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Abstract
While the past decade has seen meaningful improvements in clinical outcomes for multiple myeloma patients, a subset of
patients does not benefit from current therapeutics for unclear reasons. Many gene expression-based models of risk have
been developed, but each model uses a different combination of genes and often involves assaying many genes making them
difficult to implement. We organized the Multiple Myeloma DREAM Challenge, a crowdsourced effort to develop models
of rapid progression in newly diagnosed myeloma patients and to benchmark these against previously published models.
This effort lead to more robust predictors and found that incorporating specific demographic and clinical features improved
gene expression-based models of high risk. Furthermore, post-challenge analysis identified a novel expression-based risk
marker, PHF19, which has recently been found to have an important biological role in multiple myeloma. Lastly, we show
that a simple four feature predictor composed of age, ISS, and expression of PHF19 and MMSET performs similarly to more
complex models with many more gene expression features included.

Introduction

Multiple myeloma (MM) is a hematological malignancy
of terminally differentiated plasma cells (PCs) that

reside within the bone marrow [1]. It arises as a result of
complex chromosomal translocations or aneuploidy with
~25,000–30,000 patients diagnosed annually in the United
States [2, 3]. The disease’s clinical course depends on a
complex interplay of molecular characteristics of the PCs and
patient socio-demographic factors. While progress has been
made with novel treatments extending the time to disease
progression (and overall survival (OS)) for the majority of
patients, a subset of 15–20% of newly diagnosed MM
patients are characterized by an aggressive disease course
with rapid disease progression and poor OS regardless of
initial treatment [4–6]. Accurately predicting which newly
diagnosed patients are at high risk is critical to designing
studies that will lead to a better understanding of myeloma
progression and facilitate the discovery of novel therapies that
meet the needs of these patients.

To date most MM risk models use patient demographic
data, clinical laboratory results and cytogenetic assays to
predict clinical outcome. High risk defining cytogenetic
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alterations typically include deletion of 17p (del(17p)) and
gain of 1q as well as t(14;16), t(14;20), and most commonly
t(4;14), which leads to juxtaposition of MMSET with the
immunoglobulin heavy chain locus enhancer, resulting in
overexpression of the MMSET oncogene [4]. While cyto-
genetic assays, in particular fluorescence in situ hybridiza-
tion (FISH), are widely available, their risk prediction is
sub-optimal and recently developed classifiers have used
gene expression data to more accurately predict risk [7–9].
To investigate possible improvements to models of newly
diagnosed myeloma progression, we organized the crowd
sourced Multiple Myeloma DREAM Challenge, focusing
on predicting high risk, defined as disease progression or
death prior to 18 months from diagnosis. This benchmark-
ing effort combined eight datasets, four which provided
participants with clinical, cytogenetic, demographic and
gene expression data to facilitate model development (N=
1624), and four hidden, independent data sets (N= 823) for
unbiased validation. Over 800 people participated in this
Challenge, resulting in the submission of 171 predictive
algorithms for objective evaluation. Several models sub-
mitted to the Challenge demonstrated improved accuracy
over existing state-of-the-art, published models.

Analysis of top-performing methods identified high
expression of PHF19, a histone methyltransferase, as the
gene with the strongest association with myeloma progres-
sion, with greater predictive power than the expression level
of the known high-risk gene MMSET. We developed a four-
parameter model using age, ISS, and PHF19 and MMSET
expression that performs as well as more complex models
having many more gene features. Significantly, we showed
that knock down of PHF19 shifts myeloma cell lines into a
less proliferative state. To our knowledge, this is the first
DREAM Challenge to both nominate and experimentally

validate a candidate biomarker and, as such, demonstrates
the biological and clinical impact of crowdsourced efforts.

Methods

Datasets: The Challenge includes five microarray and three
RNA-seq expression datasets, annotated with clinical
characteristics such as gender, age, International Staging
System stage (ISS), and cytogenetics (Table 1) [9–14]. In all
datasets, expression assays were performed on CD138+PCs
isolated from bone marrow aspirates or blood of newly
diagnosed patients. Data were split into training and vali-
dation datasets (Table 1).

