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METHODOLOGY

Evaluation of T-activated proteins as recall 
antigens to monitor Epstein–Barr virus 
and human cytomegalovirus-specific T cells 
in a clinical trial setting
Nina Körber1* , Uta Behrends2,3,4, Ulrike Protzer1,4 and Tanja Bauer1,4

Abstract 

Background: Pools of overlapping synthetic peptides are routinely used for ex vivo monitoring of antigen-specific 
T-cell responses. However, it is rather unlikely that these peptides match those resulting from naturally processed 
antigens. T-activated proteins have been described as immunogenic and more natural stimulants, since they have to 
pass through antigen processing and comprise activation of all clinically relevant effector cell populations.

Methods: We performed comparative analysis of numbers and cytokine expression pattern of CD4 and CD8 T cells 
after stimulation with recombinant, urea-formulated T-activated EBV-BZLF1, -EBNA3A, and HCMV-IE1, and -pp65 
proteins or corresponding overlapping peptide pools. Freshly isolated and cryopreserved PBMC of 30 EBV- and 19 
HCMV-seropositive and seven EBV- and HCMV-seronegative subjects were stimulated ex vivo and analysed for IFN-γ, 
TNF and IL-2 production by flow cytometry-based intracellular cytokine staining.

Results: T-activated proteins showed a high specificity of 100% (EBV-BZLF1, HCMV-IE1, and -pp65) and 86% (EBV-
EBNA3A), and a high T-cell stimulatory capacity of 73–95% and 67–95% using freshly isolated and cryopreserved 
PBMC, respectively. The overall CD4 T-cell response rates in both cohorts were comparable after stimulation with 
either T-activated protein or peptide pools with the exception of lower numbers of CD8 T cells detected after stimu-
lation with T-activated EBV-EBNA3A- (p = 0.038) and HCMV-pp65- (p = 0.0006). Overall, the number of detectable 
antigen-specific T cells varied strongly between individuals. Cytokine expression patterns in response to T-activated 
protein and peptide pool-based stimulation were similar for CD4, but significantly different for CD8 T-cell responses.

Conclusion: EBV and HCMV-derived T-activated proteins represent innovative, highly specific recall antigens suitable 
for use in immunological endpoint assays to evaluate success or failure in immunotherapy clinical trials (e.g. to assess 
the risk of EBV and/or HCMV reactivation after allogenic hematopoietic stem cell transplantation). T-activated proteins 
could be of particular importance, if an impaired antigen processing (e.g. in a post-transplant setting) must be taken 
into account.

Keywords: EBV, HCMV, T cells, Recall antigens, Immune monitoring, Clinical trials

© The Author(s) 2020. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, 
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and 
the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material 
in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material 
is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the 
permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creat iveco 
mmons .org/licen ses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creat iveco mmons .org/publi cdoma in/
zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Background
Epstein–Barr virus (EBV) and human cytomegalovirus 
(HCMV) are ubiquitous human herpesviruses, which 
establish persistent infections in the human population, 
while maintaining the capacity for reactivation to lytic 
infection [1–3]. Primary infection with EBV and HCMV 
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is in most of the cases asymptomatic, but some individu-
als develop infectious mononucleosis (IM) (EBV) [4, 5] 
or a mononucleosis-like illness (HCMV) [6]. Both, EBV 
and HCMV can cause severe disease in immunocom-
promised individuals in whom the protective antiviral 
T-cell response is diminished [1], e.g. 80% of posttrans-
plant lymphoproliferative disorders are associated with 
EBV infection [7]. EBV infection is also implicated in 
the pathogenesis of several life-threatening or disabling 
malignant and non-malignant human diseases [8], like 
Burkitt and Hodgkin lymphoma [9], nasopharyngeal car-
cinoma [10, 11], as well as autoimmune disorders such as 
multiple sclerosis [12]. Regarding HCMV, a sufficient risk 
stratification for solid organ transplantation is crucial to 
find the adequate dosage of immunosuppression to pre-
vent recurrent HCMV reactivations on the one hand, but 
to avoid graft rejection on the other hand [13–15].

Hence, highly sensitive and validated immune moni-
toring assays are needed to assess the EBV- and HCMV-
specific cell-mediated immunity (CMI) in e.g. transplant 
patients or as an immunological endpoint in immu-
notherapy trials to monitor secondary or exploratory 
immune response endpoints (i.e. to measure vaccine 
immunogenicity or summarize several longitudinal 
immunogenicity responses) and to allow for therapy 
decisions and correlation of assay results with clinical 
outcome. Immunoassays suitable to determine the fre-
quency of antigen-specific CD4 and CD8 T cells (e.g. 
enzyme-linked immunosorbent assay (ELISA), enzyme-
linked immunospot (ELISpot)- and flow cytometry-
based assays) require an antigenic component ideally 
able to (i) reflect the in vivo situation including interac-
tion of antigen presenting cells (APC) and effector cells, 
(ii) ensure highly sensitive monitoring while maintaining 
a high specificity, (iii) induce major histocompatibility 
complex (MHC) class I and II restricted T-cell responses, 
(iv) induce different effector functions, and (v) includ-
ing all clinically relevant immune cells and their dynamic 
interaction.

The choice of immunogenic stimulants for virus-
specific CD8 T-cell monitoring is hampered by the fact 
that CD8 T-cell reactivation requires antigen process-
ing via the natural endogenous class I presentation 
pathway [16]. Exogenous full-length (viral) proteins and 
virus lysates (e.g. HCMV lysate) are usually processed 
by APC via the exogenous antigen processing pathway 
and presented by MHC class II molecules, and there-
fore they can only be used for CD4 T-cell monitoring 
[16]. In contrast, soluble peptides with an appropriate 
length of amino acids (aa), can directly bind to MHC 
class I molecules located on the surface of cells with-
out prior antigen processing [16]. Therefore, most 
immune monitoring approaches are based on the use of 

overlapping synthetic peptide pools (PP), spanning the 
entire aa sequence of the desired viral protein. How-
ever, functionality of APC to capture and process viral 
antigens for MHC class II and I restricted epitope pres-
entation to viral-specific T cells is not considered in 
this approach [16]. Pools of overlapping peptides have 
been used for epitope mapping [17, 18], investigat-
ing T-cell responses in vaccine development [19–21], 
and immunotherapies [22, 23]. The use of PP, however, 
has several drawbacks: commonly used PP contain 
15–20 mers, which is at least for MHC class I restricted 
epitopes a suboptimal length [24, 25]. Additionally, aa 
length of the single peptides as well as the position of 
the T-cell epitope within a peptide can greatly influence 
the assay sensitivity [26]. The high number of peptides 
within one pool may also affect the outcome of T-cell 
monitoring as it is not known to what extent individ-
ual peptides interfere with each other in large pools of 
> 100 peptides [27].

