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Abstract 

 

With progress in genome-wide association studies (GWAS) of depression, from identifying zero hits 

in ~16,000 individuals in 2013 to 223 hits in more than a million individuals in 2020, understanding 

the genetic architecture of this debilitating condition no longer appears to be an impossible task. The 

pressing question now is whether recently discovered variants describe the etiology of a single disease 

entity. There are a myriad of ways to measure and operationalize depression severity, and major 

depressive disorder (MDD) as defined in the DSM-5 can manifest in more than ten thousand ways 

based on symptom profiles alone. Variations in developmental timing, comorbidity, and 

environmental contexts across individuals and samples further add to the heterogeneity. With big data 

increasingly enabling genomic discovery in psychiatry, it is more timely than ever to explicitly 

disentangle genetic contributions to what is likely “depressions” rather than depression. Here, we 

introduce three sources of heterogeneity: operationalization, manifestation, and etiology. We review 

recent efforts to identify depression subtypes using clinical and data-driven approaches, examine 

differences in genetic architecture of depression across contexts, and argue that heterogeneity in 

operationalizations of depression is likely a considerable source of inconsistency. Finally, we offer 

recommendations and considerations for the field going forward.  
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Introduction  

 

Depression is a common, complex, and debilitating condition with a lifetime prevalence of 20% 

worldwide. Whether it is one unitary construct, or better conceptualized as different and potentially 

overlapping disorders, has been the subject of vigorous debate over the past decades. 

 

A typical cohort used in genetic studies of depression includes cases with the same diagnosis. 

However, they often differ in many respects including symptoms, number of episodes, comorbidities, 

and disease course. This heterogeneity, often hidden and unexamined in GWAS cohorts, has been 

identified as one of the roadblocks to successfully unraveling the genetic architecture of depression.  

Initial GWAS efforts were limited by both heterogeneity and low power (1,2). In response, researchers 

relaxed ascertainment criteria to increase sample sizes (3–7), which likely increased rather than 

decreased heterogeneity. While this strategy has given us many more GWAS associations over the 

past 5 years, it has brought into sharper focus issues of measurement and construct heterogeneity (8).  

 

Heterogeneity is irrelevant if depression reflects a single, specific disorder that carves nature 

at its joints (9), but work in the last decades should have disabused us of this notion. Instead, 

depression may consist of various subtypes with different underlying biological pathways and 

environmental contributions. Systematically studying heterogeneity may be crucial for psychiatric 

genetics moving forward.  

 

Sources of heterogeneity  

 

We distinguish three sources of heterogeneity that impact genetic studies of depression, shown in 

Figure 1.  

 

First, operationalization, including the construct definition and its measurement. The term 

“depression” is an umbrella term that has been used to refer to, among others, depressive symptoms as 

a continuum and clinical depression as a category. The Diagnostic and Statistical Manual of Mental 

Disorders (DSM–5) (10) offers a formal definition of Major Depressive Disorder (MDD); criteria 

encompass the presence and duration of key symptoms as well as their cumulative functional 

impairment. Yet, it was not created with the goal to define a genetically homogeneous phenotype, and 

have been shaped by the complex history of psychiatry (11,12). Over 280 rating scales have been used 

to assess depressive symptoms, and common scales only overlap moderately in symptom content (13). 

Clinical diagnoses and self-report measures have been used to determine depression cases for genetic 

studies, but rely on different criteria and identify sets of cases that do not fully overlap. Minimal 

phenotyping approaches may assess a different construct than MDD specified by DSM-5 (8), and 

referring to all these phenotypes as “major depression” (14) obfuscates important differences. Cultural 

differences across ethnicity and nationality may also contribute to heterogeneity in measurement (15–

17). In the remainder of this review, we refer to “depression” as all operationalizations described 

above, and MDD as defined by formal diagnostic criteria (e.g., DSM-5). 

 

Second, manifestations, which encompass symptoms, severity, developmental timing, 

comorbidities, and physiology. DSM-5 criteria for MDD include diverse symptoms such as low mood, 
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loss of interest, sleep disturbance, weight changes, psychomotor slowing/agitation, and suicidal 

ideation. There are up to 10,377 unique ways to meet these diagnostic criteria (18), and cohorts used 

in genetic studies on MDD likely include cases who differ dramatically in both symptom profiles and 

severity. Depression is also heterogeneous in other aspects: patients differ in their onset of disease 

(e.g. adolescence vs. old age), time course (single episode vs multiple episodes), and comorbidities - 

important dimensions that are often unmeasured and unmodeled in genetic studies. Variations in 

physiology at the cellular and molecular levels, such as tissue-specific gene expression and neuronal 

function, may present biological manifestations that underlie the above phenotypic differences. 

