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ABSTRACT

Objective: Fasting regimens can promote health, mitigate chronic immunological disorders, and improve age-related pathophysiological pa-
rameters in animals and humans. Several ongoing clinical trials are using fasting as a potential therapy for various conditions. Fasting alters
metabolism by acting as a reset for energy homeostasis, but the molecular mechanisms underlying the beneficial effects of short-term fasting
(STF) are not well understood, particularly at the systems or multiorgan level.

Methods: We performed RNA-sequencing in nine organs from mice fed ad /ibitum (0 h) or subjected to fasting five times (2—22 h). We applied a
combination of multivariate analysis, differential expression analysis, gene ontology, and network analysis for an in-depth understanding of the
multiorgan transcriptome. We used literature mining solutions, LitLab™ and Gene Retriever™, to identify the biological and biochemical terms
significantly associated with our experimental gene set, which provided additional support and meaning to the experimentally derived gene and
inferred protein data.

Results: We cataloged the transcriptional dynamics within and between organs during STF and discovered differential temporal effects of STF
among organs. Using gene ontology enrichment analysis, we identified an organ network sharing 37 common biological pathways perturbed by
STF. This network incorporates the brain, liver, interscapular brown adipose tissue, and posterior-subcutaneous white adipose tissue; hence, we
named it the brain-liver-fats organ network. Using Reactome pathways analysis, we identified the immune system, dominated by T cell regulation
processes, as a central and prominent target of systemic modulations during STF in this organ network. The changes we identified in specific
immune components point to the priming of adaptive immunity and parallel the fine-tuning of innate immune signaling.

Conclusions: Our study provides a comprehensive multiorgan transcriptomic profiling of mice subjected to multiple periods of STF and provides

new insights into the molecular modulators involved in the systemic immunotranscriptomic changes that occur during short-term energy loss.
© 2020 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. INTRODUCTION short-term fasting (STF) and, in humans, fasts lasting more than 48 h

[1]. These various forms of reduction in food consumption have many
Dietary restriction refers to an intervention that ranges from a chronic  beneficial effects on health, including weight reduction, amelioration of
but minor reduction in calorie intake to periods of repeated cycles of autoimmune diseases, and increased lifespan [2,3]. In line with this, a
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Abbreviations FDR false discovery rate

DEGs differentially expressed genes
STF Short-term fasting FC fold change
0B olfactory bulb log2FC log2 fold change
BRN brain GO Gene Ontology
CBL cerebellum subcDEGs subclustered DEGs
BST brainstem Littab™  Acumenta Literature Lab
STM stomach MeSH medical subject headings
LIv liver GH growth hormone
iBAT interscapular brown adipose tissue IGF insulin-like growth factors
PgWAT perigonadal white adipose tissue BDNF brain-derived neurotropic factor
pSWAT posterior-subcutaneous white adipose tissue NE norepinephrine
HVG highly variable genes MGl Mouse Genome Informatics
log2(x+1) NC normalized log2 expression values CR caloric restriction
HCA hierarchical clustering analysis

triad of recent studies demonstrated the ability of different forms of
fasting to alter the levels and functions of the various immune cell
types [4—6]. The interest and applicability of utilizing fasting to treat
various conditions are as such that they have recently generated
momentum for clinical trials [7—9].

The advent of high-throughput omics facilitated the elucidation of
some of the cellular and molecular mechanisms underlying the
beneficial effects of fasting. Nonetheless, the majority of these studies
have focused on single organ response (i.e., the liver) and have less
often involved two or three organs [10—16]. The adaptation to energy
deprivation, however, requires a multiorgan integration of metabolic
modulations to protect the organism from an irreversible loss of re-
sources [17]. In mice, disturbance of normal eating patterns alters
metabolism systemically [18]. A recent study described the interorgan
coordination of adaptive responses to various periods of fasting (0—
72 h) in mice; however, the transcriptomic changes characterized in
the four tissues applied mainly to states of starvation and are limited by
the depth offered by microarrays [19]. Another recent multiomics
approach also presented similar limitations [20]. Thus, despite this
progress, a multiorgan or systemic study of the transcriptional dy-
namics underlying fasting has not been performed.

In this study, we profiled transcriptomic responses to periods of STF
(2—22 h) in nine mouse organs. Using a combination of data-driven
and semantic similarity clustering approaches, we discovered the
presence of a brain-liver-fats organ network, conserved in their
enriched biological processes perturbed by STF. The organ network
recapitulated numerous reported physiological/molecular changes
associated with various forms of fasting. In summary, we provide a
multiorgan atlas of the known and novel molecular mediators of the
systemic effects of short-term energy loss in mice.

2. MATERIAL AND METHODS

2.1. Mice and STF experiments

All animals used in this study were adult (8—9 weeks of age) C57BI/
6J males, group-housed since birth at the animal facility of the
Wellcome Sanger Institute. Mice were kept on a 12:12 h light:dark
schedule, with lights on at 07:30 (zeitgeber time 0, or ZT0). For the
STF experiment, mice (n = 3 per time point) fasted for 2 (ZT11.5), 8
(ZT5.5), 12 (ZT1.5), 18 (ZT19.5), or 22 h (ZT15.5), and the control
group (i.e., 0 h or ZT13.5) was fed ad libitum (Figure 1A). All mice
had access to water throughout the assay. All animals were sacri-
ficed by cervical dislocation after the start of the dark cycle (between
21:00 and 21:30, or ZT13.5—14). The following nine organs were

collected and processed for mRNA-seq: olfactory bulb (OB), brain
(BRN, which includes the telencephalon and diencephalon), cere-
bellum (CBL), brainstem (BST, which comprises the mesencephalon,
pons, and myelencephalon), stomach (STM), liver (LIV), interscapular
brown adipose tissue (iBAT), perigonadal white adipose tissue
(pgWAT), and posterior-subcutaneous white adipose tissue (psWAT).
The organs were immediately frozen and kept at —80 °C until
further processing.

2.2. RNA extraction and RNA-sequencing

Organs (OB, BRN, CBL, BST, STM, LIV, and iBAT) were homogenized in
Lysis RLT Buffer (Qiagen) supplemented with 1% [B-mercaptoethanol
(Sigma—Aldrich) by using the OMNI tissue homogenizer (OMNI Inter-
national). Homogenized organ lysates were then loaded onto the
QlAshredder homogenizer spin columns (Qiagen) for further homog-
enization and elimination of insoluble debris. Total RNA was extracted
by using the RNeasy Mini Kit (Qiagen), according to the manufacturer’s
protocol. White adipose tissues (pgWAT and psWAT) were homoge-
nized in Qiazol (Qiagen) and RNA extracted with the Lipid RNeasy Lipid
Tissue Mini Kit (Qiagen). mRNA was prepared for sequencing by using
the TruSeq stranded mRNA sample preparation kit (lllumina), with a
selected insert size of 120—210 bp. All samples were sequenced on
an lllumina HiSeq 4000, generating paired-end 150 bp sequencing
reads, and had an average depth of 39.98 + 1.05 (SEM) million reads
(Additional file 2: Table S1).

2.3. Short reads alignment to reference genome and transcriptome

The quality of the reads was assessed by using FastQC (KBase).
Sample Fastq files were aligned to the mouse reference genome
mm10/GRCm38.p5 by using TopHat2 [21] with two mismatches
allowed. Reads were retained only if uniquely mapped to the genome.
We used HTSeg-count (0.9.1, -t exon and —m union) to obtain the
number of reads mapped to each gene in Gencode M16. Bigwig files
were generated from bam files for visualization by using RSeQC [22].