As synthetic peptides can directly bind to MHC mol-
ecules without requiring antigen processing, impaired 
antigen processing and presentation, which may appear 
in certain patient cohorts is not taken into account. This 
is extremely important when dealing with immunocom-
promised patients (e.g. transplant recipients), because it 
is well known that immunosuppressive drugs interfere 
with maturation and functionality of APC [28–31]. PP-
based immune monitoring in such patient cohorts may 
result in an overestimation of responding T cells in vitro, 
probably not reflecting the in  vivo situation in patients 
[32]. These facts suggest that synthetic PP probably do 
not reflect the naturally processed peptide repertoire 
and may be a sub-optimal antigenic component for anti-
viral immune monitoring approaches of certain patient 
cohorts.

Specifically engineered recombinant EBV- and HCMV-
derived T-activated proteins (TP) are protein antigens 
that have been urea-formulated (T-activation technol-
ogy, Lophius Biosciences, Regensburg, Germany) to enter 
the endogenous antigen presentation pathway more 
efficiently [33]. Thus, TP-derived peptides are not only 
presented by MHC class II, but also due to cross-presen-
tation by MHC class I molecules [33]. Due to their natu-
ral antigen processing, TP overcome some limitation of 
PP-based immune monitoring and by activating all clini-
cally relevant immune cell populations they provide an 
innovative antigenic component for different kinds of 
immunoassays [33].

Just recently, it was shown that HCMV-derived IE-1 
and pp65 TP represent suitable stimulants to monitor 
functionality of HCMV-specific immunity [34–36]. How-
ever, a comprehensive comparative study of TP and PP 
induced CMI has not yet been performed.
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The magnitude of virus-specific CD4 and CD8 T-cell 
responses and their diversity (i.e. the cytokine expression 
pattern) are considered significant parameters in evalu-
ating the efficacy of an immune response [37–39]. In 
order to assess suitability and comparability of currently 
used immunogenic stimulants for immune monitoring of 
EBV- and HCMV-reactive T cells in clinical trial settings 
(e.g. to assess EBV- and/or HCMV-specific cell medi-
ated immunity after solid organ or allogenic hematopoi-
etic stem cell transplantation [40, 41]), we determined 
the number and cytokine expression pattern of CD4 and 
CD8 T cells upon stimulation with two EBV- and two 
HCMV-derived TP and their corresponding overlapping 
PP. Further, we determined the specificity of TP and the 
TP- and PP-induced response rates when using different 
specimen material [i.e. freshly isolated versus cryopre-
served peripheral blood mononuclear cells (PBMC)].

Our study provides important insight into the valid-
ity of these new immunogenic virus-specific stimulants 
for endpoint monitoring in immunotherapy trials, con-
firming TP as an innovative tool for antiviral immune 
monitoring. Considering the natural antigen process-
ing pathway is advantageous for immune monitoring of 
immunocompromised patient cohorts, where impaired 
antigen processing needs to be considered.

Materials and methods
The authors acknowledge the concept of the Minimal 
Information About T-cell Assays (MIATA) framework 
[42, 43]. Therefore, detailed information is provided 
as structured in the five modules proposed by MIATA 
(miata proje ct.org/).

The sample
Subjects
Peripheral blood was taken by venepuncture from 37 
healthy donors (25 women, 12 men; mean age: 38 years) 
with the approval of the local ethic committee (School 
of Medicine, Technical University of Munich). Informed 
consent was obtained from all participating subjects prior 
to their inclusion. Donors were either HCMV- (n = 19) 
and/or EBV-seropositive (n = 30) or -seronegative (n = 7) 
as determined by pre-testing with a diagnostic assay 
(ELISA for EBV-/HCMV-serostatus and EBV-Immuno-
blot). Additional testing showed that none of the EBV-
seropositive subjects had an EBV primary infection or 
reactivation status at the day of venepuncture, indicated 
by absence of detectable EBV VCA IgM.

Isolation and cryoconservation of PBMC
Within 4  h after collection of heparinized whole blood 
human PBMC were separated by Ficoll density gradient 
(human Pancoll, PAN-BIOTECH, Aidenbach, Germany) 

as described previously [44]. The median PBMC number 
obtained per mL whole blood was 1.95 × 106 PBMC with 
a median viability of 96%. PBMC were either directly 
used for flow cytometry-based intracellular cytokine 
staining or frozen at 5 × 106 PBMC per vial in 1.8 mL cry-
otubes (Thermo Scientific, Roskilde, Denmark) in a con-
centration of 1 × 107 PBMC per 1  mL freezing medium 
(fetal calf serum (FCS) (Life Technologies, Darmstadt, 
Germany), supplemented with 10% DMSO (Sigma-
Aldrich, Steinheim, Germany), using a freezing container 
(Mr. Frosty, Thermo Scientific, Roskilde, Denmark) and 
put on − 80  °C. After 24 h PBMC were stored in liquid 
nitrogen until further use.

