minor
patients vs. the others. There was a trend toward longer
survival in rs1799793 homozygote major patients vs. the
others (HR: 0.378, p= 0.089, score χ2 test). Because of the
small sample size, this validation has to be regarded as
preliminary. A prospective biomarker validation study is
underway by the DKTK-ROG and has finished patient
recruitment in 2018.

The six-parameter model with the highest score χ2 statistic
for association with freedom from loco-regional recurrence is
shown in Table 3. The cross-validated freedom from loco-
regional recurrences curves of the high and low-risk groups
are shown in Fig. 3. The p value for comparison of these
curves was p= 0.062 using the log-rank test and p= 0.025
using the Wilcoxon test. As both curves do not show an
increasing divergence with follow-up, deviations from the
proportional hazards assumptions were suspected, but
not detected by the Kolmogorov–Smirnov type supremum

Table 2 SNP genotype frequencies in the DKTK-ROG definitive radiotherapy dataset.

SNP Gene Genotypes, n (%) p value assuming Hardy–Weinberg equilibrium

rs1799793 ERCC2 GG: 48 (36.4%) GA: 65 (49.2%) AA: 19 (14.4%) 0.73

rs13181 ERCC2 AA: 49 (37.1%) CA: 60 (45.5%) CC: 23 (17.4%) 0.53

rs50871 ERCC2 AA: 45 (34.1%) AC: 63 (47.7%) CC: 24 (18.2%) 0.81

rs2267437 XRCC6 CC: 39 (29.6%) CG: 65 (49.2%) GG: 28 (21.2%) 0.92

rs11615 ERCC1 TT: 62 (47.0%) TC: 58 (43.9%) CC: 12 (9.1%) 0.77

rs4988023 ATM AA: 98 (74.2%) AC: 29 (22.0%) CC: 5 (3.8%) 0.14

rs17655 ERCC5 GG: 80 (60.6%) CG: 47 (35.6%) CC: 5 (3.8%) 0.55

rs25487 XRCC1 GG: 52 (39.4%) GA: 66 (50.0%) AA: 14 (10.6%) 0.30

M. Guberina et al.



test (p= 0.22). In that case, the Wilcoxon test can have a
larger power than the log-rank test [26]. The results of uni-
variate proportional hazard analysis of all selected markers are
shown in Table 4. At the freedom from loco-regional recur-
rence endpoint the log(GTVtotal), rs1799793-1, and rs13181-2
were associated with a p value of <0.05. Freedom from loco-
regional recurrence curves according to rs1799793-1, and
rs13181-2 are shown in Fig. 4a, b. Due to the correlation
between rs1799793-1 and rs13181-2, multivariable analysis
selected log(GTVtotal), rs1799793-1, and rs17655-1 as inde-
pendent prognostic factors by the forward method (Table 5).

Discussion

This retrospective multicentre study analyzed the predictive
value of SNPs in genes associated with nucleotide excision
repair, which is a major repair pathway for removal
cisplatin–DNA or mitomycin C adducts like ERCC2,
ERCC1 and ERCC5. In addition, SNPs on DNA single
(XRCC1) and double strand break repair genes (XRCC6,
ATM) were analyzed. Patients with locally advanced head
and neck cancer were treated with definitive radiotherapy
and concurrent chemotherapy.

In this study, the homozygote major GG rs1799793
genotype was associated with improved and the homozygote
minor CC rs13181 genotype with worse survival or ffLRR
than other respective genotypes in patients with locally
advanced oro- or hypopharyngeal or oral cavity carcinoma,
treated with concurrent radiochemotherapy. The
rs1799793 minor allele frequency with 39% in this study is
similar to that in other European samples, as obtained from
HaploReg v.4.1 data [27]. The observations made by Lopes-
Aguiar [28] were heading in the same direction, using aTa
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Fig. 1 Survival—cross-validation: high and low-risk group. Cross-
validated survival curves in the high (red) and low-risk (blue) groups
separated at the median prognostic index from the trainings datasets
entering the SNP genotype data in addition to the clinical covariates
into the model. There was a significant difference between curves (p=
0.0005, log-rank test).
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dominant model for rs1799793 after concurrent definitive
radiochemotherapy in a smaller group of patients. Farnebo
et al. [7] also found worse survival in homozygote minor
allele rs13181 patients after definitive radiotherapy for head
and neck carcinoma using a recessive model. In stages I and
II of head and neck cancer treated with radiotherapy alone,
no significant prognostic value of rs1799793 or rs13181 on
overall survival was found in two studies [2, 17]. Other
retrospective studies on the prognostic value of ERCC2
SNPs enrolled heterogeneously treated patients, including
those treated with surgery [11, 12] or did not use overall
survival as an endpoint [11]. The study by Zhong et al. [12]
on patients treated with surgery with or without post-
operative radiotherapy [29] concluded that a prognostic
effect of rs13181 might be therapy dependent [12].

Mechanisms which could explain a decreased effective-
ness of cisplatin-based chemotherapy and radiotherapy in
patients with rs13181 and rs1799793 variant-type tumor
cells are: (1) stronger synchronization in the S-phase due to
intensely induced p53 expression [30] during fractionated
irradiation or (2) less chromosomal damage after X-rays in
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Fig. 2 Overall survival: SNP rs1799793 and SNP rs13181. a
Overall survival—SNP rs1799793. Overall survival curves of the
patients included in this study according to rs1799793 GG-major vs.

AA+GA genotypes (p= 0.002, log-rank test). b Overall survival—
SNP rs13181. Survival curves of the patients according to rs13181
genotypes.

Freedom from loco-regional recurrence – cross validation:
high and low risk group
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Fig. 3 Freedom from loco-regional recurrence—cross-validation:
high and low-risk group. Cross-validated freedom from loco-regional
recurrence curves in the high (red) and low-risk group (blue) defined
by SNP genotypes and clinical covariates. The log-rank and the
Wilcoxon test for comparison of these curves resulted in p= 0.062 and
p= 0.025, respectively.

Table 4 Univariate proportional hazard analysis of the clinical and
SNP genotype covariates selected by the cross-validated best six
covariate subset score selection procedure.

Hazard ratio (95% CI) p value

Predictive covariate for survival

log(GTVtotal) [cm
3] 2.092 (1.496–2.927) <0.0001

rs1799793-1 (hz-major
vs. other)

0.418 (0.234–0.744) 0.0031

rs13181-2 (hz-minor vs. other) 2.074 (1.177–3.658) 0.017

p16expr. (pos vs. neg) 0.369 (0.248–0.922) 0.033

Type-concurrCTX (MMC vs.
cisplatin)

0.497 (0.227–1.089) 0.081

p16-dummy-var (nd vs. neg) 0.381 (0.093–1.564) 0.18

Predictive covariate for LRC

log(GTVtotal) [cm
3] 1.914 (1.317–2.780) 0.0007

rs1799793-1 (hz-major
vs. other)

0.435 (0.228–0.829) 0.011

rs13181-2 (hz-minor vs. other) 1.974 (1.054–3.699) 0.034

rs17655-1 (hz-major vs. other) 0.630 (0.368–1.080) 0.093

rs17655-2 (hz-minor vs. other) 0.365 (0.050–2.638) 0.32

rs1799793-2 (hz-minor
vs. other)

1.247 (0.587–2.647) 0.57

LOO leave-one-out, log(GTVtotal) logarithm to the base e of the
combined gross tumor volume of the primary tumor and positive
lymph nodes, Type-concurrCTX type of concurrent chemotherapy
given (cisplatin-based vs. mitomycin C-based), p16 p16 over-
expression (positive vs. negative), p16-dummy-var dummy variable
indicating whether p16 immunohistochemistry is available or missing.
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minor type rs13181 cells [16]. The minor variant of
rs1799793 is associated with reduced mRNA levels [31, 32].
Moisan et al. found that reduced expression of ERCC2 RNA
can lead to a G2/M block and thereby alter radiation sensi-
tivity of cycling cells [33]. In addition, variants of the
ERCC2 gene at codons 312 and 751 might alter the muta-
tional spectrum of tumors in these patients and thereby
modify the sensitivity toward radiochemotherapy [34]. In
nonsmall-cell lung cancer lower response rates to palliative
cisplatin-based chemotherapy were found in rs13181 [35]
and rs1799793 minor variants [36] using a recessive model
in concordance with the findings of the present study.

The DNA for genotyping of the SNPs analyzed in this
trial was obtained from FFPE-tumor probes containing
various amounts of normal and tumor tissues in contrast to
peripheral blood lymphocytes in most other studies. How-
ever, a total of 99% concordance rate for SNP in ERCC2
genotyping from FFPE colorectal tumor material and per-
ipheral blood was found in the study of Van Huis-Tanja
[37]. In addition, somatic mutations in tumors in the ERCC2
gene never affected the rs13181 or rs1799793 site [38].
Therefore, the results from both sources of cells are likely to
be in concordance with one another.

The internal validity of ERCC2 SNPs as prognostic
factors was analyzed by LOO-CV. The external validity
was analyzed using data from patients receiving induction
chemotherapy and cisplatin-based concurrent radio-
chemotherapy and will be further analysed in a prospective
multicentre trial of the DKTK-ROG [14, 15].

The rs1799793 and rs13181 SNPs at ERCC2 had a high
predictive value for overall survival and freedom from loco-
regional recurrence after definitive radiochemotherapy.
Predictive tools are urgently needed for radiation dose
escalation or further treatment intensification for high risk
patients receiving cisplatin-based radiochemotherapy so
long as long-term prognosis of these patients is below or
about 50%. While this study is larger, and the group of
selected patients more homogeneously treated in compar-
ison to previous studies evaluating the interference of
ERCC2 SNPs with outcome, further validation is warranted.
A prospective biomarker study of the DKTK-ROG is
underway for validation and enforcement of the clinical
relevance of our findings.
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Table 5 Proportional hazard multivariable analysis of the clinical and
SNP genotype covariates identifies the best six covariate subset score
selection procedure using forward selection.

Hazard ratio (95% CI) p value

Predictive covariate for survival

log(GTVtotal) [cm
3] 2.117 (1.552–3.053) <0.0001

rs1799793-1 (hz-major
vs. other)

0.416 (0.233–0.745) 0.0032

Type-concurrCTX (MMC vs.
cisplatin)

0.411 (0.186–0.909) 0.028

Predictive covariate for LRC

log(GTVtotal) [cm
3] 1.980 (1.344–2.918) 0.0006

rs1799793-1 (hz-major
vs. other)

0.480 (0.251–0.918) 0.027

rs17655-1 (hz-major vs. other) 0.560 (0.325–0.968) 0.038

LOO leave-one-out, log(GTVtotal) logarithm to the base e of the
combined gross tumor volume of the primary tumor and positive
lymph nodes, Type-concurrCTX type of concurrent chemotherapy
given (cisplatin-based vs. mitomycin C-based), p16 p16 over-
expression (positive vs. negative), p16-dummy-var dummy variable
indicating whether p16 immunohistochemistry is available or missing.
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