2.4. Pre-processing

The schematic of the bioinformatic workflow is presented in Additional
file 1: Fig. S1. Before the analysis, the mapped read counts were
filtered for annotated genes by using org.Mm.eg.db [23]. A count of a
per million threshold equivalent to ~10 raw expression value was
applied to remove all lowly expressed genes, and only genes having >
3 samples above the threshold were kept. Samples with total reads
lower than two standard deviations from the organ means were
removed.
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Figure 1: Transcriptomic profiling of multiple organs in the fasted mice.
A) Schematic view of the experimental design for the five different short-term fasting
(STF) durations. The fasting starting times are indicated by the red bars (0, 2, 8, 12, 18,
and 22 h), along with the corresponding Zeitgeber times (ZT). The fed ad libitum
condition is shown by the beige bars. The time of organ collection from male C57BI/6J
mice (n = 3 per time point) is represented by the grey-shaded area. Periods of light-on
and light-off are represented by the white and black bars, respectively. B) Principal
component (PC) analysis of the 9420 expressed genes in all samples. Each dot rep-
resents the gene expression profile of an organ (indicated by the color) at a specific
time point. Percentages of the variance explained by the PCs are indicated in paren-
theses. C) Hierarchical clustering analysis on the union of the top 100 highly expressed
genes (rows) among all organs (columns). Median mRNA expression levels are rep-
resented on a log, (x+1) scale of normalized counts (NC) (0 - not expressed; 20 -
highly expressed). Organ abbreviations: OB - olfactory bulb, BRN - brain, CBL - cer-
ebellum, BST - brainstem, STM - stomach, LIV - liver, iBAT - interscapular brown
adipose tissue, pgWAT - perigonadal white adipose tissue, and psWAT - posterior-
subcutaneous white adipose tissue.

2.5. Clustering group calls and bootstrap validations for the fasting
phases

Highly variable genes (HVGs) were queried from normalized log,
expression values (logo (x+1) NC) of the preprocessed datasets as
informative genes and were used for the data-driven clustering calls.
Briefly, we calculated the gene-specific variance and regressed against
its mean log-expression value and applied a false discovery rate
(FDR) < 0.05 to denote significance, which resulted in between 824
and 1190 HVGs per organ. Spearman’s rho was then used to calculate
the correlation distance matrix among these genes in each organ:

I
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dist = sqrt(0.5* (1 — Spearman's Rho))

To determine the optimal number of clusters, hierarchical
clustering (method = complete) was performed on the correlation
distance matrixes of the HVGs and bootstrapped to 5000 itera-
tions. A bootstrap mean cutoff ( > 0.65) was used to determine
the significance of the cluster fit, and any clusters not fulfilling
the criteria were grouped with the previous node. A cluster size
of three was found to be optimal for most organs, which we
designated as fasting Phases I, Il, and Il (Additional file 3:
Table S2).

2.6. Determining the differentially expressed genes (DEGS)

The DEseq2 package was used to determine DEGs for all possible
pairwise comparisons within each organ. We used two methods to
determine DEGs: a pairwise manner between each time point against
zero (data not shown), and a pairwise manner between the afore-
mentioned Phases. The samples populating each Phase in each or-
gan are summarized in Figure 2A. Genes were considered
differentially expressed if they had a log,FC > 1.0 and FDR <0.05.
All DEGs for the Phase comparison are provided in Additional file 4:
Table S3—the columns contain the following data: baseMean cor-
responds to the mean normalized expression value for the gene
across all samples; /log2FoldChange is the fold change (FC) between
the two groups tested, log2 transformed; /fcSE corresponds to the
standard error associated with the FC estimation; stat is the Wald
statistic; p value is the p value of the test; and padj is the p value
after adjusting for multiple testing (Benjamini-Hochberg). For organs
yielding >500 DEGs across all possible pairwise Phase comparisons,
we kept only the top and bottom 12.5% ranked DEGs (filtered DEGs)
to focus our downstream analyses on the genes displaying the
highest variation (Fig. S4b).

2.7. Gene ontology (GO) enrichment analysis

Several strategies were used to perform the gene functional enrich-
ment analysis to maximize annotation coverage and to provide
meaningful interpretations for the DEGs. Briefly, the filtered DEGs (see
above) from each organ were submitted, as a single gene set, to query
for Mus musculus GO terms associated with biological processes by
using the following algorithms and databases: the gene over-
representation test (enrichGO) and gene set enrichment analysis,
both of which are provided by ClusterProfiler [24], and the Database for
Annotation, Visualization, and Integrated Discovery (DAVID, [25]). The
minimal gene set size was set at three, and an FDR<0.05 cutoff was
set for significance. When applicable, the number of permutations was
set at 1000. To manage the output size, a cutoff of 150 GO terms,
ranked by FDR, was implemented. All GO enrichment results were
semantically reduced by using REVIGO, with a dispensability threshold
set at <0.4 [26].

2.8. Functional re-clustering of DEGs - subcDEGs

From the filtered DEGs obtained from all pairwise Phase comparisons,
semantic similarity measures were calculated to determine the gene
function-based clusters in each organ [27]. The optimal numbers of
clusters were determined by using dynamicTreeCut with deepSplit =0
[91]. The gene function-based clusters of DEGs are referred to as the
subclustered DEGs (subcDEGs). The subcDEGS were then re-
submitted for GO enrichment analysis and reduced for term redun-
dancy as described. subcDEGS that did not yield GO enrichment were
excluded from downstream analysis (Additional file 6: Table S5).

MOLECULAR METABOLISM 40 (2020) 101038 © 2020 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). 3

www.molecularmetabolism.com


http://creativecommons.org/licenses/by/4.0/
http://www.molecularmetabolism.com

Original Article

A Phases of fasting vary among organs B DEGs per Phase
comparison
Animal# 1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 4000
os [ I[ 1 | OB
BRN [ [ 10 ] BRN ®
ceL [ T ] CBL %
BST [l |l [ | - o
sT™ [EE]_| e [ o 5
Liv [ ] S
iBAT [T )T [ LIV R 5
pWAT [ [ [ [ ][ | -
pgWAT [T ey ) [ T T psWAT ot [/
0/ZT135 2/ZT11.5 8/2ZT55 12/ZT1.5 18/2ZT19.5 22/ZT15.5 E i i
Hours of fasting (hours)/ Zeitgeber time (ZT) é 2 E LI
[ Phase | [JPhase Il M Phase I CIN/A T & g

C Total DEGs across
all Phase comparisons

D Gene expression of known fasting DEGs

OB |38
BRN [ 25
15 -
CBL [] 148 o
BST [J122 P
STM [ 2s2 <
LIV [Jsso =
iBAT g |
PSWAT e
PgWAT N/A § o
0 4000

Number of unique DEGs

Gast

Reg1  Egr1 Mt1 Ucp1 Lep Nrg4
[ Phase | []Phase !l [l Phase lll

Figure 2: Gene expression-driven sample clustering shows differential temporal effects of STF among organs. A) Fasting Phase-call results from the data-driven
clustering approach for each animal (columns) and organs (rows): Phase | (green), Phase Il (yellow), Phase Il (red). N/A (white) represents excluded samples that did not
meet the QA/QC criteria (see Additional file 3: Table S2). Experimental durations of fasting are as indicated. B) Number of the differentially expressed genes (DEGs) from the all
pairwise fasting Phase comparisons in all organs (see Methods). Because samples from pgWAT did not split into fasting Phases, no DEGs for the organ were available (N/A). C)
Number of unique differentially expressed genes (DEGs) from the all pairwise fasting Phase comparisons in all organs (see Methods). Because samples from pgWAT did not split
into fasting Phases, no DEGs for the organ were available (N/A). D) Expression values across the three Phases of select DEGs that have been previously reported to be modulated by
fasting in select organs. Mean mRNA expression levels are represented on a log, (x+1) scale of normalized counts (NC) + SEM (for replicate number, see Additional file 3:

Table S2). Organ acronyms are as in Figure 1.