Thawing and resting of PBMC
PBMC were thawed at 37  °C using RPMI1640 medium 
supplemented with 10% FCS and 1% penicillin–strepto-
mycin (PenStrep, Life Technologies, Invitrogen, Darm-
stadt, Germany) (abbr.: RPMI-10) as described previously 
[44]. Cells were counted with an automated cell counter 
(Vi-cell XR, Beckman Coulter, Krefeld, Germany). The 
median cell recovery after thawing was 4.88 × 106 PBMC 
per vial with a median viability of 94%. For a standard 
resting procedure PBMC were incubated for 18 h at 37 °C 
in a humidified atmosphere at 5%  CO2 in a concentration 
of 2 × 106 PBMC/mL RPMI-10. After resting the median 
cell recovery was 4.2 × 106 PBMC per vial with a median 
viability of 95%.

Flow cytometry‑based intracellular cytokine staining
Stimulatory agents
The following stimulatory agents were used in this study: 
overlapping peptide pools of EBV-BZLF1 (PepMix™ EBV 
(BZLF1), product code: PM-EBV-BZLF1, 59 peptides), 
EBV-EBNA3A (PepMix™ EBV (EBNA3a), product code: 
PM-EBV-EBNA3a, 234 peptides), HCMV-IE1 (PepMix™ 
HCMVA (IE-1), product code: PM-IE1, 120 peptides), 
and HCMV-pp65 (PepMix™ HCMVA (pp65), product 
code: PM-PP65-1, 138 peptides) (JPT Peptide Technolo-
gies, Berlin, Germany), consisting of 15  mers overlap-
ping by 11 aa; recombinant urea-formulated T-activated® 
EBV-BZLF1, EBV-EBNA3A, HCMV-IE1, and HCMV-
pp65 proteins (Lophius Biosciences, Regensburg, Ger-
many). The optimal assay concentration of PP and TP 
was identified in previous titration experiments.

Ex vivo stimulation
1 × 106 viable, freshly isolated or overnight rested PBMC 
were distributed in 150 µL RPMI-10 containing costimu-
latory antibodies to ensure effective T-cell stimulation 
(1  μg/mL anti-CD28; BD Biosciences, Heidelberg, Ger-
many) in one well of a 96-well polypropylene U-bottom 
microtiter plate. Cells were stimulated with PP in a 

http://miataproject.org/
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concentration of 1 µg/mL (EBV and HCMV PP). Stimu-
lation with TP was performed with a concentration of 
10  µg/mL (EBV-BZLF1), 15  µg/mL (EBV-EBNA3A), 
3  µg/mL (HCMV-pp65), and 15.6  µg/mL (HCMV-IE1), 
respectively. A mock stimulated sample was run in par-
allel to define background activity. After 3  h of incuba-
tion at 37  °C in 5%  CO2, 10 μg/mL of secretion blocker 
Brefeldin A (Sigma-Aldrich, Munich, Germany) was 
added to the cell suspension and incubation was carried 
out for additional 4 h at 37  °C in 5%  CO2. After the re-
stimulation period intracellular cytokine staining (ICS) 
was performed.

Intracellular cytokine staining
Following our standard operating procedure (SOP) for 
ICS, re-stimulated PBMC were labelled with the LIVE/
DEAD® Fixable Near-IR Dead Cell Stain Kit (Invitrogen, 
Darmstadt, Germany) for 30 min on ice in the dark and 
washed twice with 200  µL FACS buffer (BD Pharmin-
gen Stain Buffer, BD Biosciences). Afterwards, PBMC 
were fixed and permeabilized for 20  min on ice in the 
dark using 100  µL/well BD Cytofix/Cytoperm Kit (BD 
Biosciences). After two wash steps with 200  µL/well 
Perm/Wash solution (BD Cytofix/Cytoperm Kit; BD 
Biosciences) PBMC were stained intracellularly with the 
antibodies listed in Additional file  1: Table  S1 in a total 
volume of 80  µL Perm/Wash buffer for 30  min on ice 
in the dark. Cells were washed twice and finally re-sus-
pended in 300 µL FACS buffer for acquisition. Cells were 
stored cold and in the dark until acquisition.

Data acquisition
Acquisition of samples was performed within 6  h after 
staining using a LSR2/LSR Fortessa flow cytometer 
equipped with a 96-well plate reader and FACSDiva Soft-
ware V.6.0 (Becton–Dickinson, Heidelberg, Germany). 
Photomultiplier voltages were adjusted with the help 
of unstained cells for all parameters. Analysis was per-
formed on at least 1.5 × 105 living lymphocytes using the 
software FlowJo version 9.7 (Treestar, Ashland, USA).

Gating strategy
Gating strategy for analysis of ex  vivo re-stimulated 
PBMC is shown in Additional file 2: Figure S2. Each gate 
was set in the negative control sample and then adjusted 
to the PP and TP stimulated samples with consideration 
of T-cell receptor downregulation. Two independent 
audits were performed to control the gating. According 
to the differential expression of IFN-γ, TNF, and IL-2 
the CD4 and CD8 T-cell subpopulations were defined, 
respectively.

Data interpretation
After background subtraction, using the software Pestle 
version 1.7 (Mario Roederer, ImmunoTechnology Sec-
tion, VRC/NIAID/NIH, USA), an individual threshold 
level was calculated for each subpopulation. Values less 
than zero can occur in cases where the mock-stimulated 
sample showed more events in a particular functional 
gate than the antigen-stimulated sample. We applied a 
threshold according to a previously published method 
[45]. Positivity thresholds were determined for every 
CD4 and CD8 T-cell subpopulation using the 90th per-
centile cut-off based on the negative values after back-
ground subtraction. This is important for adequate data 
correction since unspecific background decreases with 
the number of positive functions. After threshold appli-
cation all values lower than the respective individual 
threshold level were set to zero. Furthermore, a cut-off 
(assay detection limit) of 0.005% was applied for total 
CD4 and CD8 T-cell responses. Total CD4 and CD8 
T-cell response was calculated by summing up all values 
of subpopulations, which were positive for at least one 
of the cytokines IFN-γ, TNF or IL-2 and their respective 
combinations. Functional composition (cytokine expres-
sion pattern) of responding T cells is shown as pie charts, 
showing the portion of responding T-cell subpopulations 
of the total antigen-specific response according to their 
functionality (mono- to tri-functional) upon stimula-
tion, using SPICE software version 5.3 (Mario Roederer, 
ImmunoTechnology Section, VRC/NIAID/NIH, USA)] 
[45]. Pie arcs show the cytokines produced by the differ-
ent subpopulations upon stimulation. Raw data of all per-
formed assays can be provided upon request.