Three institutes provided RNA-sequencing data. The
Multiple Myeloma Research Foundation (MMRF) provided
an additional training dataset from its publicly available
CoMMpass study (release IA9). Collaborating with the
Myeloma Genome Project/Dana Farber Cancer Institute
(MGP-DFCI) access was provided to data from their clin-
ical trial where patients were randomized into a standard
treatment arm and an aggressive treatment arm that included
autologous stem cell transplant and high dose therapy [15].
An additional dataset from the Oncology Research Infor-
mation Exchange Network (ORIEN) was made available
through a collaboration with Moffitt Cancer Center and
M2Gen (See Supplementary Information for more details
on datasets).

Assessing model performance

To identify top-performing teams we employed two metrics
to assess the accuracy of submitted models within a given
validation cohort: the integrated area under the curve (iAUC)

Table 1 Data set descriptions.

ISS stage

Study EGA/GEO/Clinical
trial Id

Median PFS Data type 1 2 3 N

Training datasets Masaryk [11] E-MTAB-4032 11.35 Expression array 0.27 0.31 0.42 147

MAQC-II [10, 14] GSE24080 25.47 Expression array 0.53 0.26 0.21 559

MMRF IA9 [31] NCT01454297 12.59 RNA-seq 0.35 0.37 0.28 636

HOVON65/GMMG-HD4
[9, 32, 33]

GSE19784 18.3 Expression array 0.43 0.27 0.31 282

Total training 1624

Validation datasets MRC-IX [12, 32–35] GSE15695 * Expression array * * * 241

Heidelberg [36, 37] E-MTAB-372 * Expression array * * * 215

Moffitt * RNA-seq * * * 74

DFCI NCT01191060 * RNA-seq * * * 293

Total validation 823

*clinical data withheld per data provider request.
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and balanced accuracy curve (BAC). While the AUC is a
widely accepted metric of prediction accuracy, it is sensitive
to the specific time threshold used to differentiate high and
low patient risk. The myeloma research community has not
yet reached a consensus on the time point that best separates
patients into risk groups, though there is a general agreement
that it lies between 1 and 2 years for progression-free survival
(PFS). We, therefore, chose the iAUC “centered” on
18 months as a more robust primary metric. The iAUC range
began 6 months prior to 18 months and continued to 6 months
past with a sliding PFS threshold moving from12 to
24 months at weekly increments. iAUCs computed in each
validation cohort were combined into a weighted average
(wiAUC) with each cohort iAUC weighted by the square of
the number of high-risk patients in order to ensure larger
studies with more high-risk patients did not overwhelm
smaller studies while still weighting them more heavily.

Using the wiAUC we computed the Bayes factor, K, to
identify statistically tied top-performing predictors (see
Supplemental Methods). Predictors with Kp < 3 are con-
sidered tied with the top-scoring model and the weighted
BAC (wBAC) was used as a tie-breaking metric in order to
determine the final top-performing model, with weighting
by the square of the number of high-risk patients in each
dataset (see Supplemental text).

In vitro studies for functional assessment of PHF19

Studies to determine the functional importance of PHF19
were performed using standard assays and are described in
the Supplemental text. In brief, tetracycline-inducible short
hairpin RNA (TRIPZ shRNA) was used to knockdown
(KD) PHF19 expression in two MM cell lines (JJN3 and
ARP1). A non-silencing scrambled TRIPZ shRNA was
used as a control. PHF19 KD after doxycycline induction

was measured by quantitative real-time polymerase chain
reaction (qRT-PCR) and western blotting. Cell viability
(Cell Titer Blue, Promega), cell cycle (Vybrant DyeCycle
Stain, Thermo Scientific) and apoptosis (Annexin V, Bio-
legend) were assessed and differences between the PHF19
KD cells and control group were analyzed.

Results

Top Challenge models outperform baseline and
published myeloma predictors

To develop and assess prognostic models of high risk in
MM, we assembled eight data sets totaling 2447 patients
annotated with OS and PFS (Table 1). We asked partici-
pants to predict whether a patient was high risk as defined as
disease progression or death prior between 12–24 months
since diagnosis (see Methods). Participants developed
prognostic models using clinical features (e.g., age, sex,
ISS, and cytogenetic features) and gene expression utilizing
four training datasets. Challenge participants submitted
models to be evaluated against four blinded validation
cohorts (Fig. 1, Table 1, see Supplemental text). Model
predictions were benchmarked against each other and
comparator models (Table 2, Supplemental Table 1) using
weighted-integrated AUC (wiAUC), with statistical ties
resolved using weighted balanced accuracy (wBAC) (see
Methods and Supplemental text).