To evaluate the changes in gene expression pattern through the
different STF Phases, we calculated the logoFCs (against 0 h, or fed ad
libitum control) of the genes included in the aforementioned subcDEGS.
A two-sided Wilcoxon Rank test was used to determine the statistical
significance between means at p < 0.05. The mean variances of the
logoFCs were regressed against the fasting Phases (Spearman’s cor-
relation was used).

2.9. Gene expression pattern mining

Unique patterns across the STF Phases were determined from logo
(x+1) NC of the genes that composed all the subcDEGs of each organ
and that yielded GO enrichment. Pattern mining was performed by
using topology overlap matrix-based dissimilarity algorithms (WGCNA);
next, the optimal cluster numbers were determined by using dynam-
icTreeCut with deepSplit = 0.

2.10. Network enrichment analysis

A list of 349 unique genes was extracted from the 37 GO terms shared
among the top four overlapping organs—BRN, LIV, iBAT, and
psWAT—to further investigate the enriched biological processes in the
brain-liver-fats organ network observed in the fasted mice (Additional
file 7: Table S6). The Reactome database [28] and ClueGO [29] were

used to determine and visualize the enrichment networks and the
conserved protein pathways. The following parameters were used to
construct the enrichment network—min/max GO level = 3—20,
Number of Genes = 3, Min Percentage = 3, Kappa Score
Threshold = 0.4, Sharing Group Percentage = 50—and the statistical
significance was set at FDR<0.05.

To evaluate the immune components of the organs in the brain-
liver-fats organ network (BRN, LIV, iBAT, and psWAT), we retrieved
a comprehensive list of immune-related genes in mice from
innateDB [30] and Mouse Genome Informatics (MGI; http://www.
informatics.jax.org/vocab/gene_ontology/G0:0002376) [31]. A list
of 3022 genes was used to identify the immune-related genes in
this study.

2.11. Literature mining - acumenta Literature Lab (LitLab™)

LitLab™ (Acumenta Biotech, USA) allows the identification of biological
and biochemical terms significantly associated with the literature from
a gene set. The analysis provides additional meaning to experimentally
derived gene and protein data [32]. The LitLab™ database contains
current gene, biological, and biochemical references in every indexed
PubMed abstract and is updated quarterly (currently at 30 million).
LitLab™ calculates the frequencies of the input genes for each of
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86,000 terms in the Literature Lab™ database (as of January 20,
2020) and compares the values with those of 1000 random gene sets,
containing the same number of genes and literature volume profile as
the experimental set, to determine statistical significance (cutoff at p
value < 0.0228). LitLab™ comprises four main applications: Term
Viewer, PLUS, Editor, and Gene Retriever.

2.12. PubMed-based literature searches

A literature search of the PubMed database on “fasting” and “im-
munity” in mice was conducted by using the following search strategy:
(“intermittent fasting” [All Fields] OR “Caloric Restriction (CR)” [MeSH
Terms] OR “Food Deprivation” [All Fields] OR “food restriction” [All
Fields] OR “fasting" [MeSH Terms] OR “fasting” [All Fields]) AND
(“gene expression” [All Fields] OR “Gene Expression” [ MeSH Terms]
OR “transcriptome” [All Fields] OR “transcriptome” [MeSH Terms])
AND (“mice” [MeSH Terms] OR “mice” [All Fields]) AND (“2010/01/
20” [PDAT]: “2020/01/20” [PDAT]) AND (“Immune System Phenom-
ena” [MeSH Terms] OR “Immunity” [MeSH Terms] OR “Immune
System” [MeSH Terms] OR immune [All Fields] OR “immune
response” [All Fields] OR “inflammation” [MeSH Terms] OR “inflam-
mation” [All Fields] OR “infection” [All Fields]).

To further evaluate our findings with the current literature, we
extracted the gene referenced from the relevant resultant articles by
using Gene Retriever™ (Acumenta Biotech). Gene Retriever™ is a data
mining solution to retrieve all genes associated with a list of PubMed
articles. Gene Retriever processes an input list of PubMed IDs and
produces an analysis of the genes mentioned in the title, text, and
MeSH tags of each record. Results are then statistically ranked and
presented in a spreadsheet to enable quick and comprehensive ana-
lyses. Hyperlinks are added within the spreadsheet to enable instant
review of the genes or PubMed IDs of interest (Additional file 9:
Table S8).

2.13. Software

All analyses and graphics were performed and generated in R unless
otherwise stated. ClueGO was performed in Cytoscape [33]. Adobe
lllustrator (Adobe Inc.) was used to prepare the final figures.

3. RESULTS

3.1. Multiorgan transcriptomic profiling during STF

To investigate the global gene expression dynamics associated with
STF, we used mRNA-seq to profile the transcriptome of nine organs
obtained from mice fed ad libitum (i.e., 0 h time point), or subjected to
five STF durations (2, 8, 12, 18, and 22 h of fasting; n = 3 per time
point; Fig. 1A). To minimize the impact of circadian influence on gene
expression, food was removed from the fasted groups for 2, 8, 12, 18,
and 22 h before tissue collection. The nine organs profiled were as
follows: 0B, brain (BRN, which includes the telencephalon and dien-
cephalon), cerebellum (CBL), brainstem (BST, which comprises the
mesencephalon, pons, and myelencephalon), stomach (STM), liver
(LIV), interscapular brown adipose tissue (iBAT), perigonadal white
adipose tissue (pgWAT), and posterior-subcutaneous white adipose
tissue (psWAT). After quality control (see Methods), we retained 157 of
162 samples (97%) for downstream analyses. After applying a cutoff of
>10 normalized counts in at least three samples, we found that
13,129—15,012 genes were expressed per organ (Additional file 1:
Fig. S1; Additional file 2: Table S1). Next, we performed principal
component analysis on the genes expressed across all samples (9420)
and found segregation primarily according to organ type and in four
clusters across the first three Principal Components: one cluster
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comprised all the nervous system samples (OB, BRN, CBL, BST), one
cluster comprised all the adipose tissues (iBAT, pgWAT, psWAT), and
the two remaining clusters comprised STM and LIV, respectively
(Figure 1B, Additional file 1: Fig. S2a). Principal component analyses
made on all samples from each organ also yielded no clear separation
by fasting time (Additional file 1: Fig. S2b). Hierarchical clustering
analysis (HCA) of the union of the top 100 most abundant genes
expressed across all samples also resulted in similar sample clustering
(Fig. 1C). Together, these results indicate that organ clustering is
primarily driven by anatomical similarity, and this result is consistent
with the findings in the literature [34—36].