The IFN‑γ ELISpot assay
IFN-γ ELISpot assays (T-Track® human IFN-γ ELIS-
pot kit  HiSpecificityPRO, Lophius Biosciences, Regens-
burg, Germany) were performed according to the 
manufacturer´s instructions. 2 × 105 PBMC/well were 
plated in a final volume of 150 μL/well and stimulated 
with TP of EBV-BZLF1, EBV-EBNA3A, HCMV-IE1, 
and HCMV-pp65, respectively.

Data acquisition
ELISpot plates were evaluated within 3  days after assay 
performance using an automated reader system (CTL-
ImmunoSpot® S6 Ultra-V Analyzer/CTL ImmunoSpot 
5.4 Professional DC Software, CTL Europe, Bonn, Ger-
many). We followed the guidelines for the automated 
evaluation of ELISpot assays to account for harmoniza-
tion efforts for the ELISpot assay [46]. ELISpot plates 
were scanned with automatically adjusted settings 
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conducted by the reader. Counting of spot forming cells 
(SFC) within ELISpot plates was performed by adjust-
ing the background balance using the automatic Smart 
Count™ programme of the CTL software. Counting was 
performed in compliance with the guidelines for the 
automated evaluation of ELISpot assays [46] and our 
laboratory standard counting parameters consisting of a 
best possible spot separation and a counting mask size 
of 90%. Spot counts were normalized to 100% of the well 
area. All obtained counts were reviewed and certified by 
a second person during a quality control process.

Interpretation of results
Final results are represented as IFN-γ spot forming cells 
(SFC) per 2 × 105 PBMC. Denoted results represent 
background-subtracted data. The median background 
reactivity (spot counts in negative control wells) observed 
within the ELISpot assay was zero spots per well (range 
0–3 SFC/well) in IFN-γ ELISpot assays. Positive reactiv-
ity to experimental stimulatory agents was selected as a 
p-value of equal or smaller than 0.05 when applying the 
distribution free sampling method (DFR(2×)), by using 
a web-based tool (http://www.schar p.org/zoe/runDF R/) 
[47]. In addition, only mean spot counts of at least 11 
SFC/2 × 105 PBMC were regarded as a positive reactivity. 
Raw data of all performed assays can be provided on rea-
sonable request.

Statistical analysis
All results were included in the analysis, as no attempt 
was made to exclude outliers. Concordance with EBV-/
HCMV-serology and specificity were defined as the 
proportion of correctly identified positive and lacking 
T-cell responses in EBV- and/or HCMV-seropositive 
and -seronegative individuals, respectively. All tests 
were two-sided and conducted on exploratory 5% sig-
nificance levels. Effect measures are presented with 
95% confidence intervals. Nonparametric statistical 
tests were applied in all cases. Paired Wilcoxon signed 
rank tests were used to assess significance of change in 
values between experiment conditions. The software 
Graph Pad Prism 5.00 (GraphPad Software, La Jolla, 
California, USA) was used for statistical analyses.

Laboratory environment
Well-trained personnel performed all assays according to 
SOPs. The same individual throughout the course of the 
study performed the assays.

Results
T‑activated EBV‑ and HCMV‑derived proteins assure a high 
specificity for T‑cell assays
First, we examined specificity of T-cell responses against 
EBV-BZLF1, -EBNA3A, HCMV-IE1, and -pp65 TP in a 
cohort of EBV- and HCMV-seronegative donors (n = 7), 
where an absence of a recall response to EBV- and 
HCMV-derived antigens is expected (Additional file  3: 
Table  S3). Determination of T-cell responses against 
EBV-EBNA3A TP revealed a specificity of 86% with 
only 1/7 tested donors showing a low number of anti-
gen-reactive cells (15 IFN-γ SFC/2 × 105 PBMC). No 
antigen-reactive IFN-γ SFC were detectable after EBV-
BZLF1, HCMV-IE1, and HCMV-pp65 TP stimulation in 
the seronegative control groups, denoting a specificity of 
100% of tested TP. To demonstrate the detection of anti-
gen-specific cells within this assay type we additionally 
determined numbers of EBV- and HCMV-reactive IFN-γ 
SFC of donors with confirmed positive EBV- and HCMV-
serostatus, respectively (Additional file 3: Table S3).

These results proved a high specificity of EBV and 
HCMV TP-based immune monitoring and indicated 
these antigens suitable for use in immunological end-
point assays monitoring EBV- and HCMV-specific cellu-
lar immune responses in a clinical trial setting.

T‑activated proteins and peptide pools induce similar 
response rates in ex vivo T‑cell assays
Clinical immune monitoring comprises quantification 
and phenotypic analysis of antigen-reactive T cells to be 
correlated with the clinical outcome. We compared the 
response rates to PP and TP stimulation (i.e. their stimu-
latory capacity) using freshly isolated PBMC of 30 EBV- 
and 19 HCMV-seropositive individuals.

The overall magnitude of EBV- and HCMV-reactive 
CD4 T cells was comparable irrespective of the antigen 
type. Median frequencies of PP- versus TP-reactive CD4 
T cells were 0.026 vs. 0.019% (EBV-BZLF1; p = 0.665), 
0.026 vs. 0.015% (EBV-EBNA3A; p = 0.250), 0.012 vs. 
0.031% (HCMV-IE1; p = 0.058), and 0.089 vs. 0.106% 
(HCMV-pp65; p = 0.080), respectively (Fig.  1a). How-
ever, we observed an intra-individual variation with some 
subjects showing a higher response rate to one of the two 
stimulants (PP or TP) (Additional file 4: Figure S4A).