Of 42 finalized models submitted to the Challenge, 11
exceeded the performance of the age plus ISS baseline
model (Fig. 2, wiAUC= 0.6207). The top-performing
predictor, developed by researchers at the Genome Insti-
tute of Singapore (GIS), outperformed all Challenge parti-
cipant models (wiAUC= 0.6721) as well as the published
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comparator models UAMS-70 (wiAUC= 0.6414) and
EMC-92 (wiAUC= 0.6042, Fig. 2).

Combining clinical features and gene expression
features improves myeloma risk prediction accuracy

After the Challenge submission period ended, Challenge
organizers and top-performing teams assessed which features
had the largest impact on model performance. ISS was the
most important model feature in GIS’s top-performing model
as measured by the mean decrease in Gini coefficient (see

Methods). A DNA repair signature previously associated with
poor prognosis [16] was the second most important feature,
while age ranked third (Supplemental Fig. 1).

To assess whether age and/or ISS explained the differ-
ence in model performance between the top-performing
model and published comparator models, we extended
the UAMS-70 [7] and EMC-92 [17] models to include age
and/or ISS and assessed their performance (Fig. 2; see
Supplemental Methods). The addition of these clinical
features improved performance of both published models:
EMC-92 wiAUC= from 0.6042 vs. EMC-92+ age+ ISS
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Fig. 2 Challenge performance. a Box plots show distributions of
bootstrapped model performances for each team. Comparator models
are shown with text marked in blue for baseline models, green for
published models and red for published models extended to include
clinical features. The dashed red line indicates the median of the best
performing comparator model. Barplots to the right show the

tie-breaking metric, wBAC, for each model. Amongst statistically tied
models, GIS has the highest wBAC and was declared the top-
performer. Asterisk indicates internal collaborator’s comparator model.
b Kaplan–Meier curve of UAMS-70 comparator model with and
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Table 2 Comparator modes.
Model Reference Features

Baseline Baseline Age and/or ISS

UAMS-70 Shaughnessy et al. [7] Gene expression signature composed of 70 genes

EMC-92 Kuiper et al. [17] Gene expression signature composed of 92 genes

UAMS-70 extended This manuscript UAMS-70 with age and/or ISS

EMC-92 extended This manuscript EMC-92 with age and/or ISS

REFS This manuscript Gene expression and clinical features

M. J. Mason et al.



wiAUC= 0.658 and UAMS-70 wiAUC= 0.6414 vs.
UAMS-70+ ISS wiAUC= 0.6667 as has been suggested
previously [13]. Adding ISS to the UAMS-70 model
improved its accuracy such that it was tied with the top-
performing model (i.e., its Bayes factor K < 3; Fig. 2a, b).

Top-performing Challenge methods identify PHF19
as a novel myeloma high-risk biomarker

The top-performing model implemented a wisdom of the
crowd approach, utilizing clinical features and published
myeloma signatures that summarize the expression of gene
sets. The second-place “Stanford University Go” (SUGO)
model instead included individual genes as features, utilizing
a univariate-based feature selection approach to identify genes
to include in their model. In each of the four training datasets
the SUGO team computed each gene’s effect size, z, via the
concordance index between OS and the gene’s expression.
These effect sizes were combined across training sets using
Stouffer’s method [18] without weighting to yield a single
meta-z per gene. The meta concordance index was calculated
using two expression normalization procedures, with one
nominating PHF19 as the most important gene and the sec-
ond identifying CDKN3 (See Supplemental Methods).

We replicated SUGO’s feature selection approach in
both the training and validation expression datasets. We
used the primary end point, PFS, in place of OS when
computing each gene’s concordance index given that more
patients will progress than die, which results in increased
statistical power. We also weighted studies according to
their number of high-risk patients when applying Stouffer’s
method. This univariate analysis found that previously
described myeloma risk genes MMSET and CKS1B as well
as many proliferation genes had large values in the tail of
the meta-z distribution (Fig. 3a and Supplemental Table 2),
validating this approach. The meta-z values of these genes

and all other genes were surpassed by PHF19, the top-
ranked gene regardless of normalization procedure (not
shown) in both the training and validation datasets (Fig. 3a).

