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ABSTRACT

Purpose: In radiation risk analysis the state-of-the-art approach is based on de-

scriptive models which link excess rates of cancer incidence and mortality to radi-

ation exposure by statistical association. To estimate the number of sporadic and

radiation-induced cases descriptive models apply parametric dose response function

which directly determine the radiation risk. In biologically-based models of cancer

risk (BBCR models) dose responses are implemented for key events on the biolog-

ical level such as early mutations or clonal expansion of initiated cells. Influenced

by radiation these events then shape the risk response on the epidemiological level.

Although BBCR models facilitate a more comprehensive consideration of biolog-

ical processes for risk assessment, their range of application in radiation research

remains limited. Therefore, we emphasize their ability to improve understanding

of radiation-related carcinogenesis by integrating molecular biology with epidemiol-

ogy. We highlight the potential of BBCR models to harness information from adverse

outcome pathways (AOPs) for risk estimation with closer links to radiobiology. The

AOP concept originates from toxicology and may be applied profitably in radiation

research.

Conclusion: The conceptual design of BBCR models can be guided by the high-

dimensional data environment provided by AOPs. Risk estimates from BBCR mod-

CONTACT J. C. Kaiser. Email: christian.kaiser@helmholtz-muenchen.de



els pertain not only to classical radioepidemiological covariables such as radiation

dose or attained age but also to well characterized molecular pathways. By addi-

tionally deploying biological information BBCR models facilitate finer risk strati-

fication for a more personalized risk assessment. They leave behind the one-size-

fits-all approach of descriptive modeling with the downside of more involved model

development. Importantly, predictions from BBCR models can be validated against

molecular measurements. Validated predictions would confirm the model design and

strengthen the link between molecular biology and epidemiology. But the availability

of cancer tissue in good quality from patients with known radiation exposure consti-

tutes a major bottleneck. More ambitious initiative is needed to recover stored tissue

samples and make them available for molecular investigations. To conclude, risk es-

timation will not only on rely on statistical association but will be quantitatively

informed with radiobiological insight. Combined with the AOP framework BBCR

models could improve accuracy and reduce uncertainty of radiation risk estimates

in future research.
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Introduction

Increasing grasp of disease processes leading to cancer and concomitantly the establish-

ment of observational data sets for the general population prompted the development

of biologically-based models of cancer risk (BBCR models) (Armitage and Doll 1957;

Moolgavkar et al. 1980; Moolgavkar and Knudson 1981). In radiation epidemiology the

first deployment of BBCR models occurred with the Life Span Study (LSS) of Japanese

a-bomb survivors decades after their application to observational cancer data (Little

et al. 1992; Little 1996; Kai et al. 1997; Heidenreich et al. 1997). Since the late 1990s

the scope of mechanistic modeling of radiation-induced cancer risk has been extended

to a growing number of epidemiological cohorts which were exposed to different ra-

diation fields of acute and protracted exposure (Shuryak 2019). Rühm et al. (2017)

have extensively reviewed the application of BBCR models to the LSS, post-Chernobyl

cohorts and cohorts of uranium miners from Europe and North America.

Early pioneering studies of radiation risk in the LSS were based on descriptive

models which linked excess rates of cancer incidence and mortality to radiation ex-

posure by statistical association (Wakabayashi et al. 1983; Thompson et al. 1994).

Descriptive models have been refined with longer follow-up for many cancer sites and

remain the mainstay of cancer risk assessment at low doses and dose rates (Preston

et al. 2007). Updates of the LSS analysis with additional risk factors such as smoking

have been published in a series of studies for all solid cancers combined (Grant et al.

2017) and site-specific for cancers of the thyroid, lung, breast and colon (Furukawa

et al. 2013; Cahoon et al. 2017; Brenner et al. 2018; Sugiyama et al. 2020).

To estimate the number of sporadic and radiation-induced cases in radio-

epidemiological cohorts descriptive models rely on convenient functional forms of dose

responses interpreted either additively as Excess Absolute Rates (EARs) or multi-

plicatively as Excess Relative Risks (ERRs). In a dose range between about 0.1 - 2 Gy

a linear response in both risk measures often yields a good description of the observa-

tional data. For purposes of radiation protection the linear response is extrapolated to

very low doses according to the linear no threshold (LNT) paradigm based on plausible

radiobiological arguments (Brenner 2009). Dose response functions in descriptive mod-
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els directly determine age-risk patterns, possibly moderated by dose effect modifiers

such as attained age or age at exposure. Against it, BBCR models1 facilitate a more

comprehensive consideration of biological processes for risk assessment. Compared to

descriptive models dose responses are predicated on biological events such as early

mutations. In this case risk responses are not easily expressed with simple parametric

functions, although linearity at low doses is mostly maintained.