The overall magnitude of PP- versus TP-induced CD8 
T-cell responses was similar for EBV-BZLF1 (p = 0.060) 
and HCMV-IE1 (p = 0.695), but not for EBV-EBNA3A 
(p = 0.038) and HCMV-pp65 (p = 0.0006) (Fig.  1b). We 
detected median frequencies of PP- versus TP-reactive 

http://www.scharp.org/zoe/runDFR/
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CD8 T cells of 0.047 vs. 0.012% (EBV-BZLF1), 0.038 
vs. 0.074% (EBV-EBNA3A), 0.153 vs. 0.091% (HCMV-
IE1), and 0.448 vs. 0.109% (HCMV-pp65), respectively 
(Fig.  1b). Again we observed striking differences of the 
individual response rates to PP or TP-derived antigenic 
stimulation (Additional file 4: Figure S4B).

T‑activated proteins and peptide pools trigger different 
cytokine expression pattern of EBV‑ and HCMV‑reactive 
CD8 T cells
Next, we compared the cytokine expression pattern (i.e. 
the proportion of antigen-reactive cells secreting only 
one or more cytokines in parallel) of EBV- and HCMV-
reactive CD4 and CD8 T cells upon stimulation of freshly 
isolated PBMC with PP versus TP in 30 EBV- and 19 
HCMV-seropositive individuals.

The overall cytokine expression pattern was similar for 
EBV- and HCMV-reactive CD4 T cells, except for EBV-
EBNA3A-reactive T cells (Fig.  2a). For EBV-EBNA3A-
reactive T cells we determined a significant higher 
proportion of tri-functional CD4 T cells (p = 0.045) upon 
stimulation with the PP compared to stimulation with the 
corresponding TP (Fig. 2a).

Differences in the cytokine expression pattern after PP 
versus TP stimulation were even more pronounced for 
the CD8 T-cell responses with the most striking vari-
ances for EBV-EBNA3A and HCMV-IE1 reactive CD8 
T cells (Fig.  2b). Stimulation with EBV-EBNA3A and 
HCMV-IE1 PP induced significant higher proportions 
of bi- (p = 0.018 and p = 0.0005, respectively) and tri-
functional (p = 0.0001 and p = 0.040, respectively) CD8 
T cells, but lower numbers of mono-functional CD8 
T cells (p < 0.0001 vs. p = 0.002) compared to stimula-
tion with EBV-EBNA3A and HCMV-IE1 TP (Fig.  2b). 
Stimulation with EBV-BZLF1-derived PP revealed sig-
nificant higher numbers of bi-functional CD8 T cells 
(p = 0.042) compared to the TP-based monitoring, what 
we also observed for HCMV-pp65 PP-based stimulation 
(p = 0.005) (Fig. 2b).

In summary, ex  vivo T-cell stimulation using PP and 
TP induced almost similar cytokine expression pattern in 
CD4, but significant distinct cytokine expression pattern 
in antigen-reactive CD8 T cells.

Cryopreservation affects T‑activated protein‑ and peptide 
pool‑induced CD8 but not CD4 T‑cell reactivity
Clinical immune monitoring often requires the use of 
cryopreserved PBMC. To determine whether cryo-
preservation affects the PP- and TP-based monitoring 
differently, we tested freshly isolated and cryopreserved 
PBMC samples of 30 EBV- and 19 HCMV-seropositive 
subjects in each case. Both sample types were stimu-
lated with EBV-BZLF1, EBV-EBNA3A, HCMV-IE1, 

Fig. 1 Frequencies of EBV and HCMV T-activated protein and 
peptide pool-reactive CD4 (a) and CD8 (b) T cells. Depicted are 
the frequencies of antigen-reactive CD4 (a) and CD8 (b) T cells 
upon stimulation of freshly isolated PBMC with EBV-BZLF1 (n = 30), 
EBV-EBNA3A (n = 30), HCMV-IE1 (n = 19), and HCMV-pp65 (n = 19) 
T-activated proteins and the corresponding peptide pools. Dots and 
triangles represent frequencies of antigen-reactive T cells of single 
donors after re-stimulation of PBMC with PP (left, dots) and TP (right, 
triangles), respectively. Frequencies of antigen-reactive T cells were 
calculated as the sum of IFN-γ, TNF, and IL-2 producing CD4 or CD8 T 
cells (defined as total response) expressed as a percentage in relation 
to total CD4 or CD8 T-cell numbers. The horizontal lines indicate the 
medians. Statistical analyses were done with paired Wilcoxon signed 
rank tests. PP peptide pool, TP T-activated protein
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and HCMV-pp65 TP and PP and the frequencies of 
antigen-reactive CD4 and CD8 T cells were analyzed by 
flow cytometry-based ICS (Figs. 3, 4). To determine the 
bias between freshly isolated and cryopreserved PBMC 
the frequencies of antigen-reactive CD4 or CD8 T-cells 
in cryopreserved PBMC was subtracted from that of 
respective freshly isolated PBMC for each donor.

We did not detect significantly different EBV and 
HCMV TP-induced CD4 T-cell responses between 
the two samples types (paired Wilcoxon signed rank 
tests) (Fig.  3a). The median difference (fresh minus 
cryopreserved) in TP-reactive CD4 T-cell responses 
was − 0.003% (− 0.223 to 0.731%), − 0.003% (− 0.132 
to 0.262%), 0.007% (− 0.043 to 0.247%), and 0.009% 
(− 0.182 to 1.515%) for EBV-BZLF1, EBV-EBNA3A, 
HCMV-IE1, and HCMV-pp65 re-stimulated PBMC, 
respectively.

By contrast, frequencies of EBV-EBNA3A and 
HCMV-IE1 TP-reactive CD8 T cells were significantly 
higher when using PBMC ex  vivo compared to cryo-
preserved specimen (p = 0.018 and p = 0.010, respec-
tively) (Fig. 3b). In detail, comparison of freshly isolated 
with cryopreserved PBMC revealed median differences 
in TP-reactive CD8 T-cell responses of 0% (− 0.403 to 
0.778%), 0.038% (− 0.695 to 1.942%), 0.088% (− 0.153 
to 3.491%), and 0.063% (− 0.459 to 3.081%) for EBV-
BZLF1, EBV-EBNA3A, HCMV-IE1, and HCMV-pp65 
re-stimulated PBMC, respectively.