3.2. Data-driven clustering shows differential temporal effects of
STF among organs

To examine the temporal impact of STF in each organ, we employed a
data-driven approach to identify gene expression-dependent fasting
clusters across all samples. To achieve this objective, we defined the
HVGs within each organ. We then calculated, for each organ sepa-
rately, the optimal number of clusters into which all samples were
segregated, based on the expression of organ-specific HVGs (see
Methods and Additional file 1: Fig. S1). We observed that for most
organs (BRN, CBL, BST, STM, LIV, and iBAT), samples were grouped in
three clusters, which we designated Phase |, Il, and lll (Figure 2A;
Additional file 3: Table S2). Samples from OB and psWAT were
grouped in two clusters (Phases | and Il), which seemingly cycled
throughout the 22 h. Notably, the Phases are populated by combina-
tions of samples from multiple fasting times, and samples from the
same fasting time are not always integrated into the same fasting
Phase, which could occur because of interindividual differences.
Moreover, the cyclical transcriptomic pattern observed in OB and
psWAT is reminiscent and consistent with other cyclical physiological
or metabolic responses occurring in these organs during fasting [37—
39]. In contrast with these results, we did not identify robust clusters
when using the samples from pgWAT (thus excluding it from our
downstream analyses). Although intriguing, that pgWAT and psWAT
show differential gene expression dynamics to STF is consistent with
other studies, because different adipose depots are functionally
distinct and can display differential transcriptomic responses to fasting
[40,41]. Additional correlation analysis for all possible pairwise com-
parisons between the samples within a given organ further supports
these results (Additional file 1: Fig. S3). Together, these results show
that the temporal effect of STF varies primarily in the function of the
organ type, and to a lesser extent in the function of the interindividual
variability.

To gain further insights into the transcriptomic changes associated
with STF, we next performed differential expression analysis. We used
two methods to determine the DEGs: in a pairwise manner between
each time point against zero (data not shown), and in a pairwise
manner between the aforementioned Phases. A comparative analysis
between both sets of DEGs revealed that both methods yield similar
numbers of DEGs (Additional file 1: Fig. S4). As in the aforementioned
PCA analysis, (Figure 1B and Figs. S2a and b) it was revealed that the
samples do not segregate according to fasting time, and we used only
the DEGs determined from all possible pairwise comparisons between
the fasting Phases identified for each organ in our downstream ana-
lyses (Additional file 4: Table S3). We observed that the number of
DEGs identified for the different pairwise Phase comparisons varies
greatly between organs (Fig. 2B). Among the six organs displaying
three Phases, the highest number of DEGs identified in BRN, CBL, and
STM were for the Phase | versus Ill comparison, and for the remaining
three organs (BST, LIV and iBAT), the highest numbers were for the
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Phase Il versus lll comparison. Similarly, the total number of non-
overlapping DEGs identified for each organ also varied greatly
(Fig. 2C), with OB displaying the lowest quantity of DEGs (38), and the
adipose tissues iBAT and psWAT showed the highest number of DEGs
(3822 and 3851, respectively). This analysis yielded multiple sets of
known and newly identified genes affected by STF. For instance, be-
tween Phases | and ll, we found decreasing expression levels of Nrg4,
Lep, and Ucp1in psWAT; decreasing expression levels of Reg7in STM;
and increased expression of Egr1, Fam107a, Map3k6, and Mt1 in the
LIV (Figure 2C; Additional file 5: Table S4); and these results are
consistent with other STF studies in rodents [11,20,42—45]. In sum-
mary, by allowing the samples to cluster in an organ-specific manner
based on the HVGs expression, we detected the differential temporal
effects of STF on the transcriptional profiles of multiple organs.

3.3. Organ-specific modulations by STF

To obtain insights into the functional roles of the hundreds of DEGs we
have identified, we combined multiple strategies to perform GO
enrichment analyses (see Methods). To focus our analysis on the
genes most impacted by STF, for organs yielding >500 DEGs (i.e.,
BRN, STM, iBAT, and psWAT), we focused our downstream analyses
on the top and bottom 12.5% of the logoFC ranked genes. Hereafter,

A Gene ontology (GO) analysis of the DEGs
40 150

Semantic similarity

DEGs refer to these filtered DEGs (Additional file 1: Fig. S4b). The
biological pathway analysis returned significant results for psWAT,
iBAT, LIV, BST, STM, and BRN but not for CBL and OB (Figure 3A). STF
appeared to induce changes in unique biological processes among the
organs, with only two overlapping GO terms between LIV-psWAT and
iBAT-psWAT, respectively (Figure 3A, left panel). Notably, the relatively
small number of GO terms shown reflects the stringent thresholds and
semantic reduction applied (see Methods); thus, only the most relevant
and non-redundant terms were kept.

GO semantic similarity provides the basis for a functional comparison
of gene products and is widely used in bioinformatics applications
(e.g., cluster analysis of genes) [46,47]. To improve the sensitivity and
coverage of our GO enrichment analyses, we subclustered the organ-
specific DEGs on the basis of the semantic similarity of their associated
GO terms (see Methods); hereafter, referred to as the subclustered
DEGs (subcDEGs). We then performed GO enrichment for each of the
multiple subcDEGs groups created for each organ; subcDEGs that did
not yield enrichment of GO were excluded from downstream analysis.
This new approach yielded a 5- to 24-fold increase in the enriched GO
terms for all organs except OB, for which we still did not identify
enriched pathways, excluding it from further analysis (Figure 3A, right
panel; Additional file 6: Table S5). Notably, 22 GO terms were returned
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Figure 3: Functional re-clustering of DEGs increased the identification of the biological perturbations and the unique gene expression patterns in organs of the fasted
mice. A) The number of gene ontology (GO) terms and those shared among organs increased after applying a semantic similarity based sub-clustering algorithm to the filtered
DEGs. GO analysis for the original filtered DEGs and for the subcDEGs are represented in the left and right panels, respectively. The number and nature of the GO intersections are
denoted by the vertical bar graph and the line-dots, respectively. Number of GOs enriched from the filtered DEGs and subcDEGs are noted in parenthesis in front of the organ
acronym. B) The unique temporal expression patterns of the genes comprised in the subcDEGs from three select organs (LIV, STM, BRN) across the fasting Phases (from
Figure 2A). mRNA expression levels are represented on a log, (x+1) scale of mean normalized counts (NC) (dark green line) + SD (light green shadow). G) Summary of the unique
temporal expression patterns of the genes comprised in the subcDEGs in the seven organs. A total of eight different temporal expression patterns are present (green). D) Mean
variance of the log, fold change (FC) vs. timepoint 0 h of the genes in all the subcDEGs across the three fasting Phases. Linear regression analysis (red line) was performed for each
organ, and the R? and p-values are depicted in each panel. Up to six gene clusters, i.e. subcDEGs, have been identified among the seven organs; the cluster number is indicated at
the bottom of the panel. Organ acronyms are as in Figure 1.
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for CBL, which previously had no significant enrichments, and for BRN,
the annotation coverage increased 24-fold, from 3 to 73 GO terms.
To validate this new approach, we used a semantic network to visu-
alize the GO terms enriched in LIV, which is the most well-studied
organ in the context of fasting (Additional file 1: Fig. S5). Among
those, we found several GO terms consistent with previous fasting
studies, including carboxylic acid biosynthetic process, lipid storage,
lipid homeostasis, xenobiotic metabolism, regulation of protein sta-
bility, and regulation of protein localization to a membrane [13,16,48].
We also identified other novel pathways enriched by STF, such as
wound healing, sensory perception of pain, and positive regulation of
vasculature development, highlighting the discovery potential of this
approach. In summary, by functionally re-clustering the DEGs, we
substantially increased both the organ-specific GO annotation
coverage and the probability of discovering novel pathways associated
with STF.