Recently growing awareness of BBCR models is motivated by deeper understand-

ing of the molecular landscape for many tumor types gained with advanced omics

technologies. Outside radiation sciences research under the The Cancer Genome At-

las (TCGA) programme of the National Institutes of Health in the United States

has comprehensively characterized molecular properties of cancer tissue from e.g. the

breast, colon, lung or thyroid (Koboldt et al. 2012; Muzny et al. 2012; Agrawal et al.

2014; Campbell et al. 2016). This characterization provides valuable guidance for the

design of mechanistic model concepts. In the wake of these molecular investigations

the search for radiation biomarkers has been pursued with increased effort (Hall et al.

2017). Such markers have the potential to improve risk assessment when integrated

into radioepidemiological analysis (Kaiser et al. 2016, 2020).

The added value of BBCR models has been pointed out by researchers for a va-

riety of topics in radiation biology and epidemiology, and in clinical context. Dainiak

et al. (2018) recommend the application BBCR models within a systems biology ap-

proach to explore radiation-induced biological effects on multiple length scales of

molecular, cellular and tissue levels. Boice (2019) reports an interest in integrating

the Million Person Study with BBCR models to improve risk estimates at low doses.

Shore et al. (2019) argue that the analysis of radio-epidemiological cohorts informed

by biological concepts produces more reliable risk estimates compared to estimates

from mere statistical association. McMahon and Prise (2019) envisaged a role for

biologically-based models to describe dose responses in radiotherapy. During long-

range space missions astronauts are exposed to a mixed field of ionizing radiation

which includes neutrons and heavy ions, and BBCR models could help to predict

1In radiation research they are often termed Biologically-Based Dose Response (BBDR) models (Preston
2015, 2017). Since not only radiation-induced but in principle all carcinogenic processes are addressed by this

model type the abbreviation BBCR is suggested.
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space-relevant low dose-rate risks of cancer (Shuryak and Brenner 2019).

Against the backdrop of increasing interest in BBCR models their range of ap-

plication in radiation research remains still limited. Therefore, in the present paper

we emphasize their ability to integrate molecular biology with epidemiology in the

field of radiation-induced carcinogenesis. We discuss how BBCR models can harness

information compiled for adverse outcome pathways (AOPs) for more accurate risk

estimation. The AOP concept originates from toxicology and has been proposed re-

cently for application in radiation research (Ankley et al. 2010; Preston 2015, 2017;

Vinken et al. 2017; Chauhan et al. 2019). BBCR models for animals are not considered

since main progress in the last years has been achieved for models involving humans.

We comment on potential benefits for risk assessment with BBCR models related to

the AOP concept and in combination with radiation biomarkers. Data needs and an

optimal study design are laid out. The relevance of biologically-based modeling for

experimental strategies, characterization of persistent radiation effects such as chronic

inflammation and improved determination of risk quantities will be illustrated.

Discussion

Adverse outcome pathways

Concept

The concept of adverse outcome pathways (AOPs) originates from toxicology and de-

scribes disease development with a multi-scale approach (OECD 2013). Ankley et al.

(2010) and Vinken et al. (2017) have summarized the AOP framework for toxicologists.

The depiction of a generic AOP structure (Figure 2 of Vinken et al. (2017)) involves

different levels of biological organization over several length scales. Disease develop-

ment to an adverse outcome is understood as a chain of causes and effects which is

triggered by a molecular initial event (MIE). An adverse outcome typically involves

the tissue or organ level and should be subject to epidemiological risk assessment.

Several key events are lined up along the path to an adverse outcome. In general key

events denote biological footprints of disease development and are accessible for ex-
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perimental or observational investigation. In the radiation context a radiation marker

would constitute a pertinent key event.

Two key events are linked together by a key event relationship (KER) defining

one event as upstream and the other as downstream of the adverse outcome. To in-

tegrate parallel processes within a single AOP, KERs may link both adjacent and

non-adjacent key events. The web-based AOP wiki platform (https://aopwiki.org)

offers a software to implement AOPs online and a compilation of radiation-related

AOPs is already underway. The AOP effectopedia (https://www.effectopedia.org)

is a tool for visual exploration and development of AOPs compliant with the OECD

Users Handbook. The effectopedia intends to facilitate a quantification of AOPs. It

offers an interface to enter dose-and-time response data which can be used for deriving

response-to-response relationships and potentially for designing BBCR models.