We also did not detect significantly different numbers 
of EBV and HCMV PP-reactive CD4 T cells between 
freshly isolated and cryopreserved PBMC (Fig.  4a). 
Here we detected median differences in PP-reactive 
CD4 T-cell responses of freshly isolated vs. cryopre-
served PBMC of 0.001% (− 0.132 to 0.648%), 0.009% 
(− 0.156 to 0.190%), 0.004% (− 0.233 to 0.154%), and 
0.016% (− 0.309 to 1.566%) for EBV-BZLF1, EBV-
EBNA3A, HCMV-IE1, and HCMV-pp65 re-stimulated 
PBMC, respectively.

However, cryopreservation significantly reduced 
the number of detectable EBV-BZLF1 and HCMV-
pp65 PP-reactive CD8 T cells (p = 0.029 and p ≤ 0.001, 
respectively) (Fig. 4b). In detail, comparing freshly iso-
lated with cryopreserved PBMC revealed median differ-
ences in PP-reactive CD8 T-cell responses of − 0.026% 
(− 0.558 to 0.920%), 0.004% (− 0.277 to 0.372%), 0.082% 
(− 0.417 to 3.178%), and 0.175% (− 0.151 to 3.024%) for 
EBV-BZLF1, EBV-EBNA3A, HCMV-IE1, and HCMV-
pp65 re-stimulated PBMC, respectively.

Based on these results, we calculated the overall 
response rates of the two sample types to EBV and 
HCMV TP and PP stimulation (Table  1). Regardless 
of the type of immunogenic stimulant (TP or PP), the 
response rate was higher in most settings when PBMC 

were tested ex vivo. We observed the most striking dif-
ference for HCMV-reactive TP-induced CD8 T-cell 
reactivity in cryopreserved PBMC with a 22% (HCMV-
IE1) and 21% (HCMV-pp65) reduction compared to 
the ex vivo setting (Table 1). Response rates of cryopre-
served PBMC to PP stimulation was a maximum of 7% 
and 10% lower (EBV-BZLF1 and EBV-EBNA3A, respec-
tively) (Table  1). Our data showed that cryopreserved 

Fig. 2 Cytokine expression pattern of EBV- and HCMV-reactive CD4 
(a) and CD8 (b) T cells. Pie charts represent the relative functional 
composition of total EBV- and HCMV-reactive CD4 (a) and CD8 (b) 
T-cell responses upon stimulation of freshly isolated PBMC of 30 
EBV- and 19 HCMV-seropositive individuals with T-activated proteins 
versus the corresponding peptide pools. Each pie slice corresponds 
to the proportion of T cells positive for one, two or three cytokines 
(IFN-γ, TNF, and/or IL-2, respectively) (mono-, bi-, and tri-functional 
T-cell responses, respectively). Individual cytokine expression pattern 
of mono-, bi-, and tri-functional T-cell responses are illustrated by 
the concentric colored arcs surrounding the pie chart. Color codes 
defining the number (slices) and type (arcs) of expressed cytokines 
are indicated in the figure legend. Statistical analyses of differences 
of proportions of mono-, bi-, and tri-functional T-cell responses upon 
stimulation of either PP or TP were done with paired Wilcoxon signed 
rank tests. PP peptide pool, TP T-activated protein. *p < 0.05; **p < 0.01; 
***p < 0.001
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PBMC can be used for a TP-based immune monitoring 
of EBV- and HCMV-reactive CD4 T cells, and for CD8 
T-cell monitoring when taking into account the possi-
ble lower response rates.

Discussion
Monitoring of EBV-/HCMV-specific cell-mediated 
immunity (CMI) is co-decisive for antiviral therapy in 
transplant settings and is often determined as an immu-
nological endpoint in clinical trials [13, 14, 48]. Assess-
ment of HCMV-specific T-cell responses was reported 
to be an adequate tool to decide on the appropriate level 
of immunosuppressive therapy in transplant patients to 
avoid HCMV-reactivation but also graft rejection [14, 15, 
35]. Both approaches require highly sensitive and vali-
dated immunoassays, and optimal antigenic stimulants to 
monitor virus-specific CMI [49].

We hypothesize that T-activated proteins (TP) may 
be superior to commonly used stimulatory viral antigen 
preparations (i.e. overlapping peptide pools, PP), because 
they enable an immune monitoring close to the patients 
in  vivo situation by considering natural antigen pro-
cessing pathways and activation of all clinically relevant 
effector cell populations [34]. TP as stimulatory antigens 
may improve immunological endpoint assays, monitor-
ing virus-specific CMI in a clinical trial setting [35, 36]. 
In this study, we performed comparative analyses of fre-
quencies, phenotype, and cytokine expression pattern of 
T cells stimulated by EBV-BZLF1, -EBNA3A, HCMV-
IE1, and -pp65 TP or the corresponding overlapping PP. 
In addition, we investigated the suitability of TP as anti-
genic component in immunoassays with regard to speci-
ficity and stimulatory capacity.

Currently used stimulatory antigens are mainly full-
length recombinant proteins or corresponding synthetic 
PP [50, 51]. Both are useful in addressing CD4 or CD8 
related T-cell responses, however, PP-based monitoring 
may consider certain key functions of CMI (i.e. antigen 
processing/presentation by APC and the communication 
between immune cells) insufficiently [16]. The debili-
tating influence of immunosuppressive drugs on T-cell 
immunity and APC function has been extensively inves-
tigated [28–31]. Using overlapping PP for detection 

of virus-specific T-cell responses does not necessarily 
require peptide processing by APC [16]. It is known that 
extracellular proteases can trim peptides to an optimal 
length and therefore overcome the natural intracellular 
processing step of viral proteins by APC [16, 52]. Hence, 
a diminished function of APC caused by immunosup-
pressive therapies may not be considered by a PP-based 
immune monitoring approach. In contrast, exogenous 
antigens like whole viral proteins and viral TP, need to 
undergo natural antigen processing pathways and are 
presented by APC [34, 53].