We then asked how the genes in each of the subcDEGs that provided
GO enrichment varied over STF duration. To achieve this objective, we
extracted and summarized the unique expression patterns of the genes
from the collective subcDEGs across Phases in each organ
(Figure 3B,C). In general, the non-brain organs exhibited a relatively
higher number of distinct cluster expression patterns, suggesting
comparatively higher dynamics in their gene expression responses to
STF. As expected, only two patterns were found in psWAT (explained
by two Phases).

To further analyze these gene expression patterns, we calculated the
variance of the mean FC versus the timepoint 0 h (i.e., fed ad libitum) of
the genes in all the subcDEGs across the three Phases and performed
regression analysis (Fig. 3D). We found positive correlations of FC
variance with STF in most organs, except for BST and psWAT, where
the relationships were non-significant. STM, BRN, and iBAT exhibited a
noticeably higher degree of FC variances with STF (i.e., the slope of the
regression) than those of psWAT, CBL, and LIV did, suggesting greater
differential regulation of their transcriptional profiles as STF pro-
gressed. Together, these results provide a second line of evidence that
different organs show different dynamics in their transcriptional pro-
grams to STF. Indeed, intermittent fasting and dietary restriction
induce different metabolic trade-offs and organ-specific changes in
bioenergetics and the redox state in mice [49,50].

3.4. Enrichment network reveals key biological processes
conserved among the brain-liver-fats organ network in the fasted
mice

By functionally re-clustering the DEGs, we also improved the extent of
GO terms shared among organs (Fig. 3A). We identified four highly
overlapping organs (LIV, BRN, iBAT, and psWAT) based on their
enriched biological pathways (Additional file 7: Table S6). Hereafter,
we refer to this organ group as the brain-liver-fats organ network. To
further our understanding of the biological implications of STF among
this organ network, we performed network enrichment analysis
against the Reactome database with the 349 genes integrating the 37
shared GO terms. The network enrichment of 63 reaction pathways
(nodes), with 70 connections (edges), resulting from 188 of the 349
genes that passed the significance selection criteria (see Methods)
shows that immune-related pathways are 48% of the total enriched
categories, followed by muscle contraction (12.94%) and the neuronal
system (9.41%; Figure 4A,B; Additional file 8: Table S7).

To better understand the individual organ responses in the collective
network, we represented the gene numbers and proportion of the
upregulated genes associated with each of the summarized Reactome
terms across the four organs (Additional file 1: Fig. S6a). Additionally,
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we performed HCA on the gene expression matrix of these 188 genes
to highlight the unique and shared STF-induced expression patterns
among the four organs (Additional file 1: Fig. S6b). Although we
observed organ-specific transcriptional profiles, the temporal effect of
STF is consistent within each organ, as demonstrated by the sequential
clustering of their respective STF Phases (i.e., Phases | and Il cluster
closer than Phase Il does). Importantly, the differential regulation of the
organ DEGs (i.e., percent showing increased expression) indicates that
the molecular mechanisms leading to perturbations of the shared
biological processes are different.

To assess the known biological effects of STF-induced changes among
the brain-liver-fats organ network, we used Literature Lab (LitLab™) to
perform an association analysis of the 188 aforementioned DEGs
mentioned with the scientific literature. In summary, LitLab™ queried
the PubMed database (30 million abstracts, January 20 of 2020) for
articles associated with the gene list of interest and returned the
tagged medical subject headings (MeSHs) with statistical significance.
This analysis yielded four MeSH term clusters that mirrored the four
major network-derived pathway categories identified in our previous
analysis (Figure 5A). We then summarized the significant physiology
and pathway-specific MeSH terms returned and identified associations
with the brain-liver-fats organ network with the immune and nervous
systems, pain tolerance, and other pathways and physiological pa-
rameters (Additional file 1: Fig. S7a). In summary, the corroborative
literature findings support the robustness of our network results,
indicating relevant conserved changes in pathway connectivity among
the brain-liver-fats organ network in response to STF.

3.5. STF modulates immune-specific transcriptional programs in
the brain-liver-fats organ network

We found that among the 349 DEGs extracted from the overlapping GO
terms of the brain-liver-fats organ network, 42% (119) are annotated
as immune-specific (see Methods). To investigate what aspect of the
immune system is centrally involved in the organ network, we
reconstructed the enrichment network by using an immune-specific
GO database (ClueGO). After threshold corrections, 96 genes were
retained (Fig. 5B), which resulted in an enrichment of 61 immune-
related GO pathways, with 156 connections (data not shown). The
general categories and the proportions of the immune enrichment
showed that T cell regulation processes account for more than 52% of
the overall processes, followed by leukocyte differentiation (12.5%)
and microglial cell activation (9.75%; Additional file 1: Fig. S7b). To
explore the individual organ responses in the collective network, we
represented the gene numbers and the proportion of the upregulated
genes associated with each of the summarized immune-specific GO
terms across the four organs (Additional file 1: Fig. S7¢). These results
provide a strong indication that T cell regulation, among other immune
processes, is a critical mediator of STF in the brain-liver-fats organ
network. The differential gene expression changes again highlight that
the immune processes are modulated differently among the four or-
gans of this organ network.

To better understand the immune-regulated changes in the individual
organs of the brain-liver-fats organ network, we asked this question:
What is the proportion of immune-related genes among the DEGs for
each organ (i.e., the filtered DEGs from the all pairwise Phase com-
parisons; Additional file 5: Table S4)? Using innateDB and Mouse
Genome Database as references, we found that the percentages of
immune-specific genes among the DEGs ranged from 11.8% in BRN to
18.8% in psWAT (Fig. 5C). We then identified the top five upregulated
and downregulated immune-related genes among the DEGs from the
four organs and evaluated their literature-supported functions
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Figure 4: Enrichment network reveals key biological processes conserved among the brain-liver-fat network in the fasted mice. A) Reactome enrichment network of 63
reaction pathways (nodes) and 70 connections (edges), resulting from 188 of 349 genes that were extracted from the 37 overlapping GO terms among BRN, LIV, iBAT and psWAT
and passed the significance selection criteria (FDR<0.05). The node color indicates biologically similar reactions, and the size reflects the number of genes contributing to the
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colored texts. On the top left, a schematic representation of the four organs composing the brain-liver-fats organ network, and all of their possible interactions (bidirectional
arrows). B) The representative categories and percentages of the Reactome pathways enriched from the 188 genes obtained from the brain-liver-fats organ network. The

categories and color are the same as in panel a. Organ acronyms are as in Figure 1.

(Additional file 1: Fig. S8, Fig. S9). We found that nearly one third (11)
of those top 40 DEGs were part of the enriched Reactome pathways
network (Fig. 4A).