 

Third, etiology, encompassing the diverse combination of genetic, environmental, and other 

factors leading to one’s disease, as well as their interactions. Individuals may have different levels of 

genetic liability to depression through carrying different risk alleles at genetic loci with effects on the 

molecular pathways leading to the disease, and they may be exposed to different environmental factors 

that also add to their disease liability. Further, the effects on depression liability contributed by the risk 

alleles one carries may change depending on one’s physiological (through gene-gene interactions, 

GXG) and external environments (through gene-environment interactions, GXE).  

 

Progress in the past years stems largely from genetics research studying heterogeneity in 

depression manifestations and etiology. Below, we review recent efforts to identify depression 

subtypes using clinical and data-driven approaches, examine differences in genetic architecture of 

depression across contexts, and discuss their promises and limitations. We argue that heterogeneity in 

operationalizations of depression cuts across these sections and is likely a considerable source of 

inconsistency. 

 

Using manifestations to understand etiology  

 

Subtypes of depression have been proposed based on clinical observations and data-driven 

approaches, and research has largely focused on comparing their genetic architectures and how well 

they can be predicted with existing polygenic risk scores (PRS). 

 

Theory-driven depression subtypes  

 

Decades of clinical experience and patients’ own accounts have led to clinical subtypes of 

MDD that are reflected in current DSM-5 specifiers such as atypical, melancholic, and anxious 

depression. Subtypes have also been proposed based on developmental timing (19,20), treatment 

resistance (21), and recurrence (22). Such clinical subtypes have been the primary target of genetic 

studies. 

 

As an example of a symptom-based clinical subtype, atypical depression is primarily 

characterized by hypersomnia and weight gain, as opposed to depression more typically characterized 

by insomnia and weight loss. Typical and atypical depression subtypes differ in heritabilities (43% vs. 

38%, though with large standard errors), with PRS for other psychiatric traits showing stronger 

associations with the typical than atypical subtype (23). Conversely, PRS for immune-metabolic traits 

such as body mass index (BMI) and C-reactive protein are strongly associated with the atypical 

depression (24), and patients with the atypical subtype were found to carry more genetic risk variants 

for BMI and C-reactive protein (25). This suggests that atypical MDD may share greater genetic 

liability with immune-metabolic conditions (26). 
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In terms of developmental timing, genetic overlap between early and late-onset MDD has 

been shown to be only moderate (27). PRS from a recent GWAS meta-analysis of depression 

predicted early-onset MDD better than late-onset (5), and in hospital-treated cases the iPSYCH study, 

PRS from both bipolar disorder (BIP) and schizophrenia (SCZ) were associated with earlier MDD 

onset (28,29). Another longitudinal study found that PRS from SCZ and attention deficit hyperactive 

disorder (ADHD) were associated with early- rather than later-adolescent onset trajectories, suggesting 

shared genetic contributions for early-onset MDD and other psychiatric and neurodevelopmental 

conditions (30,31). Different heritabilities have also been found between depression occurring during 

the perinatal period (e.g., postpartum) and non-perinatal depression (44% vs 32%) (32), with 

preliminary evidence suggesting stronger associations between PRS of BIP and SCZ with perinatal 

depression than non-perinatal depression (33,34). 

 

However, research into distinctions between subtypes, whether symptom- or timing-based, 

relies on data that is often not available. For example, CONVERGE, due to its strict enrollment 

criteria, is the only genetically informed cohort with a high proportion of cases presenting with 

melancholic depression (35), which has restricted replication efforts to date. Early GWAS attempts on 

other clinical features such as episodity (36) and treatment response (37–39) were limited in power 

and did not produce positive findings; larger efforts have been recently invigorated (40,41), and we 

may gain new insights with more data.  

 

Data-driven depression subtypes  

 

A body of complementary research has emerged to identify depression subtypes using 

agnostic, data-driven methods. There is over half a century of literature quantifying depression 

heterogeneity based on symptom data. There are two principled ways, reviewed extensively elsewhere 

(42–45). First, exploratory and confirmatory factor analyses (EFA, CFA) aim to identify underlying 

symptom dimensions using the symptom covariance matrix. Studies consistently extract more than 

two factors, and results largely depend on which symptoms are included (42,46–50). Second, latent 

class analysis (LCA) aims to determine more homogeneous subgroups of individuals. Across studies, 

the most consistent finding is that classes are often organized by severity on all symptoms (indicating 

a continuum rather than separate classes), though specific results are mixed and depend on assessment 

instruments (42,45,51,52). Overall, measurement heterogeneity across cohorts has made inferences 

challenging (42). Three further complications are that symptoms are often not fully assessed in 

controls due to skip-out assessments; analyses are often performed on cases using the very symptoms 

with which they were selected, incurring collider biases (53); and methods have assumptions, such as 

conditional independence in LCA, that are not always met (51,54).  