Preston (2015, 2017) and Chauhan et al. (2019) proposed to transfer the AOP

framework from toxicology to radiation research. Chauhan et al. (2020) present a case

example for AOPs applied to radiation-related lung cancer. The customary scheme

of multi-scale analysis with BBCR models of radiation-induced cancer is depicted

in Figure 1 which also reproduces the generic AOP structure of human toxicology

from Figure 2 of Vinken et al. (2017). Both approaches can be compared with some

qualifications. The point of contact for a MIE imparted by e.g. a toxin is often well

defined and located. On the other hand ionizing radiation acts on biological processes

over many length scales and not all radiation effects are fully understood.

BBCR models in adverse outcome pathways

The AOP framework favors a process-oriented approach of causes and effects to ex-

plain pathogenesis but does not include risk prediction. The mechanistic concept of

BBCR models appeals to the AOP framework which is, however, more comprehensive.

It involves processes which are not explicitly addressed by BBCR models such as dereg-

ulated signaling pathways or radiation-induced transcriptomic and proteomic changes.

AOPs are embedded in a network structure which is capable of highlighting connec-

tions between similar components in different AOPs. BBCR models are adjusted to

observational data and can potentially connect AOPs with risk assessment. The AOP
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effectopedia offers promising support for future model development. Figure 2 displays

determining factors of a BBCR model. They include classical covariables of descriptive

models, structural model elements and and elements which are interpretable as key

events in AOPs.

Advanced BBCR risk models

Multiple radiation targets

A complex interaction of effects such as radiation-induced early and late mutations,

tissue inflammation or other non-targeted effects may jointly drive healthy cells on

a pathway to cancer. BBCR models offer various radiation targets which with some

imagination can be identified with the above mentioned processes. The radiation risk

results from multiple pathogenic effects which can be accommodated in different ra-

diation targets of a BBCR model (Heidenreich et al. 2004; Kaiser et al. 2014).

Sometimes not all radiation targets can be implemented into a single model due

to issues of low case numbers and parameters highly correlated by interaction. But

several plausible BBCR models with different targets yield a good data description.

In this case the radiation risk can be construed by a superposition of plausible models

with the technique of multi model inference (Kaiser et al. 2012). The purpose of model

superposition is not to generate a superior biological model but to provide are more

comprehensive characterization of uncertainties in risk estimates which can also be

achieved with descriptive models (Walsh and Kaiser 2011).

Multipath models

BBCR models involving radiation exposure have always profited from model develop-

ment for specific cancer sites in the general population. Important progress was made

for cancers of the digestive tract, notably in the colon following the genetic caretaker-

gatekeeper paradigm (Kinzler and Vogelstein 1997; Luebeck and Moolgavkar 2002;

Meza et al. 2008; Luebeck et al. 2013). For colon cancer Little and Wright (2003) have

proposed a mathematical framework which generally applies to many cancer sites and

provides the backbone of multipath models as the most advanced versions of BBCR
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models.

The conceptual design of multipath models relies on broad molecular profiles

which can often be subdivided into two major groups (Kaiser et al. 2014, 2016, 2020;

Castelletti et al. 2019). The differential dynamics of disease development in molec-

ular subgroups and differential dependence on risk factors facilitates the identifica-

tion pathway-specific model parameters in observational data even in the absence of

molecular information. Interestingly, multipath models have been initially applied to

radioepidemiological cohorts but a transfer to cohorts exposed to other risk factors

such as smoking appears possible.

Competing carcinogenic exposure

For many organs radiation exposure is not the most important carcinogenic agent. For

example, in the LSS the majority of lung cancer cases is caused by smoking. Based on

descriptive modeling it has been argued that lung cancer risk is increased interactively

by smoking and radiation (Egawa et al. 2012; Cahoon et al. 2017). Castelletti et al.

