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A B S T R A C T

Derangements in triglyceride and cholesterol metabolism (dyslipidemia) are major risk factors for the develop-
ment of cardiovascular diseases in obese and type-2 diabetic (T2D) patients. An emerging class of glucagon-like
peptide-1 (GLP-1) analogues and next generation peptide dual-agonists such as GLP-1/glucagon or GLP-1/GIP
could provide effective therapeutic options for T2D patients. In addition to their role in glucose and energy home-
ostasis, GLP-1, GIP and glucagon serve as regulators of lipid metabolism. This review summarizes the current
knowledge in GLP-1, glucagon and GIP effects on lipid and lipoprotein metabolism and frames the emerging
therapeutic benefits of GLP-1 analogs and GLP-1-based multiagonists as add-on treatment options for diabetes
associated dyslipidemia.

© 2020

1. Introduction

The International Diabetes Federation (IDF) reports that 425 mil-
lion people experienced diabetes in 2017 [1]. By the year 2045, this
number is expected to rise to 629 million [1]. Four million people
per year perish from the disease, with atherosclerotic cardiovascular
complications being the major cause of death [1]. An increased risk
for cardiovascular diseases (CVD) in diabetic patients is linked to sev-
eral factors like age, gender and genetics, but is also independently re-
lated to a specific cluster of plasma lipid and lipoprotein abnormal-
ities [2]. Obese individuals and diabetic patients typically display a
“mixed” dyslipidemia, characterized by an atherogenic triad of hyper-
triglyceridemia, decreased levels of high-density lipoprotein-cholesterol
(HDL C) and a preponderance of small dense low-density lipopro-
tein (sdLDL) particles [3–6]. Hypertriglyceridemia, is characterized by
the accumulation of triglyceride-rich lipoproteins (TRL) in the blood.
TRL, including the apolipoprotein (apo) B-48 containing chylomicrons
and the apoB100 containing very low-den
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sity lipoproteins (VLDL), and their atherogenic remnants are derived
from two major sources, the endogenous and exogenous lipoprotein
pathways (Fig. 1).

Single components of mixed dyslipidemia are directly associated
with an increased risk for cardiovascular events. Elevated levels of
low-density lipoprotein cholesterol (LDL-C) enhance the probability of
intimal retention of LDL and contribute to development of arterioscle-
rotic plaque formation in a concentration dependent-manner [7–9].
Lowering LDL-C with statins remains the cornerstone in the manage-
ment of dyslipidemia and leads to a significant reduction in the inci-
dence of major CVD events [10]. Patients that do not achieve their
LDL-C treatment goals despite high doses of statins may further be sub-
jected to LDL-lowering add on therapies such as the ATP citrate lyase
bempedoic acid [11,12], inhibitors of intestinal cholesterol absorption
(ezetimibe) [13], or inhibitors of proprotein convertase subtilisin kexin
9 (PCSK9) [14].

However, even in the setting of optimal LDL-C reduction, a sub-
stantial residual CVD risk remains in those patients with hypertriglyc-
eridemia and low HDL-C levels [15,16]. Combining statins with other
lipid-modifying therapies that favorably modulate lipid and lipopro-
tein profiles could incrementally reduce the residual CVD risk in T2D
patients. There are three major classes of triglyceride (TG) lowering
drugs: fibrates, niacin and omega-3 fatty acids. Both,

https://doi.org/10.1016/j.addr.2020.05.008
0169-409/© 2020.
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Fig. 1. Exogenous and endogenous lipoprotein metabolism and reverse cholesterol transport.A: Exogenous Lipoprotein Pathway: (1) Digested lipids enter the intestinal enterocytes where
they are re-assembled into chylomicron particles by microsomal triglyceride transfer protein (MTP), the rate limiting enzyme that catalyzes the movement of TG to the apolipoprotein
apoB48. Chylomicrons are subsequently secreted into lymphatic vessels of the small intestine (lacteals) and released to circulation. (2) In the capillary beds of the adipose tissue and mus-
cles, chylomicrons are exposed to the lipolytic action of lipoprotein lipase (LPL), an enzyme that requires poC-II as a cofactor. LPL hydrolysis leads to a release of FFAs from the TG core,
which enables sustained mitochondrial energy in muscle or for the storage of TG in adipose tissue. The de-lipidation process produces cholesterol-rich chylomicron remnants (3), which
are endocytosed by hepatocytes in a process requiring ApoE, low-density lipoprotein receptor (LDLR) and LDLR–related protein.B: Endogenous Lipoprotein Pathway: (4) Hepatic VLDL
secretion is controlled by the activity of MTP and by the availability of hepatic lipids from varying sources. Under fasting conditions, FFA are released from adipocytes (5) and delivered
to the liver for re-esterification and secretion as VLDL particles. (6) In circulation, VLDL particles lose TG due to LPL-catalyzed hydrolysis and thus become smaller sized intermediate-den-
sity lipoproteins (IDL). (7) In a second step, IDL are further hydrolyzed by hepatic lipase (HL) to leave “remnant” LDL particles in which the TG core is largely depleted. These remnant
LDL particles contain considerable amounts of cholesterol that serve as substrate for membrane or steroid hormone synthesis in distant cells.C: Reverse cholesterol transport (RCT): High
density lipoprotein (HDL) removes excess LDL cholesterol from extrahepatic cells for hepatic clearance and is key in preventing excessive cholesterol accumulation in macrophage foam
cells. (8) Nascent discoid HDL particles are synthesized by the intestine and the liver and use poA-I as the major lipoprotein constituent. (9) ApoA-I mediates the interaction of discoidal
HDL particles with the ATP-binding cassette transporter ABCA1, which augments cholesterol efflux from extrahepatic cells. (10) Mobilized cholesterol is further converted into more hy-
drophobic cholesterol esters by the circulating enzyme lecitin:cholesterol acetyltransferase (LCAT) to allow for an efficient packaging into HDL particles and transport to the liver. (11) The
cholesteryl esters from HDL can be directly taken up hepatocytes via the scavenger receptor BI (SR-BI). They can be further transferred by (12) cholesteryl ester transfer protein (CETP)
to VLDL particles in exchange for the re-transfer of TG to HDL. The resulting triglyceride-rich VLDL HDL particles serve as a substrate for hepatic lipase, leaving small HDL particles,
which can restart the uptake of cholesterol from extrahepatic cells. LPL and HL further hydrolyze TG from TG-rich VLDL particles to small, dense LDL particles. Such small and dense LDL
particles are highly atherogenic. They demonstrate a reduced affinity for the LDLR and thus have a prolonged residence time in circulation. They further exhibit an increased arterial wall
retention and increased susceptibility to oxidation.

fibrates and niacin, either as monotherapies or in combination with
statins failed to reduce the rates of cardiovascular events in the over-
all study populations of the ACCORD-LIPID [17] and the AIM-HIGH tri-
als [18]. Nonetheless, the selective analysis of patients with a combina-
tion of highest baseline hypertriglyceridemia and lowest HDL-C levels
revealed a consistent reduction in the CVD event rate with both combi-
nation therapies [17,19]. Similar results were found in a recent prospec-
tive, placebo-controlled, randomized trial (REDUCE-IT) in patients un-
dergoing co-therapy with statins and the omega-3 fatty acid ethyl-eicos-
apentaenoic acid (E-EPA) [20]. Specifically, the trial revealed a reduced
risk of cardiovascular events in patients with elevated TG levels when
E-EPA was added to their statin monotherapy. These studies suggest that
patients with mixed dyslipidemia, as often evident in T2D, may specifi-
cally benefit from combination therapies aimed at lowering both LDL-C
and TG levels. T2D patients, who are foremost focused on the control
of their blood glucose levels, could thus benefit from glucose-lowering
drugs that also show efficacy against diabetic dyslipidemia.

This review focuses on a new class of drugs with broad efficacy
against both hyperglycemia and diabetic dyslipidemia in T2D patients.
We specifically summarize the mechanistic characteristics of how phar-
macological mimetics of glucagon-like peptide 1 (GLP-1), an incretin
hormone with a plethora of beneficial effects on gut physiology as well
as glucose and energy metabolism [21–23], can be useful add-on ther-
apeutics in the treatment of diabetic dyslipidemia [24,25]. We will
further discuss why the combination of GLP-1 with the glucose-de-
pendent insulinotropic polypeptide (GIP) and/

or glucagon might prove superior to the GLP-1 mono-agonists with re-
spect to potential CVD benefit.

2. GLP-1 – an insulinotropic hormone with anorexigenic
properties

Native GLP-1 is a product of proglucagon and is present as either
GLP-1(1-37), GLP-1(7-36amide) or GLP-1(7-37). In the enteroendocrine
L-cells of the intestine or in selected nuclei in the nucleus tractus soli-
tarius (NTS), proglucagon is cleaved by the action of the prohormone
convertase 1/3 (PC1/3; PCSK1/3) into GLP-1, GLP-2, oxyntomodulin,
glicentin or the glicentin-related polypeptide (GRPP) [23,26,27]. In the
alpha-cells of the pancreas, proglucagon is cleaved by the action of the
prohormone convertase 2 (PC2, PSK2) into glucagon, GRPP or the major
proglucagon fragment (MPGF) [23,28,29]. All these proglucagon cleav-
age products are secreted from the L-cells at equimolar levels [30,31].

GLP-1 secreting L-cells are located in the small and large intestine,
with highest cell densities in the distal ilium and the colon [32,33].
L-cells are open-type enteroendocrine cells with microvilli extending
to the intestinal lumen and thus are considered primary chemorecep-
tors capable of directly responding to luminal constituents [34]. Di-
etary and intra-duodenal infusion studies show that lipids, and to a
lesser extent glucose and amino acids, can stimulate GLP-1 secretion
in response to elevated circulating levels [35–37]. Upon its secretion,
active GLP-1 which is either GLP-1(7-36 amide) or GLP-1(7-37) gets
rapidly degraded at its second N-terminal amino acid (Ala8) by the
dipeptidyl peptidase-4 (DPP-4), resulting in inac
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tive metabolites GLP-1 (9–36amide) or GLP-1(9–37) [38,39]. Enzymatic
cleavage together with the rapid renal clearance limits the half-life of
native GLP-1 to approximately 2 min [40].

The insulinotropic action of the endogenous incretin hormones
GLP-1 and GIP jointly account for up to 70% of the postprandial insulin
secretion and both incretins are thus essential contributors to glucose
clearance after a meal [22,41,42]. Apart from decreasing blood glucose
via its ability to stimulate insulin secretion. GLP-1 also decreases the re-
lease of glucagon from the alpha cells via direct and indirect effects, ul-
timately inhibiting hepatic glucose production, as comprehensively re-
viewed previously [23].