 

Despite these challenges, there are increasing efforts to recover latent dimensions and classes 

at the genetic level. Building on the identification of three genetic factors reflecting mood, 

psychomotor/cognitive, and neurovegetative features of MDD using twin modeling (55), a recent EFA 

on self-reported depression symptoms in UKBiobank obtained similar results and explored 

associations with depression PRS (56). A new framework, GenomicSEM, generalizes the structural 

equation modelling (SEM) approach to genetic covariance matrices (57), which can be generated from 

a joint analysis of GWAS summary statistics of individual depression symptoms, and can be used to 

test for genetic loadings on latent dimensions of depression.  

 

Other data-driven approaches have been applied to physiological measures to identify 

etiologically meaningful subtypes. Variations of canonical correlation analysis (CCA) have 

characterized relationships between depressive symptoms and neuroimaging measures (58), and 
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hierarchical clustering on resting-state fMRI measures have identified groups of depressed patients 

and their differential network dysfunctions (59), and machine learning methods have been used to 

cluster longitudinal responses to antidepressants to identify stable treatment response classes (60). In 

the future, these data could be integrated with multi-omics data; for example, transcriptome-wide 

association (TWAS) approaches have begun to identify depression subtypes driven by brain and 

adipose tissue-specific gene expression (61).  

 

Finally, genetic data has been used directly to identify data-driven subtypes. For example, 

subsets of MDD cases in UKBiobank with distinct genetic risks for SCZ, high neuroticism, and early 

age of menopause (62) were identified using BUHMBOX (63),
 
a statistical approach that involves 

identifying individuals who may carry genetic variants pleiotropic for other traits. Overall, continued 

efforts to incorporate new types of data and data-driven methods hold great promise for subtype 

identification and validation. 

 

Contexts as part of etiology 

 

This section reviews genetic investigations aiming to disentangle etiological heterogeneity across the 

contexts in which depression manifests. We also discuss challenges to these approaches, including 

measurement differences and ascertainment biases. 

 

Individual characteristics 

 

Few genetic studies of depression have been performed in non-European populations, and the 

extent to which etiological factors for depression differ across populations remains unknown. A recent 

preprint compared ICD10-based MDD in individuals of African American ancestry (AA, N=59,600) 

in the Million Veterans Program (MVP) in the USA with a meta-analysis of several depression cohorts 

of individuals with European ancestry (EUR, N=1.1 million), including MVP (7). While no GWAS 

hits for MDD were found in AA, likely due to insufficient power, 61% of the GWAS hits from 

depression in EUR showed the same directions of effect, suggesting a modest overlap in genetic 

factors leading to depression in people with both ancestries. This echoes results from a study 

comparing severe recurrent MDD of Han Chinese women (CHN, N=10,640) in the CONVERGE 

cohort to MDD of EUR in various cohorts from the Psychiatric Genomics Consortium (PGC, EUR 

N=18,662) (64). Low trans-ancestry genetic correlations were found between MDD in CHN and EUR 

(57–59) (  = 0.33, 95% CI = 0.27-0.39), and the two GWAS hits from CONVERGE were not 

replicated due to drastic allele frequency differences (3,5,35).  

 

In the studies discussed above, MDD from AA and CHN was compared with depression 

measured very differently in EUR. Despite reports of high rG between depression assessed in different 

ways within EUR to justify their use in cross-ancestry comparisons (rG = 0.81-1.07)(8,65), it has been 

demonstrated very clearly that they are distinct phenotypes with different genetic architectures (8). As 

such, genetic heterogeneity of depression may be overestimated across ancestries due to differences in 

operationalization. Differences in cultural norms around depression (15,16,66) and study participation 

(67) can incur ascertainment biases and further affect interpretation of results. Assessing depression 

across populations requires efforts to understand how this condition manifests differently across 

settings.  

 

This also applies to heterogeneity across other groups, including those defined by biological 

sex and socioeconomic status.  Differences in MDD genetic architecture between sexes have been 

shown in both twin studies (68,69) and major GWAS cohorts (70), where heritability of MDD was 
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found to be higher in females. However, this can be obfuscated by differences in operationalizations 

and ascertainment strategies between studies. Contrary to previous studies, heritability of depression 

in females was found to be lower in UKBiobank (8), and it is the only dataset whose PRS for 

depression in both sexes better predict MDD in males than females in an independent dataset (71). 

Ascertainment differences are likely to be a major contributor to this discrepancy, and minimizing 

such differences may unmask patterns across studies.  

 

Environments  

 

Environmental factors contribute a large proportion of variability in depression risk, and 

stratifying depression cohorts by environmental factors may help identify differential genetic effects 

between those exposed and not exposed. For example, stratifying by exposure to stressful life events 

has revealed genetic heterogeneity in severe recurrent MDD from CONVERGE (72–74), with three 

significant GWAS hits and higher heritability of MDD in the non-exposed group (72), suggesting 

divergent genetic factors at play among the two groups. However, when MDD and stress exposure 

were differently defined in the UKBiobank, the opposite finding emerged, with higher heritability of 

MDD in the exposed group (75). Similar contradictions arose between two studies on interactions 

between MDD PRS and childhood trauma: in NESDA, MDD PRS was more strongly predictive of 

depression in trauma-exposed cases (76), while in RADIANT UK, it was more predictive of non-

exposed cases (70). Further, a subsequent meta-analysis using cohorts ascertained with a range of 

strategies identified the third possible outcome – a null-finding (77). This non-replication was 

attributed to chance findings in the small cohorts used, and to a smaller extent gene-environmental 

(GE) correlations (77). But a further issue for replication may lie in operationalization differences 

between studies. Ascertainment biases, as well as heterogeneous measurement of both depression and 

stress exposures, may lead to differences in unmeasured environmental factors and inconsistencies in 

both polygenic and environmental contributions to disease liability. GXE effects detected between 

PRS and environmental contexts could therefore differ accordingly (77,78).  

 

One potential solution is to target efforts at identifying and replicating GXE effects between 

single variants and environmental exposures. Though efforts to test single-variant GXE have often 

been thwarted by difficulties in correcting for population structure and other confounding factors, and 

a general lack of power, recently proposed methods may overcome this. StructLMM extends a linear 

mixed model approach to test random effects at genetic variants interacting with one or more 

environmental variables (79), and reverse GWAS (RGWAS) infers subtypes by clustering multiple 

traits and environmental factors, and tests for genetic heterogeneity between identified subtypes while 

robustly controlling for confounding factors (73). With larger datasets becoming increasingly 

available, these methods may start yielding results, even for highly complex traits like depression.  

 

Way forward: splitting vs lumping  

 

As depression may reflect several highly heterogeneous phenotypes, and it is difficult to agree 

upon a single construct that can be consistently measured, perhaps studying it at the level of a 

categorical diagnosis or dimensional symptom total score is not the only or best solution. Here, we 

discuss two alternative ways forward.  

 

First, splitting, i.e. refocusing genetic discovery efforts on more granular phenotypes with 

higher validity and reliability: individual symptoms (80,81). Recent studies have investigated genetic 

contributions to individual depressive symptoms (82–85) and how they vary across contexts (86). 

Analyses have shown that genetic contributions to individual symptoms are not equivalent to those for 
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MDD (average rG = 0.6), nor to each other (rG range 0.6 to 0.9) (56,62). Going beyond symptoms, 

recent expansions in sequencing and phenotyping technologies such as neuroimaging (87–89) and 

molecular data (90,91) have enabled genetic analyses on endophenotypes (92). Though genetic 

contributions to such endophenotypes have not yet been found to have larger individual locus effect 

sizes (93) or to be any less polygenic (94) than complex diseases, they have been proposed to be more 

tractable (95). Clustering based on endophenotypes may reveal etiologically meaningful subtypes of 

depression, and investigating these may allow us to fill in the missing causal links between genetic 

variants and disease.  

 

Second, lumping, i.e. moving beyond depression alone and embracing transdiagnostic features 

across related disorders. High comorbidity (96) and pleiotropy (97–99) between psychiatric disorders 

have motivated attempts to identify common genetic factors and implicated molecular pathways 

underlying multiple psychiatric disorders (57,100–102). Underlying liability for psychiatric conditions 

such as the p factor has been proposed (103), with preliminary evidence of a corresponding genetic 

basis (104).  

 

Integrating both splitting and lumping, transdiagnostic insights gained from studies of 

endophenotypes may help us redefine diagnostic boundaries, a goal set out by the Research Domain 

Criteria (RDoC) 10 years ago (105).  

 

Conclusions 

 

To summarize, we have identified three overarching sources of heterogeneity: operationalization, 

manifestations, and etiology. The first pertains to heterogeneity in how we do science, the second and 

third to heterogeneity of the phenotype itself as well as its causes. Gaining a better understanding of 

how these three sources impact results in our field is a necessary (though not sufficient) step towards 

improving diagnostics and targeted treatments. From reviewing the literature, four lessons emerge. 

 

1) Measure consistently. Inconsistent findings in subtype identification and their genetic 

architecture are inevitable if depression is not operationalized consistently. Overall, this calls for 

harmonizing assessments of depression across studies.  

 

2) Measure more. Both theory- and data-driven approaches to disentangle the complex 

phenotype of depression rely on data, and even the most sophisticated statistical approaches cannot 

overcome missing input data. One crucial step forward is to assess a broader range of data—including 

individual depression symptoms and salient clinical characteristics such as age of onset, number of 

episodes, and recurrence—and utilize them to study depression heterogeneity. Further, new types of 

data, including data from activity trackers in wearable technologies, text and voice through natural 

language processing, and longitudinal mood assessment by computerized adaptive screening 

questionnaires, may be helpful to identifying subtypes for genetic analysis. 

 

3) Collaborate. Complex traits like depression cannot be understood in a mono-disciplinary 

vacuum, because they require, in addition to knowledge of quantitative genetics, a nuanced 

understanding of the phenotype under investigation. The goal to identify and validate depression 

subtypes therefore calls for collaborations with clinicians, epidemiologists, sociologists, 

anthropologists, patients, and others. 

 

4) Follow through. To make good on the promise of GWAS to deliver genetic insights that 

would improve diagnosis, treatment and prevention of depression in individuals with diverse 
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etiological causes, we need to expand beyond our findings of differences in genetic architecture and 

PRS associations. Further association testing and fine-mapping using sequencing datasets may help 

identify individual variants with heterogeneous effects on depression subtypes; integration of multi-

omics data may point to the different tissues and biological pathways involved; single cell 

transcriptomics across developmental time points may lend spatial and temporal resolution; 

experimental designs in re-differentiated human induced pluripotent stem cells, organoids or model 

organisms may allow us to validate the biological relevance of effects we find and identify potential 

targets for drug interventions.  

 

Doing all of this, we may find that depression really consists of an entangled web of partly 

overlapping biopsychosocial constructs, with overlapping genetic contributions. Perhaps now is the 

right time for us to take the bold next step and acknowledge the complex reality that the field is 

searching for the genetic architecture of “depressions” rather than depression. This is a challenge, but 

simultaneously a great opportunity and offers a clear path forward towards embracing the 

heterogeneity of depressions in our theories, measures, and methods.  

 

 

 
Figure 1: Sources of heterogeneity in depression.  

This figure shows some of the sources of heterogeneity we discuss in this paper, in terms of 

operationalization (phenotype, measurement), manifestation (symptoms, time course, group 

characteristics, comorbidities, endophenotypes) and etiology.  
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Glossary 

 

MDD: Major depressive disorder 

ADHD: Attention deficit hyperactivity disorder 

SCZ: Schizophrenia 

BIP: Bipolar disorder  

 

GWAS: Genome-wide association study 

PRS: Polygenic risk score(s) 

rG: Genetic correlation 

RGWAS: Reverse GWAS 

EFA: Exploratory factor analysis 

CFA: Confirmatory factor analysis  

LCA: Latent class analysis  

SEM: Structural equation modelling 

CCA: Canonical correlation analysis 

TWAS: Transcriptome wide association analysis 

fMRI: Functional magnetic resonance imaging  

 

AA: African American ancestry 

EUR: European ancestry 

CHN: Han Chinese ancestry 

 

ICD: International Classification of Diseases 

DSM: Diagnostic and Statistical Manual of Mental Disorders  

RDoC: Research Domain Criteria  

 

CONVERGE: The China, Oxford and Virginia Commonwealth University Experimental Research on 

Genetic Epidemiology 

PGC: Psychiatric Genomics Consortium  

NESDA: The Netherlands Study of Depression and Anxiety  

RADIANT UK: A combination of data of UK outpatients from the following studies - Depression 

Case Control (DeCC), Depression Network (DeNT), and Genome-Based Therapeutic Drugs for 

Depression (GENDEP) 

MVP: The Million Veterans Project  
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