(2019) have developed a BBCR model which suggests that the risk for lung adenocar-

cinoma from smoking and radiation arises in distinct molecular pathways. Compared

to descriptive models the BBCR model moderately improved goodness-of-fit. Genomic

analysis of TCGA data strongly supported the conceptual model design of two inde-

pendent pathways characterized by mutations in transducer-mutant (Tmut) genes vs.

receptor-mutant (Rmut) genes (Campbell et al. 2016). In the Tmut-group the KRAS

gene is most frequently mutated with a strong association to smoking. Mutations in

the EGFR gene of the Rmut-group are probably caused by radiation. Based on bi-

ological plausibility gained from molecular analysis and on improved goodness-of-fit

obtained with the BBCR model Castelletti et al. (2019) hypothesize that smoking and

radiation do not influence the risk of adenocarcinoma interactively. Importantly, the

BBCR model provides clear predictions on the distribution of Tmut vs. Rmut cases in

strata of attained age, age at exposure and lung dose which can be tested by molecular

measurements.
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Weaknesses of BBCR models

Although BBCR models represent a step forward in linking molecular biology with

radioepidemiology they possess obvious shortcomings.

State-of-the-art BBCR models keep track of transient changes in cell numbers and

properties but lack a spatial dimension. Therefore, the use imaging data for model

parametrization is not straightforward. In a first attempt a spatial component was

involved in a simulation model to describe radon-induced growth of hyperplasia in

the lung epithelium (Drozsdik and Madas 2019). For a three-dimensional model of

the epithelium the impact of inhaled radon particles on the formation of hyperplasia

was assessed in Monte-Carlo simulations. The aim was to provide a radiobiological

explanation for the typical leveling of the clonal expansion rate with increasing rates

of radon exposure, which has been reported for BBCR models in studies of uranium

miners cohorts (Luebeck et al. 1999; Zaballa and Eidemüller 2016).

Little et al. (2010) showed that not all biological parameters of a BBCR model can

be identified from observational data. Only composite model parameters pertaining to

a combination of biological processes can be gleaned from observational data. Often

fewer than ten parameters can be estimated which limits the complexity of models

and their ability to describe biological processes in detail.

Most importantly, BBCR models cannot overcome the black box dilemma of mod-

eling which also pertains to descriptive models. Different models could explain obser-

vational data almost equally well based on different mechanistic assumptions. A good

fit to the data does not prove that the assumed underlying mechanisms are actually

in force. On the other hand, knowledge from AOPs can support the conceptual design

of BBCR models and thereby shed light into hitherto black boxes.

Radiation biomarkers

Radiation biomarkers have been studied intensively in the past to identify radiogenic

disease pathways (Hall et al. 2017). Some studies report specific molecular signatures

in cancer tissue as induced by radiation. The ratio of genomic inversions and deletions

(indels) over single nucleotide variants was significantly enhanced in four different
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tumor types, which were identified as independent second malignancies after radio-

therapy (Behjati et al. 2016). Unfortunately, this genomic signature of irradiation was

not further refined in a recent large-scale study (Alexandrov et al. 2020).

Thanks to the availability of tissue from the Chernobyl Tissue Bank (CTB) and

other sources the search for radiation markers is probably most advanced for papillary

thyroid cancer (PTC) in patients who were exposed to radioiodine as children and

adolescents after the Chernobyl accident. Gene fusions seem to appear more often

than point mutations in radiation-induced PTCs (Efanov et al. 2018). Overexpression

of the CLIP2 gene has been proposed as an independent radiation marker in post-

Chernobyl PTCs which exhibits a pronounced dose response (Selmansberger et al.

2015a,b). The radiogenic origin of RET/PTC rearrangements is not fully clarified in

post-Chernobyl PTC but is supported in a-bomb survivors (Leeman-Neill et al. 2013;

Hamatani et al. 2008).

Kaiser et al. (2016) have demonstrated with a two-path model for post-Chernobyl

PTC that an estimate for the ERR can be derived from molecular biomarker data

which is equal to the ERR estimate from radioepidemiological analysis. The model

featured two pathways to PTC with distinct molecular profiles of which one was pre-

dominantly related to radiation. They showed that the dose response function from

logistic regression on the prevalence of the molecular CLIP2 radiation marker in 141

Ukrainian PTC patients is directly equivalent to the ERR estimate in the Ukrainian-

American cohort. This cohort consists of about 12,000 participants from Ukraine with

age below 19 yr at the time of the accident. In this example a BBCR model links

molecular biology with epidemiology most tangibly.