Next, we examined the immune-specific genes among the DEGs to
infer the immunological status of the four organs. In the psWAT, higher
expression of CD28, Icosl, TLRs, I112b, 1121, Aim2, and Mmp8 (1.5—
5.4 Log,FC) and lower expression of Btni1al (—4.3 LogoFC) in psWAT
(Additional file 1: Fig. S10) suggest a proinflammatory activation/
environment albeit the absence of infection. Concomitantly, Foxp3 (1.6
Log,FC), which promotes T cell differentiation to Treg, was expressed
at higher levels, possibly to prevent overt immune activation. Fasn is
essential for TLR4 activation in macrophages [51], and its lower
expression has been linked to Nirp3 inflammasome inhibition and
decreased production of the proinflammatory cytokine precursor pro-
lI1b [52]. Together with Foxp3 expression, lower expression of Fasn
(—2.8 LogyFC) suggests a regulated heightened state of immune
readiness in psWAT during short-term energy loss. We also observed
an increased expression of Cxcr210 (2.36 LogoFC), which may be
related to reducing adipogenesis [53,54], as a part of the emerging
non-conventional functions of chemokine receptors.

In iBAT, the expression of Lck (promotes CD8 memory T cells) and
CD8a (T cell coreceptor for recognition of antigen) increased by 2.8 and
3.7 logoFC, respectively. By contrast, Gpam, essential for Cd4 T cell
metabolic activation [55], was expressed at 2.6 LogoFC lower levels.
The components of the Nod-like receptor pathway, Nod2, and Aim2
were also expressed at lower levels (—1.6 and —4.4 LogoFC,
respectively). Mirc3, an NLR decoy/attenuator shown to attenuate
inflammation in myeloid cells, showed increased expression (2.3

logoFC). Wnt4 has been shown to suppress dendritic cell respon-
siveness [56] and displayed increased expression levels by 3.3
LogoFC. Overall, in iBAT, the effector T cell and innate signaling were
reduced, suggesting an anti-inflammatory state during STF.

In BRN, we observed higher expression of FAS ligand (1.9 log,FC) and
lower expression (—4.1 log,FC) of Ly96 (assists immune response via
TLR4; Additional file 1: Fig. S10), suggesting immune response
priming in the absence of MCHIl-antigen peptide presentation. Given
the increase in Gata3 (1.9 logoFC), Cd4 activation was deemed
reduced, and T2 differentiation was favored. Ctla2a expression also
increased (3.2 logoFC), supporting the bias toward memory and
regulated immune response in the brain. Collectively, these immune
gene changes suggest that in BRN, STF induced the maintenance of
higher innate cell activity, which will probably preserve organ integrity,
through the promotion of less destructive effector mechanisms.

In LIV, the expression of Cd4 and Lcn2 (mediators of the innate im-
mune response to bacteria) decreased with the fasting time (—1.2
and —3.7 LogoFC, respectively, Additional file 1: Fig. S10). By contrast,
the expression of Myc, which affects cell growth, B cell proliferation,
and stem cell renewal, was increased 2.7 LogoFC. The Gadd45 family
proteins are upregulated under cellular stress [57] and are involved in
the activation of S and G2/M checkpoints [58]. Both the gamma and
beta forms are critical in the development of pathogenic effector T
cells, and their deficiency in mice leads to lymphoproliferative syn-
drome and systemic lupus erythematosus [59]. Downregulation of
Gadd45g contributes to the pathogenesis of hepatocellular carcinoma
in both mice and humans [60]. In T cells, Gadd45b is a critical mediator
for Th1 response to infection [61]. We observed increased expression

MOLECULAR METABOLISM 40 (2020) 101038

© 2020 The Author(s). Published by Elsevier GmbH. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

www.molecularmetabolism.com


http://creativecommons.org/licenses/by/4.0/
http://www.molecularmetabolism.com

A Lit Lab™ analysis of the brain-liver-fats network
BRN 188 DEGs Li\ﬁ@é
1

\BAT
Statistically significant Medical Subject Headings

ﬂ — (MeSHs)
LV PSWAT
CLUSTER 1: CLUSTER 2:

* Membrane Potentials

« Membrane Glycoproteins

« lon Channels

« Membrane Transport Proteins '
« Nervous System Physiological Phenomena

« Receptor Cross-Talk

* Membrane Proteins

* Receptors, Cell Surface
* Receptors, Immunologic
« Antigens, Surface

« Electrophysiological Phenomena « Antigen

« Membrane Transport Modulators ;

« Musculoskeletal and Neural Physiological

Phenomena |

CLUSTER 3 CLUSTER 4:
« Receptors, Peptide * Muscle Cells

« Muscle Fibers, Skeletal
« Contractile Proteins
* Muscle Proteins

« Protein-Tyrosine Kinases
« Receptors, Growth Factor
« Receptor Protein-Tyrosine Kinases

« Transferases « Muscle, Striated
« Phosphotransferases * Muscles
« Protein Kinases « Muscle, Skeletal
« Phosphotransferases (Alcohol Group « Tissues

Acceptor)

B Hierarchical Clustering
Analysis of immune DEGs

C Organ-specific
immune DEGs

10004

Phase: Il [ UL 10E 100 010 110 II | 15 %
—— — [72]
e = £ 2 ol
=E Tk w ]
e =5 [a]

— A
== 5 e
I 5

=]
zZ 0l
Z>E E
] 235 S
,,,,,,,,,, i &
BRN LIV iBAT psWAT B Immune
‘E’-l ~ » Non-immune
D Fasting immune regulation of the
brain-liver-fats organ network
€ BRN iBAT
Treg, Th2 & innate cells Attenuated Tess cells
readiness & innate immunity

A Fasl, Ctla2a, Gata3 Lck, CD8a, Nirc3, Wnt4

Immune
System

~7 MCH-II, Ly96, Cd4 Gpam, Nod2, Aim2 ~7

Reduced innate immunity
& regulation of cell growth

Heightened immune
readiness

CD28, Icosl, TLRs, l112b, 4

A Myc, Gadd45g, Gadd45b i
1121, Aim2, Mmp8, Foxp3

~~ Cd4, Lcn2, Prtin3

“ LIV

Figure 5: Current understanding of the biological implications of the brain-liver-
fats organ network in the fasted mice points to immune related processes. A)
Summary of the significant (cutoff at p-value<0.0228) Medical Subject Heading
(MeSH) term clusters associated with the 188 genes among the brain-liver-fats organ
network were obtained using Literature Lab (LitLab™). B) Gene expression hierarchical
clustering analysis of the 96 significant genes (FDR<0.05) from an immune-specific
GO enrichment analysis (data not shown) of the 349 genes extracted from the 37
overlapping GO terms from BRN, LIV, iBAT and psWAT. Median mRNA expression levels
are represented on a log, (x-+1) scale of normalized counts (NC) (0 - not expressed; 15

Btn1al, Fasn ~~
psWAT

I

MOLECULAR
METABOLISM

of 2.07 and 1.54 LogoFC for Gadd45g and Gadd45b, respectively,
which is likely an attempt to diminish cellular metabolic activities in
response to the stress induced by STF. Fasting-induced increases in
Gadd45b expression are a liver-specific molecular event promoting
adaptive metabolic function in mice [62] and are well in line with the
role that Gadd45¢ plays as a cold-induced activator of BAT thermo-
genesis [63].