Incorporating PHF19 and MMSET expression with
age and ISS identifies a simple model of high-risk
MM

Given that both PHF19 and MMSET are histone modifiers
playing a role in H3K36 methylation we checked whether
their expression is correlated. As has previously been
shown, MMSET expression is clearly affected by the t(4;14)
translocation with the immunoglobulin enhancer driving
high MMSET expression, while expression of PHF19 is not
associated with the t(4;14) translocation (Fig. 3b). However,
subsetting by t(4;14) reveals a modest linear relationship
between MMSET and PHF19 expression in samples lacking
the translocation (r= 0.423) while there is no such rela-
tionship in the t(4;14) positive samples (r=−0.067). We
also found that higher PHF19 expression was associated
with multiple high-risk genetic factors such as IGH trans-
location groups, non-hyperdiploidy, TP53 mutations and
the overall number of drivers per sample (p < 0.001, Sup-
plemental Fig. 2).

Given the impact of PHF19 on model performance and
MMSET’s status as a reported myeloma risk marker, we
checked to see if a Cox proportional-hazards model com-
posed of age, ISS, PHF19 and MMSET could perform as
well as a similar model using the features of the top-
performing extended comparator model (UAMS-70 plus
age plus ISS). We constructed Cox proportional-hazards
models of the two feature sets and found that the four-
parameter model (wiAUC= 0.693, Supplemental Table 3)
out-performed the UAMS-70-based model in the validation
cohort (wiAUC= 0.667; Fig. 3c) placing it on par with the
winning algorithm.

Fig. 3 PHF19 compared with other myeloma classifiers and fea-
tures. a Two-dimensional histogram of PFS concordance index-based
univariate effect sizes (z) in training and validation cohorts where
colors represent the number of genes in a given hexagonal bin. PHF19

and well-known myeloma genes noted. b PHF19 and MMSET
expression in relation to t(4;14). c A simple four feature model per-
forms as well as UAMS-70 combined with age and ISS.

Multiple Myeloma DREAM Challenge reveals epigenetic regulator PHF19 as marker of aggressive disease



Knockdown of PHF19 leads to decreased
proliferation through cell cycle arrest in multiple
myeloma cell lines

To determine whether PHF19 is functionally important for
the malignant growth of MM cells, we used lenti viral-
expressed shRNA directed against PHF19. We transduced
JJN3 and ARP1 MM cell lines with a shRNA targeting
PHF19 or a scrambled control shRNA and selected out
transduced cells. shRNA induced cells showed KD of >90%
PHF19 RNA and protein relative to the control after 72 h and
168 h for the JJN3 and ARP1 cell lines, respectively (Fig. 4a,
b). KD of PHF19 led to significant inhibition of proliferation
in the JJN3 and ARP1 MM cell lines compared with
scrambled shRNA control (Fig. 4c, d) confirming the recent
finding of PHF19’s effect on proliferation in MM cell lines
[19]. To identify the mechanism of growth inhibition, we
performed cell cycle analysis and observed a significant arrest
of MM cells in the G0/G1 stage with PHF19 KD compared
with the scrambled control shRNA (Supplemental Fig. 3a).
This was seen consistently in both cell lines examined
(Supplemental Fig. 3b). We further investigated the effect of
PHF19 KD on apoptosis and necrosis, but did not find sig-
nificant differences at the examined time points (Supple-
mental Fig. 3c–e). These results demonstrate that PHF19 is
functionally relevant in MM and that reduction of PHF19
leads to a decrease in cell proliferation via cell cycle arrest.

Discussion

In the course of the crowd sourced Multiple Myeloma
DREAM Challenge we benchmarked 171 prediction mod-
els and found that the accuracy of gene expression-based

models benefited from the addition of clinical data, speci-
fically: age and ISS improved AUC-based metrics by ~6%.
As such, expression-based patient stratification efforts
should incorporate age and ISS.

In addition, we show for the first time that expression of
PHF19 is a stronger predictor of MM progression than the
expression level of the high-risk marker MMSET, which is
particularly overexpressed in patients with the high-risk
translocation t(4;14). This strong association was likely
missed in earlier studies given that PHF19 expression is not
associated with any specific cytogenetic feature while sev-
eral therapeutic advances over the last 20 years have made it
difficult to model outcome across multiple studies from
different periods. Furthermore, PHF19 has not been found
to be significantly mutated in sequencing-based studies
[20, 21], suggesting that its overexpression is not directly
related to genomic alterations within the PHF19 gene. We
also show that a simple four feature predictor composed of
age, ISS, and expression of PHF19 and MMSET performs
similarly to more complex models that are based on RNA-
seq and gene expression analysis, which have been difficult
to implement into the clinical setting (Supplemental Fig. 4).
In contrast, the quantitative expression of PHF19 and
MMSET could be easily measured by readily available
methods such as real-time PCR, suggesting that the sim-
plicity of the current model could be more easily adopted in
a general clinical setting.

Apart from its prognostic value, we show that PHF19
has functional importance in MM. KD of PHF19 led to a
significant reduction of growth and cell cycle arrest ex vivo,
suggesting that PHF19 may play a role in transitioning cells
into a highly proliferative state in MM. PHF19 has been
shown to be a major modulator of histone methylation
thereby regulating transcriptional chromatin activity [22]

Fig. 4 PHF19 knockdown leads to decreased cell: knockdown of
PHF19 was performed in the JJN3 and ARP1 MM cell lines using
inducible shRNA. a PHF19 knockdown, relative to scrambled
shRNA control, was confirmed using qRT-PCR and b western

blotting. c, d Cell proliferation was significantly decreased in MM
cells with PHF19 knockdown compared with scrambled control for
JJN3 and ARP1 cell lines.

M. J. Mason et al.



with a known role in B-cell differentiation into plasma cells
within the germinal center [23, 24]. PHF19 directly recruits
the polycomb repressive complex 2 (PRC2) via binding to
H3K36me3 and leads to activation of enhancer of zeste
homolog 1 and 2 (EZH1/EZH2) as enzymatic subunits of
PRC2, thereby resulting in tri-methylation of H3K27
[25, 26]. This process has been shown to enforce gene
repression and is known to promote tumor growth in a
variety of cancers [27]. While MMSET has also been shown
to regulate histone methylation, its role as an epigenetic
modulator is less well understood. Some reports have sug-
gested that MMSET leads to transcriptional repression
through generation of H4K20me [28], H3K27me3 [29] or
H3K36me3 [29], while other studies show that MMSET
enhances transcription through generation of H4K20me2
[30] and H3K36me2 [29]. In contrast to MMSET, PHF19
expression is present in all MM subgroups and is pre-
ferentially overexpressed in high-risk MM. These results are
indicative of a strong correlation between increased histone
methylation, in particular H3k27 trimethylation, and disease
aggressiveness. Further work will be necessary to elucidate
the mechanisms of PHF19 in MM biology and any inter-
play with MMSET.
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Supplemental Figure Legends

Supplemental Figure 1, Feature selection in  GIS’s top performing model: Mean decrease in

Gini coefficient from a random forest classifier was used to determine feature importance of

public  classifiers  and  clinical  measures.  Blue  indicates  features  that  were  then  included  in

penalized classifier.
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Supplemental  Figure  2,  MMRF  PHF19  expression  related  to  sequence-based  cytogenetic:

translocation groups and hyperdiploidy, TP53 mutations and the overall number of drivers as

defined in Walker et al 2018 Blood(20). Significance was determined by ANOVA or t-tests. For

IGH translocations, p = 0.5662 when samples lacking translocations are omitted.

Supplemental  Figure  3,  Assessment  of  the effect  of  PHF19  Knock down on cell  cycle and

apoptosis in JNN3 and ARP1 cell lines:  A) Representative density plot of the JJN3 cell line

shows increased amount of  cells  in the G0/G1 stage after  PHF19 knockdown compared to

scrambled control. B) Repeated PHF19 knock down experiments in JJN3 cell line (5 control and

5 KD)  and ARP1 cell line (4 control and 4 KD) demonstrate significantly increased G0/G1 cell

cycle arrest after. Significance assessed by the t-test of a PHF KD indicator coefficient in a

linear regression model (M-G2% ~ cell  line + PHF19 KD   p-value calculated by  PHF19KD

coefficient).  The  model  included  cell  line  to  control  for  its  effect  on  cell  cycle.  Analysis  of

apoptosis/necrosis with annexin V/DAPI in JJN3 and ARP1 cells transfected with scrambled

control or PHF19 KD shRNAs did not show any significant difference between the control and

PHF19 KD groups. Panel C shows FACS contour plots of 1 representative experiment. Panel D

and E show the mean +/- SD of 3 independent experiments in JJN3 (D) and ARP1 (E) cells. 

Supplemental Figure  4, Predictions from simple four feature classifier are similar to UAMS-70

extended  predictions:  continuous  prediction  scores  from  the  UAMS-70  model  extended  to

include  age  and  ISS  show  a  strong  linear  relationship  with  prediction  scores  from  the

age+ISS+PHF19+MMSET model in all four validation cohorts.
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