One of our main findings was that the overall magni-
tude of ex  vivo detectable antigen-reactive CD4 T cells 
was comparable, irrespective of the recall antigen con-
firming the usability of TP to monitor frequencies of 
antigen-reactive CD4 T cells. In contrast, we observed 
significant higher median frequencies of EBV-EBNA3A, 
but significant lower median frequencies of HCMV-pp65 
reactive CD8 T cells upon TP vs. PP stimulation. The 
used PP contain 15  mers, which is a suboptimal length 
for MHC class I restricted epitopes [24, 54], whereas 
peptides bound by MHC class II typically range from 12 
to 20 aa in length [55, 56]. The amino acid length of sin-
gle peptides, as well as the position of the T-cell epitope 
within a peptide, can greatly influence results of T-cell 
based immunoassays [26]. Since extracellular proteases 
can trim peptides to a more optimal length fitting MHC 
class I molecules [52], the standard format of 15 mer pep-
tides could represent a good compromise for stimulating 
both CD8 and CD4 T-cell responses and is widely used 
for the monitoring of antigen-reactive CD8 T cells. How-
ever, it is likely, that peptide trimming by proteases may 
result in peptides differing in length other than intracel-
lular processing and that these differently generated pep-
tides address various subsets of memory T cells.

TP are cross-presented to CD8 T cells via MHC class 
I molecules [33]. Thus, immunoassays based on peptides 
resulting either from natural processing (TP) or trim-
ming (PP) may address and activate different subsets of 
virus-specific memory T cells. Indeed, at least our results 
for EBV-EBNA3A and HCMV-pp65 reactive CD8 T cells 
seem to confirm this hypothesis. This is in line with clini-
cal reports, showing that a certain peptide based ex vivo 

(See figure on next page.)
Fig. 3 Within-donor differences of T-activated protein reactive CD4 (a) and CD8 (b) T-cell responses are shown for freshly isolated versus 
cryopreserved PBMC. Depicted are the within-donor differences of detected CD4 (a) and CD8 (b) T-cell responses upon stimulation of freshly 
isolated versus cryopreserved PBMC with T-activated EBV-BZLF1 (n = 30), EBV-EBNA3A (n = 30), HCMV-IE1 (n = 19), and HCMV-pp65 (n = 19) 
proteins. To determine the bias between freshly isolated and cryopreserved PBMC the frequencies of antigen-reactive CD4 (a) or CD8 (b) T cells 
in cryopreserved PBMC was subtracted from that of respective freshly isolated PBMC for each donor. Each triangle represents the respective fresh 
minus cryopreserved difference of CD4 (a) and CD8 (b) TP-reactive T-cell responses of each single donor. Bars represent the median difference of 
antigen-reactive CD4 (a) or CD8 (b) T-cell responses of all tested donors. All statistics are based on paired Wilcoxon signed rank tests. PP peptide 
pool, TP T-activated protein
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monitoring of virus-specific T cells did not correlate with 
the patient´s clinical outcome [32, 57]. EBV-EBNA3A 
and -BZLF1 TP are currently evaluated as one of three 

antigenic components in an ongoing, prospective mul-
ticentre clinical observational study (Munich infectious 
mononucleosis (IMMUC) study). The IMMUC study 
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Fig. 4 Within-donor differences of peptide pool reactive CD4 (a) and CD8 (b) T-cell responses are shown for freshly isolated versus cryopreserved 
PBMC. Depicted are the within-donor differences of detected CD4 (a) and CD8 (b) T-cell responses upon stimulation of freshly isolated versus 
cryopreserved PBMC with peptide pools of EBV-BZLF1 (n = 30), EBV-EBNA3A (n = 30), HCMV-IE1 (n = 19), and HCMV-pp65 (n = 19) proteins. 
To determine the bias between freshly isolated and cryopreserved PBMC the frequencies of antigen-reactive CD4 (a) or CD8 (b) T cells in 
cryopreserved PBMC was subtracted from that of respective freshly isolated PBMC for each donor. Each dot represents the respective fresh 
minus cryopreserved difference of CD4 (a) and CD8 (b) TP-reactive T-cell responses of each single donor. Bars represent the median difference of 
antigen-reactive CD4 (a) or CD8 (b) T-cell responses of all tested donors. All statistics are based on paired Wilcoxon signed rank tests. PP peptide 
pool, TP T-activated protein
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aims at the identification of biomarkers and causative 
factors of complicated and/or protracted EBV-associated 
IM. Correlation analysis of detected EBV TP- and PP-
triggered T-cell responses with serological and clinical 
data will provide data on the clinical relevance of a TP-
based immune monitoring.

Interestingly, for some individuals we determined a 
high T-cell response only upon stimulation with one of 
the two types of antigenic stimulants (either PP or TP), 
which was more pronounced for the CD8 T-cell sub-
set. Based on the differences of individual TP and PP 
processing and trimming, we speculate that on a single 
subject level TP-derived peptides can significantly dif-
fer from the corresponding PP composition. For many 
viral antigens it is yet unknown what proportion of the 
processed peptides is able to trigger immune responses, 
because not all peptides presented on MHC class I or II 
molecules are immunogenic [58]. Profiling of a certain 
viral immunopeptidome by mass spectrometry to iden-
tify MHC ligands and testing of their immunogenicity 
in vivo, as recently shown for vaccinia virus-derived pep-
tide ligands, would promote the selection of optimal anti-
genic stimulants [58].

Another important observation of our study was that 
for all tested EBV- and HCMV-derived antigens, TP and 
PP trigger significantly different cytokine expression pat-
tern of antigen-reactive CD8 T cells, whereas CD4 T-cell 

cytokine expression pattern was only different for EBV-
EBNA3A reactive CD4 T cells. T-cell cytokine profiling 
is often determined by immunological endpoint assays 
monitoring virus-specific T cells in a clinical trial setting 
to identify correlates of protection [13, 37–39, 59, 60]. 
There are first hints that a PP-based immune monitor-
ing cannot predict the clinical outcome in certain patient 
cohorts. Results of a HCMV PP-based CD8 T-cell moni-
toring of patients under corticosteroid therapy do not 
correlate with clinical outcome and monitored CD8 T 
cells do not seem to be protective against viral reactiva-
tion [32]. Also La Rosa et al. did not detect any associa-
tion between HCMV-pp65 and -IE1 PP-triggered T-cell 
responses and HCMV-associated disease and viremia 
in liver transplant patients 3  months after engraftment 
[57]. However, Sester et al. [61] reported of a correlation 
and predictive potential of HCMV-specific CD4 T cells 
with virus control and HCMV-associated disease, using 
HCMV antigen for ex  vivo analysis. This is in line with 
our results showing comparable cytokine expression 
profiles of HCMV-pp65, -IE-1, and EBV-BZLF1 reactive 
CD4 T cells upon stimulation with PP and TP.