Notably, studies in type-2 diabetic patients suggest that the in-
sulinotropic and the glucagonostatic effects of GLP-1 contribute equally
to its ability to decrease blood glucose [43]. In addition to its action on
the pancreas, GLP-1 suppresses gastric emptying, motility and acid se-
cretion, thereby limiting nutrient entry into the small intestine [44–46].
Gastric emptying has a considerable impact on postprandial glycemia
by altering the peak insulin response in both healthy subjects and T2D
patients [47–51]. Accelerating gastric emptying by erythromycin treat-
ment significantly attenuates the glucose lowering effect of co-infused
GLP-1 [52]. Overall, these studies demonstrate that the direct glucose
lowering effects of postprandially released GLP-1 are driven by indepen-
dent and parallel mechanisms in the gastrointestinal tract and pancreas.

Apart from regulating blood glucose, GLP-1 is a multifaceted hor-
mone with metabolic action far beyond its role to buffer against hyper-
glycemia. In line with this notion, GLP-1 lowers body weight through
central inhibition of food intake [53–55]. These central effects of GLP-1
are attributed to GLP-1R expressing neurons in the hypothalamus [56]
and on the vagal afferents that act via neurons in the NTS in the brain
stem [57]. Peripheral administration of GLP-1RA stimulates neuronal
activity in the hypothalamus [58,59] and in the brainstem [60]. There
is also evidence that GLP-1 is directly synthesized by specific neurons of
the NTS in the brain stem, from where it acts as a neuropeptide to modu-
late food intake [27]. However, details on the role of central vs. periph-
erally produced GLP-1, or on the relative contributions of GLP-1Rs ex-
pressed in different brain areas, remain to be determined. New evidence
suggests that the GLP-1 producing neurons are specifically important for
short-term limitation of feeding after unusually large food consumption
and in mediating stress-induced hypophagia [61].

3. DPP-4 inhibitors and GLP-1 mimetics

Postprandial secretion of GLP-1 is reduced in the majority of obese
individuals and in patients with T2D [62]. While native GLP-1 has a
series of beneficial effects on whole-body metabolism, its short action
profile limits its pharmacological potential to treat obesity and diabetes.
To improve the pharmacological potential of endogenous GLP-1, a se-
ries of small molecules been developed that prevent its DPP-4 medi-
ated N-terminal degradation. Such DPP-4 inhibitors extend the half-life
of endogenous GLP-1. This leads to a two to three-fold increase in post-
prandial GLP-1 plasma concentrations, enhanced insulin secretion from
β-cells and a reduction in blood glucose [63,64]. Numerous chemical
DPP-4 inhibitors (such as sitagliptin, linagliptin, saxagliptin, alogliptin
and vildagliptin) are approved for use in the U.S. and Europe while some
others (anagliptin, gemigliptin, and teneligliptin) are only approved in
Asian countries [65].

Over the years, a series of biochemically optimized GLP-1 recep-
tor agonists (GLP-1RAs) were developed that provide a supraphysio-
logical stimulation of the GLP-1R and improved stability from DPP-IV
degradation. The various drugs can be classified as either short-act-
ing (exenatide BID, lixisenatide) or as long-acting (albiglutide, dulaglu-
tide, exenatide ER, liraglutide, semaglutide). The chemical de

tails of these molecules are described elsewhere [66,67]. In
head-to-head clinical studies, all GLP-1 RAs were effective at reducing
glycemia and body weight. However, differences exist in the magnitude
of the efficacy and the frequency of adverse gastrointestinal side-effects
[68]. Liraglutide (approved for treating diabetes and obesity), semaglu-
tide and dulaglutide (both approved for diabetes) can be described as
the best-in-class drugs to reduce HbA1c levels and body weight with
minimized unwanted effects, although the clinical data suggest semaglu-
tide to differentiate on greater efficacy readouts [69,70].

In 2008 the FDA mandated cardiovascular outcome trials (CVOT)
to ensure new therapies in T2D provide cardiovascular safety. To date,
CVOTs on seven different GLP-1RAs have been performed, including
lixisenatide (ELIXA) [71], liraglutide (LEADER) [72], semaglutide (SUS-
TAIN-6) [73], exenatide QW (EXSCEL) [74], albiglutide (Harmony)
[75], dulaglutide (REWIND) [76]; and oral semaglutide (PIONEER-6)
[77]. Strikingly, liraglutide, subcutaneous semaglutide, albiglutide and
dulaglutide have shown significant reductions in composite cardiovas-
cular outcomes, indicative of their cardiovascular protection in high-risk
patients with T2D. Of note, injectable semaglutide (1.0 mg) showed a
26% risk reduction in MACE [73] whereas dulaglutide (1.5 mg) showed
a 12% risk reduction in MACE [76]. Based on these findings, these
long-acting GLP-1R analogues are approved for the use to reduce risk of
major cardiovascular events in adults with T2D and established cardio-
vascular disease. Furthermore, dulaglutide is approved for use in T2D
patients without established cardiovascular disease but with multiple
risk factors, which is the first approved use of a GLP-1 analogue in this
patient sub-class.

The underlying cardiovascular protective mechanisms are incom-
pletely understood and may include beneficial effects of GLP-1RA on
blood pressure, the vascular endothelium, inflammation, myocardial is-
chemia and heart failure [78,79]. Preclinical studies in non-diabetic
ApoE−/− and LDLr−/− mice further suggest an anti-atherosclerotic poten-
tial of the GLP-1-RAs and DPP-4 inhibitors [80–83]. In a recent study,
liraglutide and semaglutide treatment significantly attenuated plaque le-
sion development in ApoE−/− and LDLr−/− mice. The reported effect was
partially independent of the body weight lowering effect of the drugs
[83]. The lack of GLP-1R expression on the vasculature furthermore sug-
gests an indirect benefit or a receptor independent signaling mechanism,
which likely includes an anti-inflammatory component [78,83]. Lipid
lowering effects may further add to the anti-atherosclerotic effects of the
GLP-1RAs, as discussed in this review.

While dyslipidemia is a key risk factor for CVD, it is also a hallmark
of non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steato-
hepatitis (NASH), two conditions mainly characterized by an elevated
deposition of free fatty acids (FFA), TG, and cholesterol in the liver [84].
Currently, no pharmacological treatment has proven efficacious and the
first line of treatment for NAFLD and NASH remains body weight loss.
Multiple pre-clinical and clinical trials have evaluated the efficacy of
GLP-1RAs in NAFLD/NASH [85]. In the first published randomized con-
trolled trial, the Liraglutide Efficacy and Action in NASH (LEAN) study,
48 weeks of treatment with liraglutide caused a significant resolution
of NASH in 9/23 overweight and obese patients with histologically
proven NASH, compared to 2/22 patients in the placebo group [86]. In
this study, reductions in bodyweight and glycated hemoglobin (HbA1c)
were similar in patients with and without hepatic improvements, sug-
gesting mechanisms beyond the body weight and glucose lowering ef-
fects of GLP-1. Since GLP-1R expression on hepatocytes, stellate cells,
Kupffer cells and other liver-resident cell types has not been conclu-
sively established, it is possible that the beneficial effects of liraglutide
on NASH were mediated by other indirect effects. GLP-1 mediated im
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provements in dyslipidemia could therefore contribute to the beneficial
effects of GLP-1RA on hepatic steatosis.

4. Clinical trials evaluating the lipid lowering effect of GLP-1RA

4.1. Effects of GLP-1 and DPP-4 inhibitors on fasting lipid levels

To date phase 2 and 3 clinical trials of GLP-1RA have primar-
ily focused on glycemic control and body weight loss and were not
specifically designed to investigate lipid parameters. A recent network
meta-analysis nonetheless ranked the effect size for different short and
long-acting GLP-1RA (exenatide, exenatide extended release (ER), li-
raglutide and taspoglutide (discontinued in developmental phase 3) em-
ployed at different dosages upon lipid profiles in T2D patients [87]. Ex-
enatide ER and liraglutide (1.8 mg) had no significant effects on HDL-C
levels, but reduced total cholesterol, TG and LDL-C relative to treatment
with placebo, insulin and thiazolidinediones [87]. A subsequent study
confirmed the TG-lowering effect of liraglutide and both the short-act-
ing (twice daily) and long-acting (once weekly) exenatide formulations,
but unlike the preceding study, found significant increases in HDL-C af-
ter treatment with liraglutide and exenatide ER. Liraglutide, dulaglutide
and semaglutide lowered LDL-C compared to the placebo groups. Total
TG levels remained unaffected by treatment with lixisenatide, dulaglu-
tide, albiglutide and semaglutide [79].

In general, GLP-1R agonism only moderately affects fasting levels
of circulating lipids. The absence of the GLP-1R on hepatocytes [88]
suggests that the observed GLP-1 effects on hepatic lipoprotein levels,
which are most predominant during fasting, are indirectly mediated
by effects on body weight and glycemic control. This is supported by
the finding that DPP-4 inhibitors, which are considered weight neutral
[89,90], were even less effective on fasting lipid parameters [91–93].

Nevertheless, even modest improvements in lipid profiles are consid-
ered of clinical relevance and can improve cardiovascular risk. In addi-
tion, most studies only examined quantitative changes in levels of LDL-C
and HDL-C but did not analyze qualitative changes in lipoprotein parti-
cle compositions. Notably, despite similar LDL-C levels, differences may
exist in the preponderance of pro-atherogenic sdLDL particles [94]. The
latter are considered more atherogenic than normal sized LDL particles,
as they provide a longer retention time in the plasma and are more
prone to oxidation [95,96]. Those sdLDL specifically arise from large
and TG-rich subpopulation of VLDL1 particles, which are predominant
in diabetes [5,96]. Whether GLP-1RA can cause a shift towards the less
pro-atherogenic VLDL2 subtype and lower sdLDL production, remains to
be determined.

Likewise, changes in HDL-C levels have been detected in clinical tri-
als, however with varying results. HDL-C has an important function in
the removal of excess LDL-C from extrahepatic cells for hepatic clear-
ance, by a process, named reverse cholesterol transport (RCT) (Fig. 1).
This process is also key in preventing excess cholesterol accumulation
in macrophage foam cells, which is an established risk factor for arte-
riosclerotic plaque formation [97]. There is increasing evidence that the
anti-atherosclerotic effect of HDL does not solely depend on its concen-
tration but rather on its functionality [98]. Indeed, dysfunctional HDL
and loss of its cholesterol efflux capacity is playing a critical role in dia-
betes and its complications [99] and may be altered by GLP-1RA treat-
ment.

4.2. Effects of GLP-1RA and DPP-4 inhibitors on postprandial lipid levels

Several clinical trials of DPP-4 inhibitors and GLP-1RA focused on
potential benefits for postprandial lipid and lipoprotein metabolism.
Briefly, the DPP-4 inhibitors alogliptin [100,101], vildagliptin
[102,103] and sitagliptin [104–106] were all found to decrease

postprandial plasma TG and chylomicron apoB48 levels (Table 1). Sim-
ilar findings were observed after treatment with GLP-1RA, including ex-
enatide [104,107–109], liraglutide [110–112] and semaglutide [113]
in healthy subjects and T2D patients (Table 1). Together, these find-
ings highlight the potential of GLP-1RA to improve postprandial hyper-
triglyceridemia. This is of high clinical relevance, as this condition has
been independently associated with an increased CVD in T2D patients
due to the increase in pro-atherogenic cholesterol rich remnant particles
[114,115].

5. Potential mechanisms by which GLP-1 modulates the intestinal
lipoprotein metabolism

5.1. Acute and body weight independent effects of GLP-1

Studies in laboratory animals, healthy human volunteers and small
numbers of T2D patients all demonstrate a significant reduction of post-
prandial chylomicron levels following acute treatment with DPP-4 in-
hibitors or GLP-1R agonists. Intravenous infusion of native GLP-1 at a
dose of 1.2 pmol kg(−1) min(−1) for 390 min is sufficient to prevent
the normal rise in postprandial TGs in healthy subjects after a test meal
[116]. Similarly, in patients with impaired glucose tolerance, a single
subcutaneous injection of 10 μg exenatide prior to a fatty meal prevents
the diabetes-related peak in postprandial TG, apoB48, chylomicron rem-
nants and cholesterol [117]. Acute GLP-1 effects on intestinal lipopro-
teins are also observed in laboratory animals such as lean C57BL/6 mice,
which show significantly decreased postprandial TRL-TG, TRL-choles-
terol and chylomicrons levels following a single injection of exendin-4
[118]. Similar findings are observed in fructose-fed dyslipidemic ham-
sters, where a 30 min intravenous infusion of GLP-1 [119], or 3 weeks
treatment with the DPP-4 inhibitor sitagliptin [118], blunts intestinal
chylomicron overproduction. Furthermore, exendin-4 treatment in rats
causes a 20% reduction of microsomal TG transfer protein (MTP) activ-
ity, which is indicative of impaired chylomicron synthesis [120]. An im-
portant role of GLP-1 in the regulation of postprandial intestinal lipopro-
tein levels is further supported by the finding of increased circulating
chylomicron levels in Glp1r−/− mice [118]. Overall, these studies con-
firm the results from long-term clinical trials and provide clear evidence
that GLP-1R agonism can improve postprandial lipid metabolism. Im-
portantly, these beneficial effects on postprandial lipid metabolism ap-
pear to be independent from the body weight lowering effects of GLP-1.
The exact mechanisms remain to be determined, but initial understand-
ings of these mechanistic underpinnings are beginning to emerge, as out-
lined in the following section.

5.2. GLP-1 effects on chylomicron production and clearance

The increased chylomicron concentrations in obese and T2D patients
were often attributed to an impaired chylomicron clearance. Such clear-
ance of chylomicrons is mediated through an interaction with the in-
sulin sensitive lipoprotein lipase (LPL) on capillary luminal endothelial
cells in smooth and skeletal muscle, and adipose tissue. LPL activity
is low in patients with T2D and increases upon acute and chronic in-
sulin stimulation [121,122]. More recent data indicate that intestinal
overproduction of chylomicrons is a main causative factor for the post-
prandial hypertriglyceridemia in the insulin resistant state [123–127].
Accordingly, the beneficial effects of DPP-4 inhibitors and GLP-1R ag-
onists on postprandial hypertriglyceridemia could be the result of de-
creased secretion and/or increased clearance of chylomicrons. So far,
only a few studies have analyzed the chylomicron kinetics using sta-
ble isotope labelling. Such studies allow for the direct evaluation of
endogenously synthesized proteins. In healthy human volunteers sub-
jected to an infusion with isotope-labelled leucine, a single dose of
exenatide [108] or sitagliptin



UN
CO

RR
EC

TE
D

PR
OO

F

K. Stemmer et al. / Advanced Drug Delivery Reviews xxx (xxxx) 1–33 5

Table 1
Changes in postprandial lipid parameters in response to GLP-1R agonists and DPP-4 inhibitors.

Compound Reference Subjects Dosing
Postprandial lipid
parameters

DPP-4 Inhibitors
Sitagliptin [106] Healthy Single dose

(100 mg)
Mean ± SE

• TRL-apoB-100
pool size [mg/
kg]: no difference
between groups

• TRL-apoB-100
FCR [pools/d]:
no difference be-
tween groups

• TRL-apoB-100 PR
[mg/kg per day]:
no difference be-
tween groups

• TRL-apoB-48
concentration
[mg/l]: down vs.
placebo
(p = .05)

• TRL-apoB-48 FCR
[pools/day]:
down vs. placebo
(ns)

• TRL-apoB-48 PR
[mg/kg per day]:
down vs. placebo
(p = .05)

[105] T2D
female

Once daily 100 mg
for 6-weeks

AUC
• TG [mmol/l/h]:

−9.4% vs.
placebo
(p = .006)

• ApoB-48 [ng/ml/
h]: −7.8% vs.
placebo
(p = .03)

• ApoB [g/l/h]:
−5.1% vs.
placebo
(p = .002)

• VLDL-C [mmol/
l/h]: −9.3% vs.
placebo
(p = .01)

• FFA [μM/h]:
−7.6% vs.
placebo
(p = .05)
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Table 1 (Continued)

Compound Reference Subjects Dosing
Postprandial lipid
parameters

Vildagliptin [102] T2D Twice daily 50 mg
for 4 weeks

iAUC (0–8 h); [h*mmol/
l]

• TG: −3.1 ± 1.2 vs.
placebo (p = .011)

• CM-TG: −1.5 ± 0.4
vs. placebo
(p < .001)

• CM-cholesterol:
−0.13 ± 0.05 vs.
placebo (p < .020)

• VLDL/IDL TG:
−1.1 ± 0.9 vs.
placebo (p < .215)

• Cholesterol:
−0.2 ± 0.3 vs.
placebo (p < .517)

• VLDL/IDL choles-
terol: −0.22 ± 0.28
vs. placebo
(p < .409)

Alogliptin [101] Healthy Once daily 25 mg
for 7 days

iAUC (0-8 h)
• TG [h*mg/dl]: Con-

trol: 279 ± 31;
Alogliptin:
182 ± 32
(p = .01)

• RLP-C [h*mmol/l]:
Control:
29.3 ± 3.2;
Alogliptin:
17.6 ± 3.3 mg
(p = .01)

• ApoB-48 [h* μg/l]:
Control:
15.4 ± 1.7;
Alogliptin:
11.7 ± 1.1
(p = .04)

Total AUC (0-8 h)
• Cholesterol [h*mg/

dl]: Control:
1489 ± 248;
Alogliptin:
1452 ± 252
(p = .68)

• LDL-C [h*mg/dl]:
Control:
819 ± 218;
Alogliptin:
814 ± 228
(p = .72)

• HDL-C [h*mg/dl]:
Control:
532 ± 79 mg h/dl;
Alogliptin:
514 ± 71
(p = .10)
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Table 1 (Continued)

Compound Reference Subjects Dosing
Postprandial lipid
parameters

[100] T2D Once daily 25 mg
for 16 weeks

iAUC (0-8 h); Change
from baseline. Mean
(95% CI)

• TG [h*mmol/l]:
−3.472 vs.
placebo (−5.008
to −1.936),
(p < .001)

• CM-TG
[h*mmol/l]:
−1.334 vs.
placebo (−1.815
to −0.853),
(p < .001)

• CM-ApoB-48
[h*mgl/l]:
−0.621 vs.
placebo (−1.172
to −0.071),
(p < .028)

VLDL1-TG [h*mmol/
l]: −1.759 (−2.682 to
−0.835), (p < .001)

GLP-1 and GLP-1RA
GLP-1 [116] Healthy iv. infusion

(1.2 pmol/kg/min)
for 390 mins

AUC Plasma TG
[mmol/l]: Placebo:
82.8 ± 20.9 vs.
GLP-1: 14.3 ± 4.9
(p = .011)
Plasma FFA [mmol/l]:
31 ± 5% suppression
by GLP-1 (p < .01)
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Table 1 (Continued)

Compound Reference Subjects Dosing
Postprandial lipid
parameters

[108] Healthy Single dose (10 μg) Mean ± SE for the
duration of a 10 h
kinetic study.

• TRL-apoB-100
concentration
[mg/l]: Placebo:
56.53 ± 6.66;
Exenatide:
62.67 ± 8.11

• TRL-apoB-100
FCR [pools/day]:
Placebo:
3.83 ± 0.38; Ex-
enatide:
3.03 ± 0.22

• TRL-apoB-100 PR
[mg/kg per day]:
Placebo:
9.88 ± 1.59; Ex-
enatide:
7.84 ± 0.71

• TRL-apoB-48
concentration
[mg/l]: Placebo:
1.83 ± 0.30; Ex-
enatide:
1.24 ± 0.19
(p < .05)

• TRL-apoB-48 FCR
[pools/day]:
Placebo:
1.54 ± 0.22; Ex-
enatide:
1.36 ± 0.24

• TRL-apoB-48 PR
[mg/kg per day]:
Placebo:
0.12 ± 0.02; Ex-
enatide:
0.08 ± 0.02
(p < .05)
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Table 1 (Continued)

Compound Reference Subjects Dosing
Postprandial lipid
parameters

[107] T2D Twice daily for 1
year
Week 1–4: 5 μg,
then 10 μg

iAUC (0-8 h);
[h*mmol/l]. Mean
change from baseline
± SE

• TG [h*mmol/l]:
−3.1 ± 1.2 vs.
insulin glargine
(p = .014)

• FFA [10 3μg*h/l]:
−0.90 ± 0.29 vs.
insulin glargine
(p = .004)

• Cholesterol
[h*mmol/l]:
−0.30 ± 0.35 vs.
insulin glargine
(p = .398)

• LDL-C [h*mmol/
l]: 0.37 ± 0.20
vs. insulin
glargine
(p = .076)

• HDL-C [h*mmol/
l]: 0.30 ± 0.10
vs. insulin
glargine
(p = .005)

• VLDL-C
[h*mmol/l]:
−1.0 ± 0.30 vs.
insulin glargine
(p = .006)

• Apo-A1 [h*mg/
dl]: 1.6 ± 7.8 vs.
insulin glargine
(p = .839)

• Apo-A2 [h*mg/
dl]: 1.8 ± 1.8 vs.
insulin glargine
(p = .316)

• Apo-B48 [h*mg/
dl]: −34.8 ± 9.2
vs. insulin
glargine
(p < .001)

• Apo-B100
[h*mg/dl]:
1.2 ± 9.1 vs. in-
suin glargine
(p = .893)

• Apo-C3 [h*mg/
dl]: −0.6 ± 2.2
vs. insulin
glargine
(p = .771)

[104] T2D Twice daily for 2
weeks
Week 1: 5 μg
Week 2: 10 μg
or 100 mg (q.a.m.)
sitagliptin

AUC (0-240 min)
Plasma TG [mg·min/
dL]:
Mean ratio exenatide
to sitagliptin:
0.90 ± 0.04 (95% CI:
0.84–0.98; p = .0118)
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Table 1 (Continued)

Compound Reference Subjects Dosing
Postprandial lipid
parameters

[109] T2D Once daily for
12 days
Day 1–5: 5 μg
Day 6–11: 10 μg

• TG [mg/dl]:
Placebo:
186 ± 104 vs.
Exenatide:
172 ± 77
(p = .4)

• Cholesterol [mg/
dl]: Placebo:
163 ± 36 vs. Ex-
enatide:
150 ± 33
(p = .002)

• LDL-C [mg/dl]:
Placebo: 80 ± 10
vs. Exenatide:
81 ± 28 (p = .8)

• HDL-C [mg/dl]:
Placebo: 38 ± 8
vs. Exenatide:
36 ± 7
(p = .048)

Liraglutide [110] T2D Once daily for
3 weeks
Week 1: 0.6 mg
Week 2: 1.2 mg
Week 3: 1.8 mg

iAUC (0-8 h);
[h*mmol/l]. Mean
(95% CI)

• TG: −3.9 vs.
placebo (−5.8 to
−2.0; (p = .008)

• ApoB48: −0.03
vs. placebo
(−0.05 to −0.02;
(p = .003)

• FAA: 0.31 vs.
placebo (−0.38
to 0.99; p = .34)
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Table 1 (Continued)

Compound Reference Subjects Dosing
Postprandial lipid
parameters

[112] T2D Once daily 1.8 mg
for 16 weeks

AUC (0-8 h);
[h*mmol/l]. Change
from baseline
(mean ± SD)

• TG: Placebo:
1.5 ± 6.3
(12.2%),
p = .612; Li-
raglutide:
−5.0 ± 6.2
(−19%),
(p = .011)

• Chylomicron TG:
Placebo:
1.4 ± 2.5
(40.5%),
p = .128; Li-
raglutide:
−2.1 ± 2.7
(30.0%),
(p = .005)

• VLDL1 TG:
Placebo:
0.1 ± 2.5
(12.2%),
p = .866; Li-
raglutide:
−2.4 ± 3.4
(−21.0%),
(p = .02)

• RLP-C: Placebo:
1.8 ± 39.2
(14%), p = .866;
Liraglutide:
−33.8 ± 43.6
(−24.6%),
(p = .008)

• TRL-C: Placebo:
−4.5 ± 69.1
(4.3%),
p = .866; Li-
raglutide:
−52.3 ± 70.4
(−17.9%),
(p = .011)

• ApoCIII: Placebo:
−2.2 ± 21.0
(0.4%),
p = .735; Li-
raglutide:
−18.3 ± 29.5
(−14.8%),
(p = .020)

• ApoB48: Placebo:
7.1 ± 31.0
(13.9%),
p = .735; Li-
raglutide:
−23.2 ± 56.8
(−11.2%),
(p = .100)

• FFA: Placebo:
−201 ± 438
(−4.9%),
p = .398; Li-
raglutide:
−179 ± 477
(−4.2%),
(p = .140)
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Table 1 (Continued)

Compound Reference Subjects Dosing
Postprandial lipid
parameters

Semaglutide [113] Healthy
Obese

Once weekly 1 mg
for 12-weeks

AUC (0-8 h); [mmol/l]
• TG: −40.7% vs.

placebo
(p < .01)

• VLDL: −42.8%
vs. placebo
(p < .01)

• ApoB48: −49.6%
vs. placebo
(p < .01)

• FAA: No differ-
ence

AUC: Area Under Curve; iAUC: Incremental AUC; TG: Triglycerides; CM: Chylomicrons; RLP: Remnant like particle; PR: Production rate; FCR: Fractional catabolic rate.

[106], as well as a 6-week treatment of T2D patients with sitagliptin
[128] reduced chylomicron production but not the fraction of intravas-
cular apoB48 catabolized per day (fractional catabolic rate (FCR), Table
1). These results suggest that GLP-1 decreases chylomicron output
rather than their clearance. Subsequent studies interpreted the GLP-1
mediated decrease in plasma TRL-ApoB levels as a result of a reduced
chylomicron output. Nevertheless, since long-term GLP-1R agonism
causes body weight loss, and thereby improved insulin sensitivity, chy-
lomicron clearance could also be affected through the restoration of LPL
activity. The latter has so far not been examined in detail. Using stable
isotope techniques, two recent studies report an increase in chylomicron
catabolism after 6 months of treatment with liraglutide (1.2 mg) [129]
and 4 weeks of treatment with lixisenatide [130].

5.3. Direct GLP-1 effect on lipid metabolism in enterocytes

The pronounced decrease in postprandial chylomicron output fol-
lowing acute and chronic GLP-1RA treatment suggests a direct impair-
ment in chylomicron synthesis. In vitro studies in primary enterocytes
isolated from chow-fed hamsters demonstrated a reduction in apoB48
secretion into the cell culture media after treatment with exendin-4
[118]. This direct and GLP-1 receptor mediated effect is supported
by the finding that blockade of endogenous GLP-1R signaling by the
GLP-1R antagonist exendin(9-39) reverses the apoB48 lowering effect
of exendin-4 in mice [118]. When exendin(9-39) is, however, adminis-
tered alone, it increases the levels of apoB48 after a fat load by block-
ing the action of endogenous GLP-1 [118]. In jejunal explants, expo-
sure with liraglutide reduces the expression of enzymes essential for chy-
lomicron production such as ApoB48, MTP, and DGAT1 (diacylglycerol
O-acyltransferase 1) [129].

Based on such functional data it is surprising that the abundance of
the GLP-1 receptor in enterocytes of the upper intestine, which is the
main area of chylomicron synthesis, is rather scarce. In monkeys and hu-
mans, GLP-1R protein level was primarily demonstrated in the central
nervous system and in peripheral tissues such as the pancreas, the car-
diac atrium of the heart, kidney, lung, and, albeit at a low amount in
adipose tissue [23,131]. In the gastrointestinal tract, protein expression
of the GLP-1R was only detected in the HCL-secreting parietal cells and
the smooth muscle cells of the stomach, the Brunner's gland of the duo-
denum, cells of the nervous plexus [132] and intestinal intraepithelial
lymphocytes [133], but not on chylomicron forming enterocytes.

Effects of GLP-1 on chylomicron synthesis in enterocytes could be
directly mediated by a novel unidentified receptor system. GLP-1 could
however also regulate postprandial chylomicron levels via in

direct mechanisms. Such effects could be the result of an GLP-1-driven
inhibition of gastric emptying and intestinal motility, GLP-1's action as
an incretin, or by modulation of the autonomous innervation of the gut
following the direct activation of GLP-1R signaling in the central ner-
vous system (CNS).

5.4. GLP-1 lowers chylomicron output by inhibiting gastric emptying

Gastric emptying and small intestinal motility are tightly controlled
processes that deliver ingested lipids to the duodenum and jejunum,
from where they are absorbed and assembled into chylomicron particles.
A GLP-1-induced deceleration of gastric emptying [44–46] or intesti-
nal motility [134–136] may directly translate into reduced chylomicron
output and prevent the increase in postprandial TG plasma levels.

Indeed, intravenous GLP-1 infusion prior to a mixed meal reduces
gastric emptying in male healthy volunteers and leads to diminished
postprandial TG levels [116]. However, this mechanism may only be
relevant for short acting GLP-1RAs, where the delay in gastric emptying
is seemingly not subjected to tachyphylaxis [137,138]. After 12 weeks
of treatment with the long acting GLP-1RA semaglutide, postprandial
lipid excursions were decreased, despite the lack of an effect on gastric
emptying [113] (Table 1). It remains to be determined if pharmacolog-
ical inhibition of small intestinal motility by GLP-1 RAs would directly
affect chylomicron output.

Independent from diminishing the rate of gastric emptying and/or
motility, GLP-1 can directly affect postprandial TRL secretion. In mice
receiving exendin-4 1 h after an oral lipid load, which provides suffi-
cient time for entry of the fat into the small bowel, intestinal TRL pro-
duction is decreased [118]. In rats recombinant GLP-1 inhibited apoB48
secretion in response to intra-duodenal lipid infusion [139]. Studies in
humans confirmed the direct effect of GLP-1 on chylomicron secretion.
Specifically, when healthy human volunteers receive lipids via a naso-
duodenal tube directly into the duodenum, a subcutaneous exenatide in-
jection still lowers chylomicron output by 38% [108]. Likewise, T2D pa-
tients that have been treated for 3 weeks with liraglutide [110] or for
12 weeks with semaglutide [113] experience a reduction in postpran-
dial apoB48 levels that are independent from GLP-1 effects on gastric
emptying.

Alternatively, it seems possible that GLP-1 directly inhibits TG ab-
sorption from the intestine, possibly through inhibition of gastric li-
pase secretion [140]. This explanation would align with the finding of
a decreased absorption of intraduodenally delivered triolein in GLP-1
treated rats, which is paralleled by a reduction in intestinal lipopro-
tein production [139]. Similarly, when hamsters were given an oral
gavage of radiolabeled TG the recovery of the radioisotope in
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the plasma was lowered by a paralleled infusion of GLP-1 [119]. Lim-
iting lipid absorption should increase the amount of fecal TG levels,
which is indeed observed in mice that are chronically treated with the
GLP-1RA taspoglutide compared to metformin treated controls [141]. It
should however be noted that steatorrhea, i.e. the excessive excretion of
lipids via the feces, has not been observed in patients during the initial
period of GLP-1RA treatment, a phase often marked with profound yet
transient gastrointestinal side effects.

5.5. GLP-1 decreases intestinal lymph flow

Newly formed chylomicrons are secreted through the basolateral
membrane into the lymphatic vessels of the small intestine (lacteals)
to enter the blood stream via the thoracic duct at the level of the left
subclavian vein [142]. This route bypasses the portal venous system,
thereby allowing an immediate supply of absorbed dietary lipids to all
tissues. In an alloxan-induced diabetes model, the lymph flow through
the thoracic duct is significantly higher than in healthy controls [143].
A possible underlying mechanism is the increase in interstitial glucose
levels and higher tissue colloid pressure that enhances the interstitial
fluid absorption and lymph production [144]. Interestingly, infusion of
GLP-1 via the jugular vein was found to decrease intestinal lymph flow
by 50% in a lymph duct-cannulated rat model. This reduction in lymph
flow was paralleled by a significant decrease in plasma TG, apo B and
apo A-IV levels [139]. The underlying mechanisms by which GLP-1 de-
creases the intestinal lymph flow remains elusive. Accumulating evi-
dence suggests that the flow of lymph through the lymphatic vessel is
more than simply a passive conduit and is largely achieved through an
active pumping mechanism mediated by contractions of the lymphatic
smooth muscle cells [145,146]. If and how GLP-1 reduces the contrac-
tile tone of lymphatic smooth muscle cells and lymph flow in general
remains to be determined.

5.6. Indirect GLP-1 action via enhanced insulin secretion

Acute insulin exposure of cultivated human jejunal explants [147],
normoglycemic hamster [126] and humans [148] resulted in the sup-
pression of intestinal chylomicron production. Such direct insulin action,
driven by the presence of insulin receptor on the intestinal epithelium
[149,150], may explain some of the ability of incretin GLP-1RA to de-
crease postprandial lipoprotein secretion. Several studies nonetheless ar-
gue against this hypothesis. Evidence comes from healthy human volun-
teers, in which TRL particle kinetics were evaluated during continuous
duodenal liquid meal infusions and a parallel pancreatic clamp to avoid
confounding effects of hormones such as insulin and glucagon. In these
subjects, infusions of exendin-4 led to a profound, lasting and insulin-in-
dependent suppression of apoB48 but not apoB100 particle production
[108]. In a similar study, single injections of sitagliptin blunted the out-
put of chylomicrons independent from changes in pancreatic hormones,
circulating levels of glucose or free fatty acids [106]. Last, 1-week of
treatment of healthy volunteers with alogliptin (25 mg/day for 7 days)
suppressed the postprandial elevation in serum TG and remnant choles-
terol without changes in pancreatic hormones and circulating levels of
glucose or free fatty acids [101].

Collectively, these studies suggest that acute effects of GLP-1RA on
chylomicron levels are insulin-independent. Systemic improvements in
insulin sensitivity due to GLP-1RA induced weight loss may nonethe-
less enable direct effects of insulin on chylomicron secretion. The in-
hibitory effects of insulin on chylomicron secretion are suppressed in
a state of insulin resistance, as observed in hamsters or humans
[126,148,151,152]. Insulin resistance was moreover associated with
an altered expression and activity of lipogenic and secre

tory pathways in enterocytes contributing to increased levels of circu-
lating chylomicrons [126]. Restoring insulin sensitivity, both systemi-
cally and at the level of the enterocytes, may thus also directly suppress
chylomicron secretion. However, treatment of T2D patients with the in-
sulin sensitizer rosiglitazone improved overall insulin sensitivity, but in-
creased rather than decreased circulating apoB48 levels [153]. Direct
effects of GLP-1RA on the enterocytes are thus a more likely explanation
for the observed modulation in chylomicron output in subjects undergo-
ing weight loss.

5.7. GLP-1 reduces chylomicron output via brain-gut feedback circuitry

The central action of GLP-1 on food intake is well described and im-
portant for body weight homeostasis [23]. Intracerebroventricular (icv)
injections of GLP-1 were shown to regulate metabolic processes in pe-
ripheral organs. For instance, icv GLP-1 was demonstrated to enhance
sympathetic nervous system activity in brown [154,155] and white adi-
pose tissue [156], leading to increased thermogenesis and a reduction
of lipogenic gene expression, respectively. Whether central GLP-1 action
can also regulate chylomicron production has nonetheless not been ad-
dressed in detail. A recent study by Farr and co-workers showed that the
icv. Injection of exendin-4 significantly blunted TRL and apoB48 levels
while similar but milder effects were observed after icv. Injection of the
DPP-4 inhibitor MK-0626 [120]. Chylomicron-lowering effects of cen-
trally applied exendin-4 were absent when the mice received cotreat-
ment with the GLP-1RA exendin 9-39. However, when exendin-4 was
injected peripherally, the icv. application of exendin 9-39 no longer im-
peded the effects on chylomicron synthesis [120]. This suggests that
the acute postprandial lipoprotein lowering effects of GLP-1 are due
to both central and peripheral GLP-1R activation. However, the clin-
ical relevance of central GLP-1 actions on intestinal lipid metabolism
remain undefined. Similarly, additional studies are required to address
whether central GLP-1 action can modulate hepatic lipid metabolism
and lipoprotein profiles in humans.

5.8. Effects of the GLP-1 and GLP-2 interplay

GLP-2, like GLP-1 is a product of preproglucagon. Upon nutrient in-
gestion, it is co-secreted with GLP-1 from intestinal L-cells and by spe-
cific neurons of the caudal brainstem. The main biological actions of
GLP-2 are related to the regulation of energy absorption from the in-
testine by modulating nutrient uptake, improving mucosal integrity, re-
ducing gut permeability and modulating microvilli length [157–161].
GLP-2 mitigates crypt cell proliferation and inhibits apoptosis of the in-
testinal epithelium [162–164]. These biological effects on gut morphol-
ogy and function have led to the development of degradation-resistant,
long-acting GLP-2 receptor agonists for the treatment of short bowel syn-
drome [164].

GLP-2 appears to have opposing roles to GLP-1 in intestinal lipid
handling. In animal models, GLP-2 enhanced intestinal lipid absorp-
tion and subsequent chylomicron output by the enterocytes [165,166],
while GLP-1 was shown to reduce chylomicron output. Contrary to
GLP-1, the acute application of GLP-2 in humans increased postprandial
plasma apoB48, TG and FFA concentrations [167,168]. The GLP-2 re-
ceptor is localized on enteroendocrine cells of the jejunum, enteric neu-
rons and intestinal subepithelial myofibroblasts, but not on the entero-
cytes [164]. Accordingly, the GLP-2 effect on these cells appears to be
indirectly mediated by endocrine, neuronal or paracrine mechanisms,
which remains to be determined. A recent study in lymph duct cannu-
lated rats suggests that GLP-2 stimulated intestinal TG output primarily
by enhancing lymph flow [146], which once again is opposite to the ef-
fect of GLP-1 to decrease it.
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GLP-1 and GLP-2 may have opposing physiological actions on post-
prandial lipid absorption and chylomicron secretion, but their net ef-
fect on lipid metabolism is undefined and likely depends on their rate of
secretion and local availability as well as their degradation and excre-
tion. Both peptides are co-secreted from the L-cells in a 1:1 M ratio. The
plasma half-life of each peptide is short, 7 min for GLP-2 as compared to
two for GLP-1 [169,170]. Whether this modestly sustained time action
of GLP-2 also translates to a dominance of endogenous biological action
of GLP-2 remains to be tested. Co-infusion of equimolar concentrations
of exogenous GLP-1 and GLP-2 in insulin resistant hamsters resulted in
a net increase in lipid absorption and an increase in TRL-TG and apoB48
after 30 min, while the prolonged infusion for up to 120 min led to a
decrease in postprandial lipidemia [119]. In a recent study in diet-in-
duced obese mice, 4 weeks of treatment with a dual GLP-1/GLP-2 recep-
tor co-agonist (GUB09-123) markedly reduced plasma cholesterol but
had no effect on TG levels [171]. It remains to be determined if this ef-
fect was secondary to the body weight lowering effect of the peptide. To-
gether, these findings indicate that GLP-1 and GLP-2 have opposing ac-
tions on postprandial lipidemia, and that GLP-2 perhaps dominates the
hypolipidemic action of GLP-1. However, the application of protracted
GLP-1RA seems to shift that balance towards a lipid lowering effect.

6. GLP-1-based dual and triple agonists, and their effects on
diabetic dyslipidemia

The therapeutic spectrum of GLP-1R agonism has recently been en-
riched with the development of unimolecular sequence-intermixed pep-
tide hybrids that combine the glucose and weight lowering effects of
GLP-1 with the incretin action of GIP and/or the thermogenic action of
glucagon [66,172–177]. Such dual GLP-1/GIP and GLP-1/glucagon re-
ceptors agonists, and the tri-agonist combining GLP-1, GIP and glucagon
achieve synergistic reductions of adiposity and hyperglycemia in
pre-clinical models [66,172–176,178,179]. Various co-agonists are
currently in clinical study where they appear to offer a more effective
treatment of diabetes and obesity, with fewer adverse effects than selec-
tive GLP-1RA [180–182].

6.1. GLP-1/glucagon

Glucagon is best known as a glucogenic hormone that increases
blood glucose under conditions of hypoglycemia by rapidly stimulat-
ing hepatic glucose production through acceleration of glycogenolysis
and gluconeogenesis [183,184]. Beyond its glycemic effects in the liver,
pharmacological applications of glucagon were also demonstrated to
modulate food intake [185], energy expenditure [186], insulin secre-
tion [187] and lipid metabolism [188]. Some studies have also pro-
posed a protective role of glucagon in NAFLD [189,190].

The lipolytic action of glucagon has been described in various species
including rats [191–193], mice [194], birds [195] and humans
[196–201]. The liver shows the highest glucagon receptor (GCGR) ex-
pression [202] and is considered the primary target organ for glucagon
mediated effects on lipid metabolism. In murine hepatocytes, glucagon
stimulates ß-oxidation and inhibits lipogenesis [188,194], which may
also contribute to reduced hepatic lipid accumulation and VLDL secre-
tion, as observed in rats after repeated glucagon dosing [203,204].
Glucagon was shown to enhance LDL uptake and degradation by stim-
ulating LDL-receptor activity in cultured rat hepatocytes [205] and in
vivo [192]. Opposite findings were achieved with the GCGR antag-
onists MK-0893 and LY2409021, both of which resulted in a signifi-
cant increase in plasma LDL-C concentrations in rats [206] and hu-
mans [190], respectively. In addition to these findings, LY2409021
induced a significant increase in

hepatic lipid content, as assessed by magnetic resonance imaging [190].
Together, these studies suggest that intact hepatic GCGR signaling is re-
quired to prevent dyslipidemia as well as liver steatosis.

Direct lipolytic effects of glucagon were also demonstrated in
adipocytes of different species. In rat adipocytes glucagon was shown to
enhance the activity of hormone-sensitive lipase (HSL), the key lipoly-
tic enzyme stimulating TG hydrolysis [207]. Other studies confirmed
the lipolytic effect of glucagon in isolated adipocytes of rats [191,193],
birds [195] and humans [197,198,208], albeit with considerable
species differences regarding the effective glucagon concentration
[188].

In addition to the lipolytic effects in liver and adipose tissue, high
glucagon concentrations can also indirectly contribute to lipolysis by
stimulating the secretion of growth hormone [209,210] and cate-
cholamines [211,212], which have potent lipolytic actions in various
tissues and cell types [213,214]. Glucagon can cross the blood brain
barrier [215]. Additional contribution may come from a central regula-
tion of lipid metabolism as GCGR is expressed in the dorsal vagal com-
plex of the brainstem and in the hypothalamus [216]. In dogs, the cen-
tral administration of glucagon caused hypolipidemia and hypocholes-
terolemia [217]. Moreover, acute icv. Administration of glucagon de-
creases hepatic TAG levels and increases the biliary excretion of choles-
terol in hyperlipidemic rats and hamsters [218].

The lipid lowering effects of glucagon suggest that the net benefits of
a GLP-1/glucagon co-agonist should go beyond a superior body weight
and glucose lowering effect of GLP-1 to also specifically target diabetic
dyslipidemia.

Different variants of GLP-1/glucagon co-agonists have been devel-
oped and were tested in pre-clinical and clinical trials primarily for their
body weight lowering and anti-glycemic effects. Some of the studies re-
ported additional effects on dyslipidemia and NAFLD/ NASH (Table 2).
In DIO mice, treatment with a co-agonist, which was designed based
on a glucagon-derived sequence, reduced body weight, fat mass and
glycemia better than mono-agonist treatment. The co-agonist also re-
duced hepatic TG levels and liver steatosis, as well as, plasma TG,
LDL-C and total cholesterol [172]. Moreover, treatment with the GLP1/
glucagon co-agonist decreased plasma cholesterol with a similar trend in
apo-B48 levels [219]. Treatment with a different GLP-1/glucagon co-ag-
onist (DualAG), which was composed of an oxyntomodulin-based se-
quence, also caused reductions in body weight and hepatic steatosis in
DIO mice [173]. A single injection of DualAG in fasted DIO mice de-
creased plasma concentration of TGs, cholesterol, and LDL [178]. More-
over, DualAG significantly decreased hepatic de novo lipogenesis, en-
hanced LDL receptor expression, decreased VLDL secretion and elevated
fatty acid oxidation [178]. Equimolar doses of the positive control li-
raglutide suppressed de novo lipogenesis but had no effect on any other
lipid parameters, suggesting a glucagon-specific effect on lipid serology
[178].

The central nervous system may play a role in the GLP-1/glucagon
mediated decrease in dyslipidemia. This became evident by a study in
hamsters in which the central application of GLP-1/glucagon co-agonist
decreased intestinal lipid absorption and hepatic TAG secretion, and in-
creased the biliary excretion of cholesterol leading to lower plasma and
liver lipid levels [220]. The lipid lowering effect was partially blocked
by the central co-administration of either a GLP-1RA antagonist or a
GCGR antagonist, and was abolished by experimental denervation of the
GI tract and liver using vagotomy [220].

The promising effects in the pre-clinical models prompted the testing
for efficacy and safety of two GLP-1/glucagon co-agonists (SAR425899
and MEDI0382) in Phase 2 trials. Both co-agonists showed weight and
glucose lowering efficacy [182,221]. SAR425899 treatment had a mild
cholesterol lowering effect under
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Table 2
Changes in lipid parameters in response to GLP1/glucagon, GLP-1/GIP, GLP1/GIP/Glucagon and respective comparators.

Compound

Compound
variant,
Reference Comparator

Experimental
design

Sample
collection Body weight Lipid parameters

GLP-1 / Glucagon Aib2 C24 lactam
40 k
[172]
[70 nmol/kg]

GLP-1
(Aib2 C24
40 k)
[70 nmol/kg]

DIO mice
Once daily for
27 days

After 6 h
of fasting

Change vs. vehicle
• GLP-1:

−20.1% (p < .001)
• GLP-1/Glucagon

−28.1% (p < .001)

Total cholesterol
[mg/dl]
(mean ± SE)

• Vehicle:
254.0 ± 25.33

• GLP-1 (Aib2
C24 40 k):
200.8 ± 29.58
(p < .05 vs. ve-
hicle)

• GLP-1/
Glucagon
106.9 ± 6.3
(p < .001 vs.
vehicle;
p < .05 vs.
GLP1)

Liver fat (Oil Red O
staining)

• GLP-1/
Glucagon <
GLP-1 < Vehi-
cle

Aib2 C24 lactam
40 k
[172]
[70 nmol/kg]

GLP-1
(Aib2 C24
40 k)
[70 nmol/kg]

DIO mice
Once daily for
9 days

After 6 h
of fasting

Not shown FPLC
• LDL-C: GLP-1/

Glucagon <
GLP-1 < Vehi-
cle

• HDL C:
GLP-1/
Glucagon <
GLP-1 < Vehi-
cle
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Table 2 (Continued)

Compound

Compound
variant,
Reference Comparator

Experimental
design

Sample
collection Body weight Lipid parameters

DualAG Gluc
[173]
[1.9 μmol/kg]

GLP-1
(GLPAG)
[1.9 μmol/kg]

DIO mice
Once every
other day for
2 weeks

Not
specified

Change vs. vehicle
• GLP-1:

−12% (p < .05)
• GLP-1/Glucagon

−25% (p < .05)

Total cholesterol
[mg/dl]
(mean ± SE)

• Vehicle:
153 ± 6

• GLP-1:
107 ± 5
(p < .05 vs. ve-
hicle)

• GLP-1/
Glucagon vs.
vehicle: 76 ± 7
(p < .05 vs. ve-
hicle; p < .05
vs. GLP-1)

TG [mg/dl]
(mean ± SE)

• Vehicle:
68 ± 8

• GLP-1: 47 ± 6
(p < .05 vs. ve-
hicle)

• GLP-1/
Glucagon:
44 ± 5
(p < .05 vs. ve-
hicle)

FFA [mM]
(mean ± SE)

• Vehicle:
0.2 ± 0.0 (n.s)

• GLP-1:
0.3 ± 0.0 (n.s)

• GLP-1/
Glucagon:
0.4 ± 0.1 (n.s)

Liver fat (histology)
• GLP-1/

Glucagon <
GLP-1 < Vehi-
cle

PEG-GLP-1/
glucagon [219]
[30 nmol/kg]

none DIO mice
Once every
fourth day for
33 days

After 4 h
of fasting

Change vs. vehicle
−26.49 ± 4.93%
(p < .001)

Total cholesterol
[mg/dl]

• GLP-1/
Glucagon:
down vs. vehi-
cle (p < .05)
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Table 2 (Continued)

Compound

Compound
variant,
Reference Comparator

Experimental
design

Sample
collection Body weight Lipid parameters

Aib2 C24 lactam
40 k [266]
[0.5 mg/kg]

Glucagon
[2.5 mg/kg];
GLP-1
(Exendin-4)
[8 μg/kg]
Pair feeding to
co-agonist

DIO mice
Twice daily
for 28 days

After 6 h
of fasting

Change vs. vehicle
• GLP-1:

−6.3% ± 5.1%
(p < .01)

• Glucagon:
−12.8% ± 5.1%
(p < .01)

• GLP-1/Gluc:
−19.0% ± 4.3%
(p < .01)

Total cholesterol
[mg/dl]
(mean ± SE)

• Vehicle:
147.4 ± 5.3

• GLP-1:
133 ± 4.5
(n.s.)

• Glucagon:
114.4 ± 3.0
(p < .01)

• GLP-1/
Glucagon:
81.6 ± 5.5
(p < .01)

• Pair fed:
124.8 ± 9.5

TG [mg/dl]
(mean ± SE)

• Vehicle:
195.1 ± 14.4

• GLP-1:
176.5 ± 14.6
(n.s.)

• Glucagon:
166.7 ± 21.6

• GLP-1/
Glucagon:
128.8 ± 12.2
(p < .05)

• Pair fed:
179.9 ± 17.8

LDL-C [mg/dl]
(mean ± SE)

• Vehicle:
65.3 ± 4.9

• GLP-1:
43.2 ± 4.9
(p < .01)

• Glucagon:
45.3 ± 6.9
(p < .01)

• GLP-1/
Glucagon:
27.9 ± 6.3
(p < .01)

• Pair-fed:
69.5 ± 8.2

Liver TG [mg/g
tissue] (mean ± SE)

• Vehicle:
11.9 ± 0.3

• GLP-1:
7.6 ± 1.1
(p < .01)

• Glucagon:
9.2 ± 0.4 (n.s.)

• GLP-1/
Glucagon:
3.5 ± 0.4
(p < .01)

• Pair fed:
10.2 ± 0.5



UN
CO

RR
EC

TE
D

PR
OO

F

18 K. Stemmer et al. / Advanced Drug Delivery Reviews xxx (xxxx) 1–33

DualAG [178]
[25 nmol/kg]

GLP-1
(Liraglutide)
[25 nmol/kg]

DIO mice
Single sc.
injection

After 2 h
of fasting

Not determined Total cholesterol
[mg/dl]
(mean ± SD)

• GLP-1: no
change

• GLP-1/
Glucagon:
down vs. vehi-
cle (p < .001)

TG [mg/dl]
(mean ± SD)

• GLP-1: no
change

• GLP-1/
Glucagon:
down vs. vehi-
cle (p < .001)

LDL-C [mg/dl]
(mean ± SD)

• GLP-1: no
change

• GLP-1/
Glucagon:
down vs. vehi-
cle (p < .05)

HDL-C [mg/dl]
(mean ± SD)

• GLP-1: no
change

• GLP-1/
Glucagon: no
change

Liver TG [mg/g
tissue] (mean ± SD)

• GLP-1: no
change

• GLP-1/
Glucagon: no
change

Liver Cholesterol
[mg/g tissue]
(mean ± SD)

• GLP-1: up vs.
vehicle
(p < .05)

• GLP-1/
Glucagon: up
vs. vehicle
(p < .05)
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Aib2 C24
Chimera [267]
[150 μg/kg]

Chow fed mice DIO mice
Twice daily for
40 weeks with
the start of
HFD feeding

Not
specified

Total body weight:
Vehicle > > GlP1/
Glucagon (p < .05 vs.
vehicle) > chow fed
control (p < .05 vs.
vehicle)

Total cholesterol
[mg/dl]
(mean ± SE)

• Chow feeding:
down vs. vehi-
cle (p < .05)

• GLP-1/
Glucagon:
down vs. vehi-
cle (p < .05)

TG [mg/dl]
(mean ± SE)

• Chow feeding:
down vs. vehi-
cle (p < .05)

• GLP-1/
Glucagon:
down vs. vehi-
cle (p < .05)

LDL-C [mg/dl]
(mean ± SE)

• Chow feeding:
down vs. vehi-
cle (p < .05)

• GLP-1/
Glucagon:
down vs. vehi-
cle (p < .05)

FFA [mM]
(mean ± SE)

• Chow feeding:
down vs. vehi-
cle (p < .05)

• GLP-1/
Glucagon:
down vs. vehi-
cle (p < .05)

Liver TG [mg/g
tissue] (mean ± SE)

• Chow feeding:
down vs. vehi-
cle (p < .05)

• GLP-1/
Glucagon:
down vs. vehi-
cle (p < .05)

Liver Cholesterol
[mg/g tissue]
(mean ± SE)

• Chow feeding:
down vs. vehi-
cle (p < .05)

• GLP-1/
Glucagon:
down vs. vehi-
cle (p < .05)
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Aib2 C24 lactam
40 k [268]
[75 μg/kg] and
[150 μg/kg]

none Cholesterol fed
hamsters
Twice daily for
8 weeks

Not
specified

Not determined Total cholesterol
[mg/dl] vs. vehicle
(mean ± SE)

• GLP-1/
Glucagon (75):
−38.5 ± 7.0%
(p < .05)

• GLP-1/
Glucagon
(150):
−66.7 ± 3.1%
(p < .05)

TG [mg/dl] vs.
vehicle (mean ± SE)

• GLP-1/
Glucagon (75):
−39.5 ± 3.8%
(p < .05)

• GLP-1/
Glucagon
(150):
−60.6 ± 3.4%
(p < .05)

VLDL [mg/dl] vs.
vehicle (mean ± SE)

• No changes
LDL [mg/dl] vs.
vehicle (mean ± SE)

• GLP-1/
Glucagon (75):
−49.8 ± 5.2%
(p < .05)

• GLP-1/
Glucagon
(150):
−68.3 ± 3.8%
(p < .05)

FFA [mM] vs.
vehicle (mean ± SE)

• GLP-1/
Glucagon (75):
down (p < .05)

• GLP-1/
Glucagon
(150): down
(p < .05)

Liver TG [mg/g
tissue] vs. vehicle
(mean ± SE)

• GLP-1/
Glucagon (75):
−37.9 ± 5.7%
(p < .05)

• GLP-1/
Glucagon
(150):
−55.7 ± 5.7%
(p < .05)
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Aib2 C24 lactam
40 k [268]
[300 μg/kg]

Pair feeding to
co-agonist

Cholesterol fed
hAPoB100 /
hCETB
overexpressing
mice.
Once daily for
4 weeks

Not
specified

Not determined Total cholesterol
[mg/dl]
(mean ± SE)

• Vehicle:
965.0 ± 18.2

• GLP-1/
Glucagon:
464.0 ± 11.7
(p < .05)

• Pair-fed (150):
850.2 ± 41.6

TG [mg/dl]
(mean ± SE)

• Vehicle:
1610.0 ± 35.7

• GLP-1/
Glucagon:
871.8 ± 54.4
(p < .05)

• Pair-fed:
1495.3 ± 31.2

LDL [mg/dl] v
(mean ± SE)

• Vehicle:
519.7 ± 16.5

• GLP-1/
Glucagon:
195.4 ± 8.6
(p < .05)

• Pair-fed:
480.6 ± 11.3

FFA [mM]
(mean ± SE)

• Vehicle:
2.4 ± 0.1

• GLP-1/
Glucagon:
1.6 ± 0.2
(p < .05)

• Pair-fed:
2.2 ± 0.2

Liver TG [mg/g
tissue] (mean ± SE)

• Vehicle:
28.8 ± 2.1

• GLP-1/
Glucagon:
14.7 ± 1.1
(p < .05)

• Pair-fed:
25.2 ± 3.8

Liver cholesterol
[mg/g tissue]
(mean ± SE)

• Vehicle:
7.1 ± 0.5

• GLP-1/
Glucagon:
3.8 ± 0.3
(p < .05)

• Pair-fed:
6.5 ± 0.7



UN
CO

RR
EC

TE
D

PR
OO

F

22 K. Stemmer et al. / Advanced Drug Delivery Reviews xxx (xxxx) 1–33

SAR425899 [182]
Ascending doses:
[0.06–0.12-0.18 mg]

None Heathy human
(BMI:
25–30 kg/m 2)
Once daily for
21 days

Morning
trough
samples
at day 21

GLP-1/Glucagon:
−5.32 kg relative to
baseline

Total cholesterol
[mmol/l]
(mean ± SD)

• Placebo (Day
0):
4.99 ± 0.85

GLP1/Glucagon
(Day 0): 6.0 ± 1.32

• Placebo (Day
21):
5.39 ± 0.80

GLP1/Glucagon
(Day 21):
5.39 ± 0.39
TG [mmol/l]
(mean ± SD)

• Placebo (Day
0):
1.19 ± 0.51

GLP1/Glucagon
(Day 0):
1.18 ± 0.54

• Placebo (Day
21):
1.60 ± 0.54

GLP1/Glucagon
(Day 21):
0.88 ± 0.15
FFA [mmol/l]
(mean ± SD)

• Placebo (Day
0):
0.60 ± 0.19

GLP1/Glucagon
(Day 0):
0.81 ± 0.38

• Placebo (Day
21):
0.60 ± 0.25

GLP1/Glucagon
(Day 21):
0.80 ± 0.22
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SAR425899 [182]
Ascending doses:
[0.06–0.12-0.18 mg]

None Heathy human
(BMI:
20–30 kg/m 2)
and T2D
patients
(BMI
28–42 kg/m 2)
Once daily for
28 days

Morning
trough
samples
at day 28

Change from baseline
(mean ± SD)

• Placebo:
−2.37 ± 1.71 kg (ns)

• GLP-1/Glucagon:
−5.46 ± 1.98 kg
(p < .05)

Total cholesterol
[mmol/l]
(mean ± SD)

• Placebo (Day
0):
4.88 ± 1.03

GLP1/Glucagon
(Day 0):
4.85 ± 0.85

• Placebo (Day
21):
4.37 ± 0.97

GLP1/Glucagon
(Day 21):
4.25 ± 1.15
TG [mmol/l]
(mean ± SD)

• Placebo (Day
0):
3.00 ± 1.25

GLP1/Glucagon
(Day 0):
2.12 ± 0.96

• Placebo (Day
21):
2.51 ± 0.81

GLP1/Glucagon
(Day 21):
1.76 ± 0.74
FFA [mmol/l]
(mean ± SD)

• Placebo (Day
0):
0.90 ± 0.27

GLP1/Glucagon
(Day 0):
0.97 ± 0.85

• Placebo (Day
21):
4.37 ± 0.97

GLP1/Glucagon
(Day 21):
4.25 ± 1.15

MEDI0382
(Cotadutide) [222]
Ascending doses:
[50–300 μg]

none T2D
Once daily for
49 days

Fasted
state,
day 49

Change from baseline
(90% CI)

• Placebo: −0.08%
[−1.45, 1.28]

• MEDI0382
−3.41% [−4.37,
−2.44]
(p = .002)

Change from
baseline (90% CI)
TG [mmol/l]

• Placebo: 0.11
(−0.20, 0.42)

• MEDI0382:
−0.40 (−0.62,
−0.18)
(p = .031)

FFA [mmol/l]
• Placebo: 0.03

(−0.05, 0.10)
• MEDI0382:

−0.04 (−0.09,
0.02)
(p = .293)

LDL cholesterol
[mmol/l]:

• Placebo: 0.05
(−0.18, 0.29)

• MEDI0382:
−0.27 (−0.43,
−0.11)
(p = .066)

Total cholesterol:
HDL

• Placebo: 0.00
(−0.27, 0.26)

• MEDI0382:
−0.03 (−0.21,
0.16)
(p = .905)
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GLP1/GIP PEG GLP-1/GIP
[175]
[70 nmol/kg]

Acyl GLP-1/
GIP
[70 nmol/kg];
Liraglutide
[70 nmol/kg]

DIO mice
Once daily for
2 weeks

After 6 h
of fasting

• PEG GLP-1/GIP
−26.9% vs. vehicle
(p < .05)

• Acyl GLP-1/GIP
−31.4% vs. vehicle
(p < .05)

• Liraglutide
−15.6% vs. vehicle
(p < .05)

Total cholesterol
[mg/dl]

• PEG GLP-1/
GIP: down vs.
vehicle
(p < .001)

• Acyl GLP-1/
GIP: down vs.
vehicle
(p < .001)

• Liraglutide:
down vs. vehi-
cle (p < .001)

TG [mg/dl]
(mean ± SE)

• PEG GLP-1/
GIP: down vs.
vehicle
(p < .05)

• Acyl GLP-1/
GIP: down vs.
vehicle
(p < .05)

• Liraglutide:
down vs. vehi-
cle (ns)

FFA [mmol/l]
• PEG GLP-1/

GIP: no change
• Acyl GLP-1/

GIP: no change
• Liraglutide: up

vs. vehicle
(p < .05)

Liver fat (Oil Red O
staining)

• PEG GLP-1/
GIP = Acyl
GLP-1/
GIP < Liraglu-
tide < Vehicle
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NNC0090–2746
[180]
[1.8 mg]

Liraglutide
[1.8 mg]

T2D patients
Once-weekly
for 12 weeks

Fasted
state;
week 12

• NNC0090; ETD
[95%]

−1.67% [−3.43; 0.09]
vs. placebo
(p = .0621)

• Liraglutide ETD
[95%]

−1.23% [−3.00; 0.54]
vs. placebo
(p = .1710)

Total cholesterol
[mmol/l]

• NNC0090:
Down vs.
placebo
(p = .0214)

• Liraglutide:
Down vs.
placebo
(p = .5325)

TG [mmol/l]
• NNC0090:

Down vs.
placebo
(p = .2805)

• Liraglutide:
Down vs.
placebo
(p = .0068)

VLDL [mmol/l]
• NNC0090:

Down vs.
placebo
(p = .5700)

• Liraglutide:
Down vs.
placebo
(p = .0932)

LDL [mmol/l]
• NNC0090:

Down vs.
placebo
(p = .13739)

• Liraglutide: no
change

HDL [mmol/l]
• NNC0090:

Down vs.
placebo
(p = .1418)

• Liraglutide: no
change

FFA [mmol/l]
• NNC0090:

Down vs.
placebo
(p = .2770)

• Liraglutide: Up
vs. placebo
(p = .1772)
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LY3298176
[181]
[15 mg]

Dulaglutide
[1.5 mg]

T2D patients
Once-weekly
for 26 weeks

Fasted
state

Changes from baseline
(mean ± SD)

• Placebo
−0.4 ± 0.81 kg

• LY3298176
−11.3 ± 0.88 kg
(p < .01)

• Dulaglutide
−2.7 ± 0.78 kg
(p < .05)

Changes from
baseline
(mean ± SD)
Total cholesterol
[mmol/l]

• Placebo:
0.3 ± 0.13

• LY3298176:
0.1 ± 0.12

• Dulaglutide:
−0.2 ± 0.12
(p < .05)

TG [mmol/l]
• Placebo:

0.3 ± 0.16
• LY3298176:

−0.8 ± 0.16
(p < .01)

• Dulaglutide:
−0.3 ± 0.15
(p < .05)

VLDL [mmol/l]
• Placebo:

0.0 ± 0.05
• LY3298176:

−0.2 ± 0.05
(p < .01)

• Dulaglutide:
−0.1 ± 0.04
(p < .05)

LDL [mmol/l]
• Placebo:

0.2 ± 0.12
• LY3298176:

0.1 ± 0.03
• Dulaglutide:

0.0 ± 0.03
HDL [mmol/l]

• Placebo:
0.0 ± 0.03

• LY3298176:
0.1 ± 0.03

• Dulaglutide:
0.0 ± 0.03

GLP-1/GIP/ Glucagon Triagonist
[176]
[3 nmol/kg]

Acyl GLP1/GIP
[3 nmol/kg]

DIO mice
Once daily for
20 days

After 4 h
of fasting

• Triagonist
−26.6% vs. vehicle
(p < .001)

• Acyl GLP1/GIP
−15.7% vs. vehicle

Liver fat (Oil Red O
staining)
Triagonist < Acyl
GLP-1/
GIP < < Vehicle

Triagonist
[179]
[10 nmol/kg]

none DIO mice
(males and
females)
Once daily for
27 days

After 4 h
of fasting

• Triagonist (males)
• −25.33 ± 1.67%

vs. vehicle
(p < .001)

• Triagonist (fe-
males)

• −18.55 ± 1.28%
vs. vehicle
(p < .001)

TG [mmol/l]
• Triagonist (m):

down vs. vehi-
cle (p < .05)

• Triagonist (f):
down vs. vehi-
cle (p < .05)

FPLC (m/f)
• LDL-C: Triago-

nist < Vehicle
• HDL C:

Triagonist <
Vehicle

Liver fat (Oil Red O
staining) (m/f)

• Triagonist
< < Vehicle

DIO (diet induced obese); ETD (estimated treatment difference); FFA (free fatty acids), TG (triglycerides).

fasting conditions [182]. MEDI0382 (Cotadutide) reduced LDL choles-
terol levels as well as total cholesterol:HDL ratio, and caused signif-
icant reductions in plasma TG levels, compared to placebo controls
[222]. The concomitant reductions in circulating TRL and liver fat
in preclinical trials highlights a potential of GLP-1/glucagon co-ago-
nists in the treatment of both dyslipidemia and NAFLD. Whether dys-
lipidemia is a cause or a consequence of NAFLD is not clear. Given
that NAFLD is a disorder of hepatic lipid homeostasis, lipid lower-
ing drugs appear as reasonable treatments for NAFLD. The

combination of the beneficial effects of the GLP-1 moiety on postpran-
dial dyslipidemia paired with the lipolytic action of glucagon in the liver
and adipose tissue may therefore provide an exciting novel pharmaco-
logical approach. The safety and efficacy of MEDI0382 in obese subjects
with NAFLD/non-alcoholic steatohepatitis (NASH) are currently being
tested in phase 2 clinical trials.
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6.2. GLP1/GIP

Acute exposure to dietary lipids serves as the strongest stimulus
for GIP secretion from the K-cells located in the proximal duodenum
[223,224]. In rodents, prolonged high-fat diet feeding increases intesti-
nal GIP expression and the presence of GIP in the circulation [225,226].
Similar to GLP-1, GIP increases insulin secretion in a glucose-depen-
dent manner [227–229]. The biological function of GIP is terminated
by DPP-4 mediated cleavage and renal clearance leading to a half-life of
approximately 7 min in healthy human subjects and 5 min in T2D pa-
tients [38].

Existing studies of GIP secretion in T2D patients are conflicting,
with some studies showing enhanced [230–234], or unchanged
[62,235,236] secretion in T2D patients, yet the majority of studies did
not correct for possible confounding effects of body weight. Seemingly
more solid clinical evidence exists regarding the insulinotropic effect of
GIP, which is diminished in T2D patients relative to normal glycemic
individuals [237,238]. It is important to note that the insulinotropic ef-
fect of GLP-1 is also similarly diminished in these T2D patients. Normal-
ization of glycemia by insulin therapy restored the ß-cell responsiveness
to GIP in T2D patients [239], an important realization that might also
explain why GLP-1/GIP dual-agonism may offer superior glycemic ben-
efits over GLP-1 (or GIP) monotherapy.

The presence of the GIP receptor (GIPR) on adipose tissue and its
downregulation in subcutaneous tissue of obese patients [240] suggests
that GIP serves as an important regulator of lipid homeostasis. Although
GIP did not change fasting lipids [241], it has been reported to regulate
TG turnover and promote postprandial lipid clearance in dogs [242] and
rats [241]. GIP enhanced LPL activity in cultured murine [243,244]
and human adipocytes [244,245], and in rat epididymal adipose ex-
plants [246]. GIP increased FFA uptake in human adipocytes [245]
and inhibited glucagon stimulated lipolysis [247]. Surprisingly, despite
these findings, GIP alone or in combination with insulin did not signif-
icantly affect the clearance of an “intralipid” TAG-emulsion in humans
[248,249]. The reason for this discrepancy remains to be determined.

An important role for GIP in lipid storage of adipose tissue is sup-
ported by findings from studies in global GIPR KO mice which were pro-
tected from diet-induced obesity and insulin resistance [250]. Similar
findings were found in a mouse model with K-cell ablation [251]. Inter-
estingly, HFD-fed adipose tissue-specific GIPR knockout (GIPRadipo−/−)
mice had a comparable adipose tissue volume, but with improvements
in diet-induced insulin resistance and hepatic steatosis compared to the
WT controls [252]. Accordingly, GIP ablation seems to induce metabolic
improvements that go beyond its effect on adipose tissue, but the under-
lying mechanisms and target tissues remain to be identified. Targeting
GIP nonetheless is as an attractive pharmacological target for obesity
and comorbid sequelae. Indeed, therapeutic approaches based on immu-
nization against GIP [253,254] or GIP antagonism showed promising
anti-obesogenic effects in mice [255] and in humans [256,257]. Con-
versely, there is also convincing experimental evidence that the ampli-
fication of GIPR signaling in GIP overexpressing mice can reduce body
weight [258]. Similarly, structurally-refined GIP receptor agonists pro-
moted body weight loss via inhibiting food intake [259]. The treatment
of mice with a DPP-4 resistant D-Ala2-GIP agonist for 2 weeks led to
reductions in body weight and LPL activity [260]. Accordingly, an on-
going debate about the clinical benefits of GIP antagonism vs. agonism
persists to date.

Single molecule GLP-1/GIP dual agonists have been developed, one
of which (NNC0090-2746; MAR709) [175,180] already completed
phase 2 clinical trials. NNC0090-2746 was designed to pro

vide nearly balanced activity at GLP1R and GIPR [175]. A second
one, tirzepatide (LY3298176) [181] just entered phase 3 clinical trials.
Tirzepatide displays a roughly 5-fold greater affinity to the GIPR rela-
tive to the GLP1-R. Both dual agonists have minimal activity at glucagon
receptors [261]. In pre-clinical and clinical trials, both dual agonists
demonstrated improvements in glycemic control and body weight
[180,181]. Tirzepatide showed greater efficacy on body weight loss and
glucose control compared to dulaglutide over 26 weeks of treatment
[181]. Only few lipid parameters have been investigated in these studies
(Table 2). For NNC0090-2746, an 8% decrease in total cholesterol from
baseline was observed, whereas liraglutide alone had no effect. Simi-
larly, tirzepatide reduced mean total cholesterol with a higher efficacy
compared to dulaglutide, but no differences were reported for HDL-C
and LDL-C [181].

Acute and chronic studies on the effects of both dual-agonists on
postprandial lipid metabolism have yet to be performed. Similarly, re-
sults for effects on sdLDL particles and HDL activity are lacking. Conse-
quently, what effect these co-agonists might constitute in treatment of
arthrosclerosis remains to be determined. Whether dual agonism at the
GIPR and GLP1R leads to a superior postprandial lipid lowering by si-
multaneously acting on chylomicron production and clearance presently
remains an unanswered question.

6.3. GLP-1/GIP/glucagon

Similar peptide analogs of GLP-1, GIP and glucagon facilitated the
design of an intermixed single-sequence peptide for the parallel target-
ing of the two incretin and glucagon receptors [176,262]. Several sin-
gle molecule peptides of varying inherent potency and relative activ-
ity balance across the three receptors have been developed [176,263].
Highest efficacy on body weight and glycemic control in murine models
was achieved by a tritagonist with balanced action at the GLP-1, GIPR
and GCGR. In a comparative study, the balanced, fully potent triago-
nist produced greater body weight loss in obese mice than the respec-
tive equimolar doses of respective co-agonists and mono-agonists [176].
Moreover, the triagonist decreased plasma cholesterol, which was attrib-
uted to a dose dependent and substantial reduction in LDL with a slight
reduction in HDL in male and female mice [179]. Similar to findings in
male mice [176], the triagonist potently improved diet-induced NAFLD
in female mice and with similar efficacy as compared to the males [179]
(Table 2).

The triagonist MAR423 is being assessed in early clinical trials by
Novo Nordisk, with results not yet published. A second long-acting triag-
onist (HM15211), was studied in several different preclinical models,
and reported to provide therapeutic efficacy against obesity, NAFDL,
T2D, and Parkinson's disease in various preclinical models [264,265]
and was recently approved for treatment of biliary and sclerosing
cholangitis. Strikingly, HM15211 significantly lowered total cholesterol
and hepatic steatosis in two different NASH models [265] and is cur-
rently being tested in phase 1 clinical trials for common obesity and
NASH by Hanmi Pharmaceutical.

7. Conclusion

Postprandial lipid lowering effects of GLP-1RA and DPP-4 inhibitors
are increasingly recognized as drivers for the anti-atherogenic and car-
dioprotective effects observed with these drugs. Acute benefits of GLP-1
on postprandial lipid metabolism can be mediated by the direct periph-
eral activation of GLP-1R and subsequent changes in pancreatic hor-
mone secretion, lymph flow and gastric emptying. GLP-1RA may fur-
ther modulate postprandial lipid metabolism indirectly via CNS GLP-1R
with improvements in body weight, glucose control coupled to the au-
tonomous control of hepatic lipid metabolism. These benefits of GLP1RA
can be enhanced by including additional coordinated functionality
through GIP and/or glucagon
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activity. The initial hybrid peptide drug candidates were recently shown
to induce synergistic reductions in body weight and hyperglycemia, as
well as profound benefits in lipoprotein metabolism and for the treat-
ment of NAFLD. Current best-in-class lipid lowering drugs are specifi-
cally designed to predominantly target high LDL-C levels and thus ad-
dress only a fraction of the abnormal lipid profile of T2D patients. These
patients remain to have a considerable residual risk for CVD. An add-on
treatment with lipid lowering drugs such as niacin, fibrates and omega-3
fatty acids were shown to help reducing that risk in patients with hy-
pertriglyceridemia. Similar benefits on dyslipidemia and the CVD risk
were recently reported for incretin-based drugs such as GLP-1RA and
the related multi-agonists. These new incretin-based drugs show remark-
able capacities to sustainably lower body weight and hyperglycemia,
and their lipid-lowering profile may place them in a unique position
as ideal supplemental add-on therapy to statins in T2D patients suffer-
ing from diabetic dyslipidemia. At the least, GLP-1RA and the related
multi-agonists may offer a new complimentary avenue in the personal-
ized management of high body adiposity, postprandial hyperglycemia
and diabetic dyslipidemia.
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