External trap-and-release membrane-inlet for photoionization mass spectrometry: Towards fast direct analysis of aromatic pollutants in aquatic systems.

CHRISTIAN GEHM¹, THORSTEN STREIBEL^{1,2}*, SVEN EHLERT⁴, DETLEF SCHULZ-BULL³, RALF ZIMMERMANN^{1,2}

¹Joint Mass Spectrometry Centre, Chair of Analytical Chemistry, Institute of Chemistry, University of Rostock, Dr.-Lorenz-Weg 2, 18059 Rostock, Germany

²Joint Mass Spectrometry Centre, Cooperation Group Comprehensive Molecular Analytics, Institute of Ecological Chemistry, Helmholtz Zentrum München-German Research Center of Environmental Health (GmbH), Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany

³Leibniz - Institute for Baltic Sea Research Warnemünde, Seestraße 15, 18119 Rostock – Warnemünde, Germany

⁴Photonion GmbH, Hagenower Strasse 73, 19061 Schwerin, Germany

*Correspondence: thorsten.streibel@uni-rostock.de, Tel.: +49-381-498-6527

SUPPORTING INFORMATION

TABLE OF CONTENT:

Figure A 1: Influence of remaining water droplets on the peak shape and double peak formation. Remaining water droplets decrease the heating rate leading to broader peak shapes. In addition, cold spots can be formed, resulting in double peak formation

Figure A 2: Influence of the trapping time on peak areas obtained by trap-and-release (T&R) external hollow fiber membrane inlet (EHFMI) coupled to photoionization mass spectrometry (PIMS). Good linear behavior was found for naphthalene, acenaphthene and fluorene, whereas for phenanthrene and pyrene deviations can be observed.

Figure A 3: Calibration curves of all investigated PAHs. Good linear behavior was found for naphthalene, acenaphthene and fluorene, whereas for phenanthrene and pyrene deviations can be observed.

Figure A 4: Repeatability of trap-and-release (T&R) external hollow fiber membrane inlet (EHFMI) coupled to photoionization mass spectrometry (PIMS). Between each sample measurement (S), the membrane was cleaned by heating (C). For all five measurements averaged values for signal height, peak area and signal-to-noise ratio (S/N) are presented. Signal heights show a higher degree of variations compared to peak areas. Which results from poor repeatability of the heating rate. Thus, S/N-values show high variations as well.

Figure A 5: Influence of the release temperature on the peak shapes and peak heights. With increasing heating rates, sharper peaks and thus higher signal intensities can be obtained, which leads to increasing signal-to-noise ratios.

Figure A 6: Direct comparison of continuous measurements using external sheet membrane setup (reference 47) and sequential analysis by trap-and-release (T&R) external hollow fiber membrane inlet design (EHFMI, this work) with resonance-enhanced multiphoton ionization (REMPI) coupled to time-of-flight mass spectrometry (TOFMS) @ 266 nm for a sample of heavy fuel oil suspended in water. The mass spectra are normalized to the highest peak. The here presented T&R-EHFMI-design allow the detection of heavier compounds.

 Table A 1: Repeatability of selected polycyclic aromatic hydrocarbons (PAH) at 3 different concentrations. Because of high variations in heating rates, variations in peak shapes can be observed, whereas peak areas show less variations than the corresponding signal heights

Figure A 1: Influence of remaining water droplets on the peak shape and double peak formation. Remaining water droplets decrease the heating rate leading to broader peak shapes. In addition, cold spots can be formed, resulting in double peak formation

Figure A 2: Influence of the trapping time on peak areas obtained by trap-and-release (T&R) external hollow fiber membrane inlet (EHFMI) coupled to photoionization mass spectrometry (PIMS). Good linear behavior was found for naphthalene, acenaphthene and fluorene, whereas for phenanthrene and pyrene deviations can be observed.

Figure A 3: Calibration curves of all investigated PAHs. Good linear behavior was found for naphthalene, acenaphthene and fluorene, whereas for phenanthrene and pyrene deviations can be observed.

Figure A 4: Repeatability of trap-and-release (T&R) external hollow fiber membrane inlet (EHFMI) coupled to photoionization mass spectrometry (PIMS). Between each sample measurement (S), the membrane was cleaned by heating (C). For all five measurements averaged values for signal height, peak area and signal-to-noise ratio (S/N) are presented. Signal heights show a higher degree of variations compared to peak areas. Which results from poor repeatability of the heating rate. Thus, S/N-values show high variations as well.

Figure A 5: Influence of the release temperature on the peak shapes and peak heights. With increasing heating rates, sharper peaks and thus higher signal intensities can be obtained, which leads to increasing signal-to-noise ratios.

Heavy Fuel Oil

Figure A 6: Direct comparison of continuous measurements using external sheet membrane setup (reference 47) and sequential analysis by trap-and-release (T&R) external hollow fiber membrane inlet design (EHFMI, this work) with resonance-enhanced multiphoton ionization (REMPI) coupled to time-of-flight mass spectrometry (TOFMS) @ 266 nm for a sample of heavy fuel oil suspended in water. The mass spectra are normalized to the highest peak. The here presented T&R-EHFMI-design allow the detection of heavier compounds.

Table A 1: Repeatability of selected polycyclic aromatic hydrocarbons (PAH) at 3 different concentrations. Because of high variations in heating rates, variations in peak shapes can be observed, whereas peak areas show less variations than the corresponding signal heights

m/z	Concentration		Peak Number					Maar	DCD
	[ng/L]		1	2	3	4	5	wiean	кър
128	102	PA	0.112	0.145	0.139	0.126	0.140	0.132	9%
		SH	0.013	0.018	0.015	0.012	0.018	0.015	17%
	408	PA	1.095	1.101	1.203	1.184	0.907	1.098	10%
		SH	0.138	0.127	0.130	0.127	0.107	0.126	8%
	510	PA	1.590	1.189	1.404	1.354	1.547	1.417	10%
		SH	0.158	0.109	0.163	0.148	0.206	0.157	20%
154	92	PA	0.033	0.070	0.068	0.052	0.075	0.060	26%
		SH	0.004	0.007	0.010	0.008	0.011	0.008	31%
	368	PA	0.437	0.383	0.444	0.449	0.409	0.424	6%
		SH	0.046	0.027	0.028	0.038	0.043	0.036	21%
	460	PA	0.563	0.471	0.519	0.561	0.615	0.546	9%
		SH	0.036	0.035	0.042	0.060	0.070	0.049	29%
166	126	PA	0.202	0.205	0.278	0.179	0.257	0.224	17%
		SH	0.015	0.021	0.029	0.016	0.028	0.022	27%
	504	PA	1.445	1.239	1.538	1.427	1.232	1.376	9%
		SH	0.150	0.105	0.103	0.096	0.107	0.112	17%
	630	PA	1.896	1.593	1.635	1.793	2.223	1.828	12%
		SH	0.112	0.110	0.119	0.190	0.243	0.155	34%
178	112	PA	0.235	0.234	0.262	0.230	0.271	0.247	7%
		SH	0.018	0.016	0.022	0.019	0.022	0.019	12%
	448	PA	1.245	1.052	1.238	1.194	1.099	1.166	7%
		SH	0.085	0.083	0.079	0.066	0.072	0.077	9%
	560	PA	1.584	1.593	1.479	1.716	1.930	1.660	9%
		SH	0.096	0.099	0.102	0.146	0.156	0.120	21%

PA: Peak Area; SH: Signal Height