Testing the clinical validity (as performed in our cur-
rent IMMUC study for EBV-specific T-cell responses) 
will investigate whether TP-based T-cell cytokine 
profiling is superior in reflecting the in  vivo situa-
tion in patients and is suitable to identify correlates of 
protection.

The evaluation of antigens as stimulatory components 
for T-cell monitoring also includes proving for specificity 
(true negative rate) or presence of cross-reactive T-cell 
responses [44, 50, 62, 63]. We determined a specificity 
of 100% for EBV-BZLF1, HCMV-IE1, and -pp65 TP and 
86% for EBV-EBNA3A TP. T-cell responses against EBV-
EBNA3A detected in one out of seven EBV-seronegative 
individuals does not match necessarily a false positive 
response. Savoldo et  al. [64] reported of EBV-seronega-
tive subjects who had sporadically detectable EBV DNA 
loads and EBV-reactive T cells. They assumed that most 
likely those subjects failed to produce EBV-specific anti-
bodies, but were able to establish EBV-specific memory 
T cells [64]. Existence of heterologous T cells cross-reac-
tivity between EBV and other antigens has already been 
described [65, 66] and may explain the detection of EBV-
EBNA3A reactive T cells in a single EBV-seronegative 
subject. To exclude false positive responses reliably, we 
would recommend determining a positivity cut-off based 
on data of a sufficiently large cohort of individuals seron-
egative for the respective pathogen.

Immunological endpoint assays monitoring anti-
gen-reactive T-cell responses can be performed on 
freshly isolated or cryopreserved specimen. Analysis of 
fresh PBMC, although logistically challenging, is often 

Table 1 Response rates to  EBV and  HCMV T-activated 
proteins and peptide pools

a Reactivity defines the percentage of reactive donors after stimulation of 
freshly or cryopreserved PBMC of EBV- and HCMV-seropositive donors with the 
respective antigens

Antigen PBMC 
specimen

T‑cell 
population

TP‑induced 
reactivity 
(%)a

PP‑induced 
reactivity 
(%)a

EBV-BZLF1 Fresh CD4 87 77

Cryo 77 70

Fresh CD8 73 80

Cryo 67 87

EBV-EBNA3A Fresh CD4 73 87

Cryo 87 77

Fresh CD8 90 87

Cryo 80 77

HCMV-IE1 Fresh CD4 94 89

Cryo 83 83

Fresh CD8 94 100

Cryo 72 94

HCMV-pp65 Fresh CD4 95 100

Cryo 95 100

Fresh CD8 95 95

Cryo 74 100
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preferred because cryopreservation might affect func-
tional and phenotypic properties of cells [67, 68]. Pre-
vious reports showed that cryopreservation has no 
negative influence on the overall percentage of CD4 and 
CD8 T-cell subsets [67] as well as on certain CD4 T-cell 
subpopulations, like naïve (CD4+ CD45RA+ CD95−) 
and activated (CD4+ CD38+ HLA-DR+) CD4 T cells 
[69]. Other T-cell subpopulations, like activated CD8 T 
cells (CD8+ CD38+ HLA-DR+) or memory CD4 T cells 
(CD4+ CD45RO+) were reported to be decreased in 
cryopreserved compared to fresh PBMC [69]. Contradic-
tory data exist on alterations of antigen-specific T-cell 
responses upon cryopreservation [67, 70, 71]. However, 
contradictions might be explained by different sources 
(healthy individuals vs. patients) and processing proce-
dures (freezing/thawing SOPs) of biosamples.

Besides reported changes in the immunophenotype 
and alterations in antigen-specific T-cell responses, 
the usage of cryopreserved PBMC in a central immune 
monitoring unit minimize inter-assay and inter-labora-
tory variation both being well-known problems in many 
multi-centre clinical trials with local sample processing 
[70, 71].

To evaluate the influence of the sample material we 
determined the overall response rates to EBV-BZLF1, 
-EBNA3A, and HCMV-IE1, and -pp65 TP or their cor-
responding overlapping PP with freshly isolated versus 
cryopreserved PBMC in parallel.

With freshly isolated PBMC, we observed a comparable 
high response rate for both TP- and PP-based assay set-
ups. Furthermore, the concordance with HCMV-serology 
of the TP-based assay was in line with previously pub-
lished data on HCMV-specific antigens generated with 
freshly isolated PBMC [35, 36, 50, 72]. For both antigenic 
stimulants, we observed lower response rates when using 
cryopreserved PBMC. Thus, a proportion of TP-reac-
tive T cells will not be considered when using cryopre-
served PBMC, but the same holds true to a lesser extent 
for a PP-based monitoring. One explanation for the 
decreased stimulatory capacity of TP on cryopreserved 
PBMC could be that (cross-) presentation of MHC class 
I restricted peptides implies a fully functional processing 
of proteins by APC, which might be affected in cryopre-
served material [16, 73]. However, based on our results, 
we can rule out a generally impaired APC function due 
to cryopreservation as HCMV-pp65 TP triggered CD4 
T-cell responses in 95% of all tested individuals irrespec-
tive of whether freshly isolated or cryopreserved PBMC 
were used.

Conclusion
Based on our evaluation, we conclude that EBV- and 
HCMV-derived T-activated proteins are suitable anti-
genic components for an ex vivo monitoring of antigen-
reactive CD4 and CD8 T cells and with restrictions also 
when using cryopreserved PBMC.
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