Finally, to obtain a second line of evidence that STF affects the tran-
scriptional dynamics of the immune system, we assessed the literature
on the collective topics of fasting-related processes, mouse, gene
expression, and immune-related processes (see Methods). This search
yielded 241 peer-reviewed articles published over ten years. Upon
manual inspection, we selected 52 relevant articles for which we then
extracted the tagged/associated genes by using Gene Retriever™
(Additional file 9: Table S8). The 151 referenced genes tagged in more
than one article included 10% of the genes in the brain-liver-fats organ
network and 23% of the DEGs for BRN, LIV, iBAT, and psWAT. In other
words, a small fraction of the immune transcriptional dynamics we
observe during STF in mouse has been reported in a range of other
fasting studies, suggesting that some of the molecular processes
triggered by fasting might be independent of its duration. This analysis
also shows that the vast majority of our findings are novel, highlighting
the tremendous discovery potential of the experimental approach we
used in this study. In summary, our study expands the knowledge of
the molecular processes and pathways shared and modulated in a
multiorgan network during short-term energy loss.

4. DISCUSSION

Here, we performed mRNA-seq on multiple organs of mice subjected
to various periods of STF to understand the molecular mechanisms and
biological processes related to short-term energy loss. Our results
provide a comprehensive resource on the global mRNA expression
changes during STF. We recapitulated some reported physiological/
molecular effects from a wide range of longer-term or intermittent
fasting studies while providing additional insights into new molecular
modulators of fasting in a multiorgan network. Additionally, we present
an intuitive analytical method to extrapolate meaningful biological
implications from dynamic transcriptomic changes at the organ and
system level.

4.1. The analytical approach

Gene expression is highly dynamic, in part because of organ-specific
expression patterns and biological variation among individuals [64].
The conventional approach to analyzing dynamic transcriptional re-
sponses is to infer the enrichment of biological pathways from gene
expression changes at multiple time points by analyzing each time
point individually. The implicit assumption that the biological pro-
cesses are independent—the lack of biological dependency across
the time points—Ilimits the ability to pinpoint changes at a pathway
level in a biological system [65]. To circumvent this limitation, we

- highly expressed) for the fasting Phases identified in each organ (see Figure 2). C)
Proportion of immune-specific genes (blue) queried using the innateDB and Mouse
Genome Database, among all DEGs of BRN, LIV, iBAT and psWAT. D) The immune
system in the context of short-term fasting — a summary schematic highlighting the
key changes in the immune regulation of the brain-liver-fats organ network during
fasting. A brief statement, and example of genes, describing the type of immune
change are shown for each organ. The blue and yellow triangles indicate increased and
decreased gene expression, respectively. Organ acronyms are as in Figure 1.
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used HVGs across our dataset as determinants to group samples that
best represent their temporal characteristics induced by STF. This
data-driven approach allowed us to maximize the detection of the
differential temporal gene expression changes informative of, but not
constrained by, the experimental time points, which are of particular
importance at the multiorgan level. Given the differential prioritization
in energetic re-allocation between organs during short-term energy
loss [49,50], we logically assume a certain level of asynchrony in
their temporal gene expression. Using this approach, we charac-
terized the differential temporal effects of STF on the global gene
expression patterns among the nine mouse tissues.

Although we observed FC direction and magnitude in some genes that
have been reported in the literature, we did not observe some known
changes, such as a significant increase of Fgf21 transcript in LIV with
increased fasting duration. FGF21 has been shown to act as a negative
feedback signal to terminate growth hormone (GH)-stimulated regu-
lation of glucose and lipid metabolism under fasting conditions [66]. In
mice, high levels of FGF21 suppress the activity of GH and reduce the
production of insulin-like growth factors (IGF) [67]. In line with the
literature, we observed drastic reductions in Gh (—4.68 logoFC) and
1gf2 (—3.06 log,FC) expressions in BRN and a trend of increasing raw
expression of Fgf21 in LIV with STF (Additional file 2: Table S1).
Recently, FGF21 was demonstrated to be partially required for
appropriate gene expression during the fed to fasted transition in mice
[68]. FGF21-KO mice and pharmacological blockage of the FGF21 axis
did not profoundly disrupt the physiological response to fasting.
Additionally, STF (<60 h) did not affect plasma FGF21 level in lean
human subjects; however, the mRNA expression of FGF21 receptors
(KLB) was decreased in the subcutaneous WAT from both lean and
obese subjects [69]. In concordance, we observed a —3.30 logoFC
decrease in Kib expression in psWAT by STF. Thus, both study het-
erogeneity and biology may have contributed to these observed gene
expression differences in the context of fasting.

An analysis of multiple CR studies in mice detected relatively few
genes that exhibited a consistent expression response across
numerous experimental conditions [10]. Thus, relying on specific
subsets of DEGs is unlikely to be a method to find common biological
processes and to provide a meaningful representation of systemic
effects. By contrast, a high-level approach, for example, GO enrich-
ment analysis, is more likely to reveal common biological pathways
[70]. Gene set analyses are now standard practice for the functional
annotation of gene lists. However, the enrichment bias for multifunc-
tional genes (i.e., frequently represented in GO terms) is an inherent
challenge [71] and drives the generation of biologically non-specific
and highly fragile significances in genomic studies [72]. Additionally,
the amount of redundancy and overlaps in GO terms can make result
summarization challenging.

To address these issues, we clustered the experimentally derived gene
list from each organ by using the semantic similarity of their functional
annotations (i.e., subcDEGS). We then reduced the redundancy of the
resulting GO terms by using semantic uniqueness and retained only the
most relevant and profoundly affected biological pathways (see
Methods). Despite the stringency of our enrichment methods, we
obtained increased and sufficient organ overlaps that allowed for the
investigation of the biologically relevant events occurring at the mul-
tiorgan level.

4.2. A brain-liver-fats organ network modulated by STF

We hypothesized that the systemic effects of STF would be, at some
level, exerted through biological perturbations shared among multiple
organs. We identified four organs that highly overlapped in their
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enriched biological processes, which we called the brain-liver-fats
organ network. Evidence for crosstalk between different pairs of these
four organs has been shown in the context of fasting. For example,
during prolonged fasting, PPARa and FGF21 signaling between the
brain and liver mediates glucose homeostasis [73]. In mice, fasting-
induced glycogen shortage activates a liver-brain-adipose neuro-
circuitry to facilitate fat utilization [74], and the regulation of food intake
and glucose homeostasis by liver glycogen is dependent on the hepatic
branch of the vagus nerve [75]. In addition, leptin-mediated in-
teractions between the brain and adipose depots related to the
maintenance of systemic energy balance were recently reviewed [76].
These other studies have provided additional lines of evidence for the
existence of our proposed brain-liver-fats organ network in the context
of STF.

Within the organ network, we identified immune-related pathways,
muscle contraction, neuronal systems, and signal transductions as the
top conserved pathways affected by STF. Additionally, with LitLab™,
we found strong associations between the genes that comprised our
organ network and pain signaling and physiological response to pain.
In line with this, fasting and calorie restriction have an analgesic effect
in murine models [77—79], and intermittent fasting was proposed as a
non-invasive, inexpensive, and implementable strategy to chronic pain
treatment (reviewed in [80]). Key underlying mechanisms in fasting-
enhanced neuroplasticity include a short-term corticosterone in-
crease, a reduction in GABAergic inhibition, and an increase in protein
chaperons and neurotrophic growth factors such as brain-derived
neurotrophic factor (BDNF), which exerts positive effects on neuronal
survival and synaptogenesis [81—83]. The BDNF pathway showed a
strong association with our organ network gene list, driven by the
presence of both Bdnf and its receptor, Nirk2b (Additional file 7:
Table S6).

As our gene-MeSHs association queries (over 30 million abstracts)
went beyond single-study comparisons, the results provided unbiased
and statistically significant support for our experimental observations.
We recapitulated several known genes reported in literature associated
with fasting, gene expression, immunity, and mouse. As a result of the
synthesis of the multiorgan transcriptome, we observed that 90% of
the genes encompassing the organ network might represent potential
novel molecular modulators of the dynamic biological and immuno-
logical perturbations in mice subjected to STF.

4.3. Immune system during homeostatic perturbations

The physiological response to STF is a consortium of organ adaptation,
aimed to preserve the most critical functions amidst a systemic
decrease in energy availability. The topic of the immune system acting
as a regulator of organismal homeostasis in the absence of infection
has been recently reviewed [84—86]. Non-infectious signals, such as
physiological perturbation (e.g., cold exposure) and diet metabolites,
can regulate the equilibrium between types of immune responses (e.g.,
intracellular, parasitic, extracellular) [87,88]. These non-canonical
modulations of cytokines in the innate and adaptive immune sys-
tems have an essential role in regulating complex organ physiology
(reviewed in [85]). These studies suggest that immune cells are well-
positioned and equipped to sense homeostatic perturbations and relay
signals at the systems level in the absence of infection.

In this context, many studies have focused on the neuronal regulation
of inflammation, neuroimmune circuits in interorgan communication,
and the role immune cells play in the systemic regulation of meta-
bolism and obesity (recently reviewed in [89,90]). For example,
macrophage polarization toward a classically (M1-like) activated state
is a characteristic of obese adipose tissue [91], and adipose tissue
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macrophages have remained the primary immune participant studied
in the context of obesity since their discovery [92,93]. Non-canonical
pathways of macrophage activation through metabolites (i.e.,
glucose, insulin, and palmitate) also result in a continuum of proin-
flammatory phenotypes [90]. Moreover, sympathetic neuron-
associated macrophages were recently identified and shown to
affect norepinephrine (NE)-mediate regulation of thermogenesis of
adipose tissue by facilitating NE clearance and shifting to a more
proinflammatory state [94]. Furthermore, liver macrophages contribute
to insulin resistance independently of their inflammatory status,
through the secretion of IGFBP7, a non-inflammatory factor with a high
capacity to bind the insulin receptor and induce lipogenesis and
gluconeogenesis through the activation of ERK signaling [95].

4.4. Immune system in the context of STF

The brain-liver-fats organ network described in this study highlights
the importance of the immune processes modulated by STF. However,
the mechanisms underlying fasting-induced effects on the immune
system remain largely unknown, and researchers have only recently
started to elucidate this topic [96]. Three studies have demonstrated
that monocytes, naive B cells, and memory CD8 T cells use bone
marrow as a refuge during periods of energy reduction to maintain
systemic immune-responsiveness [4—6]. These studies also provided
new insights into the integrated immunometabolic response in a state
of energy deprivation (Fig. 5D).

Among the organ network, we found increased expression of genes
that negatively regulate monocyte and macrophage activation (7iff2
and Myc) and promote regulatory T cell differentiation (Ctla2a), B cell
differentiation in the bone marrow (Fzd9), cytotoxic T cell differentiation
(Cd8a), suppression of type 2 immunity and inflammation (Wnt4), and
modulation of neuroinflammation and priming of innate immunity
(S7100a8 and S100a9; Fig.5D). Moreover, we found that the immune
genes showing lower expression values with higher durations of
fasting time are involved in the promotion of inflammation (Ly96),
activation of the innate immune response (/fi203 and Lcn2), negative
regulation of T cell proliferation (Btn7a7), inhibition of innate immune
response to virus infection (7rim29), and mediation of inflammasome
activation (Aim2). Intuitively, the direction or amplitude of the immu-
nological responses to STF in different organs is unlikely to be the
same. Notably, we found enriched expression for genes contributing to
T cells and the innate response in psWAT, but lower expression levels
for inflammation-related genes in iBAT.

Overall, we observed significant increases in the expression of genes
involved in T and B cell differentiation and proliferation, suggesting
these immune cells are differentiated within the organ network or in
circulation. Decreased expression levels of inflammatory markers
support a systemic effort to reduce innate immune signals to the
adaptive, possibly by blocking cytokine signals and antigen pre-
sentation. Intermittent fasting alters T cells’ differentiation bias in the
gut, reducing IL-17 producing T cells, and increasing regulatory T
cells [97]. Fasting-mimicking diets lessen the severity and symp-
toms in a multiple sclerosis mouse model and are associated with
increased regulatory T cells and reduced levels of proinflammatory
cytokines, Th1 and Th17 cells, and antigen-presenting cells [98].
Recently, CR was shown to reverse aging-related proinflammatory
effects in old rats [99]. Several proinflammatory markers, such as
Cxcl2, S100a8, and S100a9, were downregulated in 30 different cell
types by CR in iBAT and psWAT of aging-mice compared with
controls, and these results are consistent with the observed regu-
latory features (i.e., attenuated Tex cell and innate immunity) of iBAT
in our study. In psWAT, we observed an increased abundance of the
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markers with STF; however, increased Foxp3 and decreased Fasn
and Btnial expression levels indicate a coordinated regulation/
control of the immune response in the organ. Differences in the
sample type studied (single cell vs. bulk tissue) and dietary in-
terventions can explain part of the divergences at the gene level.
Thus, investigation of cellular abundance in organs with different STF
durations is warranted in further research.

Neutrophils Lcn2 expression in rats undergoing CR was upregulated
compared with rats fed ad /ibitum and was suggested to correspond to
the translocation of neutrophils to the bone marrow [99]. In our study,
Len2was markedly reduced by STF in LIV and was interpreted in relation
to other studies performed in mice. In mice, Lcn2 is expressed in
multiple tissues, including liver and immune cells (reviewed in [100]),
and its decrease may indicate a reduction in neutrophils recruitment
[101]. However, the decrease in Lcn2 can also suggest increased im-
mune sensitivity (i.e., perhaps a step toward a “priming state”), because
Len2—/— mice secreted significantly more proinflammatory mediators
in response to LPS compared with the wild type [102]. In longer-term
fasting experiments (24 or 48 h), Lcn2 expression in mice WAT and
BAT was upregulated compared with that of the ad /ibitum fed mice
[103]. An explanation might be that the state of metabolism is more
similar between a longer period of fasting and CR, compared with STF.
In line with the literature, the observed changes in our multiorgan
immune-transcriptome are such that the effects of STF reprogram the
immune system, allowing a spectrum of cellular differentiation to occur
but restricting immediate reactivity. In summary, our study provides
evidence of a consortium of organ adaptation to short-term energy
deprivation, in which the immune system plays a central role. Further-
more, we added insights into the molecular events of fasting-induced
priming of T cell-mediated immunity, underlining a putative multiorgan
effort to support the recently reported egress of T cells and B cells to the
bone marrow during periods of systemic energy reduction [5,6].

5. CONCLUSIONS

Although the purpose of our study was not to decipher the molecular
communication between organs or investigate the migratory behaviors
or composition of immune cells under fasting conditions [4—6], our
study highlights the centrality of immune-transcriptomic modulations
during STF. Using a combinatorial data analysis approach, we provide
evidence for the existence of an organ network, formed by the simi-
larities of their biological processes, and the prominent role of the
immune system in sensing and modulating systemic homeostatic
perturbations in the absence of infection. Additionally, we provide a
valuable transcriptome resource to further expand on the knowledge of
the molecular events occurring across multiple organs during short-
term energy loss.
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