Data needs

Public data bases

In many cases molecular profiles of cancer tissue are not available for radioepidemi-

ological cohorts but have already been produced for cancer patients from the gen-

eral population. Potentially interesting molecular data have been newly published

by the International Cancer Genome Consortium (ICGC). The consortium have con-
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tributed pan-cancer molecular analyses across multiple tumor types that provide in-

sight into universal mutational processes and signatures of environmental agents in

cancer genomes (Calabrese et al. 2020; Gerstung et al. 2020; Campbell et al. 2020; Li

et al. 2020; Rheinbay et al. 2020; Alexandrov et al. 2020). Programmes TCGA and

ICGC have at their disposal adequate molecular data which can be exploited to draft

concepts for BBCR models. For example, for squamous cell carcinoma and adenocar-

cinoma in the lung distinct molecular profiles have been reported (Campbell et al.

2016). This fact is reflected in the mechanistic analysis of LSS data which has been

performed exclusively for incidental adenocarcinoma by deliberately denouncing larger

case numbers from all lung cancer cases combined (Castelletti et al. 2019).

Generally, large-scale genomics studies of diverse epidemiological cohorts com-

bined with deep phenotyping and imaging provide an increasing number of publicly

available data sets and generate insights into biological mechanisms of disease pro-

gression (Zeggini et al. 2019). From these multidimensional data sets blueprints for

mechanistic models can be possibly gleaned with machine learning algorithms for later

application in radioepidemiological cohorts.

Imputation of missing data

Usually risk factors other than radiation exposure are more influential for carcinogen-

esis in a specific organ. As a case in point tobacco consumption caused the majority

of lung cancer cases in the LSS with radiation exposure in second place (Cahoon et al.

2017). Descriptive models can cope with missing smoking information by account-

ing for unknown smoking status at the cost of slightly biased risk estimates. BBCR

models on the other hand depend upon complete information for major sources of

exposure. Otherwise the claim of biologically-based modeling would make no sense.

Consequently, the BBCR model for lung cancer from smoking and radiation in the LSS

was developed with imputed smoking information (Furukawa et al. 2017; Castelletti

et al. 2019).
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Study design

Longitudinal cohort studies providing both individual epidemiological risk factors and

cancer tissue for dedicated molecular profiling would form the optimal basis for mech-

anistic risk analysis involving BBCR models. Such conditions are realized for post-

Chernobyl cohorts in collaboration with the CTB storing thyroid cancer tissue. Al-

though the LSS facilitates high quality radioepidemiological analysis, effective inter-

lock with molecular investigations has been achieved rarely. Systematic organization

and preparation of material from LSS-related biobanks could possibly stimulate future

research.

The design of case-control studies with focus on relative risks poses a difficulty

for BBCR models which are parameterized to yield full hazard or survival functions.

Heidenreich et al. (2002) have shown that BBCR models can still be applied in case-

control studies when plausible assumptions on the parameters of the baseline hazard

are made.

Quality management

Uncertainties of risk estimates are still large and efforts are made to reduce them.

The most obvious approach is to increase sample size by pooling of cohorts (Leuraud

et al. 2015; Laurent et al. 2016; Boice et al. 2019). However, inhomogeneities between

cohorts may constitute a challenge for pooled data sets and insufficient understanding

of incompatibilities could constitute a source for bias. Study protocols should apply

comparable methods for all participants within and between cohorts. In general, the

reliability and robustness of risk estimates is strongly influenced by the data compo-

nent with the lowest quality. Hence, it is important to ensure similar levels of quality

between components such as organ-specific dosimetry, case ascertainment and compi-

lation of additional risk factors (or confounders) pertaining to socioeconomic status

and lifestyle (Blettner 2015). The same diligence should be reserved for the generation

of molecular profiles.

In radiation research two seemingly opposite requirements on data preparation

need to be addressed. For general application, guidelines in radiation protection, e.g.

on dose limits should be based on the largest possible body of evidence. This requires
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aggregation of data from different sources which could be gained from pooled or meta

analysis.

On the other hand, detailed investigation of radiobiological processes leading to

cancer requires adequate resolution in space and time which under cost constraints can

only be achieved with smaller sample size. Modeling of different subtypes of cancer

is best performed with incidence data with precise diagnosis including histology. For

mortality data different treatment modalities may cause an ambiguous interpretation

of the outcome.

To sum up, mechanistic analysis would favor an approach of well-balanced data

quality in all components over an approach which emphasizes the improvement of

selected data features such as statistical power or dosimetry while neglecting others.

Impact on radiation protection

Probability of causation

Risk estimation with BBCR models has a direct impact on determining the probability

of causation (POC). This risk measure is used in radiation protection to quantify the

probability of radiation having caused a diagnosed cancer. It is routinely calculated

to substantiate compensation claims with software packages such as IREP from the

United States and the German ProZes (Kocher et al. 2008; