Supplementary information

Isolation and differentiation of primary brown adipocytes.

Cells of the stroma vascular fraction (SVF) were isolated from BAT of 4-5 week old mice. Briefly, freshly isolated BAT was minced into small pieces followed by digestion in serum free DMEM/F-12 supplemented with 1 mg/ml collagenase II, 75 U/ml DNAse I and 1,5% BSA for 60 min and moderate shaking (140 rpm) at 37°C. Cell suspensions were filtered through a 100 µm cell strainer and centrifuged for 5 min at 200 g. The pellet was washed twice in 5 ml growth medium (DMEM/F-12, 10% FBS, 1% glutamine, 1% penicillin/streptomycin) followed by an incubation in 1 ml erythrocyte lysis buffer (Qiagen) for 5 min. Erythrocyte lysis was stopped by adding growth medium to 12 ml and another round of centrifugation followed at 200 g for 5 minutes. The pellet was resuspended in growth medium and filtered through a 70 µm cell strainer. After the final centrifugation step (200 g, 5 min) cells of the SVF were resuspended in 150 µl growth medium and the cell count was determined. Cells were seeded into a XF96 V3-PS cell culture microplate (Agilent Bioscience) with a seeding density of 2000 cells per well. After cells were confluent, adipocyte differentiation was induced by replacing the growth medium with induction medium (growth medium supplemented with 0.5 mM 3-isobutyl-1methylxanthine, 125 nM indomethacin, 1 nM 3,3',5 triiodothyroninesodium salt (T3), 0.86 µM insulin, 1 µM dexamethasone 1 µM rosiglitazone) and the induction medium was exchanged every other day. On day 7, cells were grown in post differentiation medium (growth medium supplemented with 1 nm T3, 0.86 µM insulin and 1 µM rosiglitazone).

Oligo	Sequence (5'- 3')
Genotyping	
Cre_1	ACCAGCCAGCTATCAACTCG
Cre_2	TTACATTGGTCCAGCCACC
qPCR	
Gapdh_1	AGAAGGTGGTGAAGCAGGCATC
Gapdh_2	CGGCATCGAAGGTGGAAGAGTG
<u>36B4_1</u>	GCTTCATTGTGGGAGCAGACA
36B4_2	CATGGTGTTCTTGCCCATCAG
Ucp1_1	GACGTCCCCTGCCATTTAC
Ucp1_2	CGCAGAAAAGAAGCCACAA
Ppargc1a_1	TGAGGACCGCTAGCAAGTTT
Ppargc1a_2	TGAAGTGGTGTAGCGACCAA
Dio2_1	ACACTGGAATTGGGAGCAT
Dio2_2	ATGCTGACCTCAGAAGGGCT
Ctp1b_1	GCTGCTTGCACATTTGTGTT
Ctp1b_2	TGTCTACCTCCGAAGCAGGA
Scl25a20_1	AAACTTGGTGGTTGTGTGTCTGC
Scl25a20_2	TTTAAGAACCTCCTGGCTGG
Acadm_1	CAACCTTCATCGCCATTTCT
Acadm_2	GCCCAGAGAGCTCTAGACGA
Stat1_1	TGGCGAGAACCTAAGTTTCAGT
Stat1_2	CCCAAAGGGCAAAAAGAACT
Jak1_1	AGTGCAGTATCTCTCCTCTCTG
Jak1_2	GATTCGGTTCGGAGCGTACC
Jak2_1	GGAATGGCCTGCCTTACAATG
Jak2_2	TGGCTCTATCTGCTTCACAGAAT
Jak3_1	ACACCTCTGATCCCTCAGC
Jak3_2	GCGAATGATAAACAGGCAGGATG
Gnas_1	CCCTCTCCGTTAAACCCATT
Gnas_2	CICCGICCAGATICICCIIG
Prkaca_1	
Prkaca_2	
Gnail_1	
Gnail_2	
Adcy5_1	
Adcy5_2	
$Pik3r1_1$	
PIKSYI_2	
IIPKA_1 Itpha_2	
$Cox2_1$	
Cox2_2	
$Cox4i1_1$	GCCGGAGAAGCCCTGAA
$Cox7a_1$	CCGACAATGACCTCCCAGTACAC
Cor7a 2	CCAGCCCAAGCAGTATAAGCAGT
Cox 8h 1	ТАТССТСССССССАА
Cor8b 2	CGACTATGGCTGAGATCCCCAC
<u>Cs 1</u>	AGCCAAGAACTCATCCTG
Cs_2	TCTTCCCATGTTGCTGCTGA
Acol 1	GGGGTGTGGGTGGTGTATTGAA
Acol_2	CTTGTCGGAGGTGCTTGGTAAT

Supplementary Table 1: List of oligos

Aco2_1	GCTGACCCCTCCGACTATAACA
Aco2_2	ATGACGCACTTCAGAGGCTTTC
Idh1_1	ACTCAGTCGCCCAAGGTTATG
Idh1_2	CCCTTTCTGGTACATGCGGT
Sdha_1	AAACAGACCTGCGGCTTTCA
Sdha_2	AGCATTGATACCTCCCTGTGC
Sdhb_1	GCGGACCTATGGTGTTGGAT
Sdhb_2	GAGCCACAGATGCCTTCTCT
Mdh2_1	CCGCCTGACCCTCTACG
Mdh2_2	CATCCCGTGTCATTCCTGGTT
Mitochondrial	
copynumberdetermination	
Co1_1	TGCTAGCCGCAGGCATTAC
<i>Co1_2</i>	GGGTGCCCAAAGAATCAGAAC
Nd1_1	GAGCCTCAAACTCCAAATACTCAC
Nd1_2	AAAGGATAATAGCTATGGTTACTTCA
Ndufv1_1	CTTCCCCACTGGCCTCAAG
Ndufv1_2	CCAAAACCCAGTGATCCAGC

Suppl. Figure 1: **Analysis of members of the JAK-STAT signalling pathway in BAT.A** Western blot for the expression and activation status of STAT1 and STAT3 in BAT lysates. HSC70 was used as loading control. Quantification (**B**) was performed using ImageJ (n=4-5 /group). **C** Relative mRNA expression of *Stat1*, *Jak1*, *Jak2* and *Jak3*. Ct values were normalised to *Gapdh* mRNA levels (n=7/group).

Suppl. Fig. 2: Analysis of hormone sensitive lipase expression in BAT. A Quantification of pPKA substrate levels from Fig. 2C upon cold exposure was performed using ImageJ (n=6/group). **B** Activation and expression status of HSL in BAT lysates. HSC70 was used as loading control. **C** Quantification of HSL activation upon cold exposure was performed using ImageJ (n=6/group).

Suppl. Fig. 3: GH does not stimulate acute lipolysis in BAT. A Basal and GH stimulated lipolysis represented by NEFA release from BAT explants ($n \ge 8$ explants). Values for basal lipolysis are similar to the ones shown in Fig. 3A. B Heatmap displaying genes involved in β -adrenergic signalling in BAT as assessed by RNA-Seq. Names of Genes which show significant

changes in gene expression (p<0.05) are displayed in boxes. **C** Putative high affinity STAT5 binding sites (highlighted in bold) according to the consensus sequence were identified in promoter regions of *Adcy5*, *Pik3r* and *Itpka* by performing an *in silico* analysis of the respective promoter region. The number indicates the distance in bp from the transcriptional start site. **D** and **E**: Relative mRNA expression of genes involved in the electron transport chain (ETC) (**D**) and tricarboxylic acid (TCA) cycle (**E**) in differentiated brown adipocytes. Ct values were normalised to *36B4* mRNA levels (n=8/group). *p < 0.05. *36B4*: acidic ribosomal phosphoprotein P0, *Cox2*: Cytochrome C oxidase subunit 2, *Cox4i1*: Cytochrome C oxidase Subunit 4 isoform 1, *Cox7a*: Cytochrome C oxidase Subunit 7A1, *Cox8b*: Cytochrome C oxidase Subunit 8B, *Cs*: Citrate synthase, *Aco1*: Aconitase 1, *Aco2*: Aconitase 2, *Idh1*: Isocitrate dehydrogenase (NADP(+)) 1), *Sdha*: Succinate dehydrogenase complex flavoprotein subunit A, *Sdhb*: Succinate dehydrogenase complex iron sulfur subunit B, *Mdh2*: Malate dehydrogenase 2

Suppl. Fig. 4: Effects of chronic β_3 -adrenergic stimulation on tissue weight and gene expression. A Adipose tissue weight in relation to body weight (BW) from vehicle- and CL316243-treated mice (n=6/group). B Relative mRNA expression of genes involved in β -adrenergic signalling pathway in ScWAT after chronic CL316243 treatment. Ct values were normalized to *Gapdh* mRNA levels (n \geq 5/group). *p < 0.05, **p < 0.01, ***p < 0.001. *Gnas*: Guanine nucleotide binding protein (G protein), alpha stimulating, *Prkaca*: Protein kinase CAMP-activated catalytic subunit alpha, *Gnai1*: G protein subunit alpha I1, *Adcy5*: Adenylate

cyclase 5, *Pik3r1*: Phosphoinositide-3-kinase regulatory subunit 1, *Itpka*: Inositol-trisphosphate 3-kinase A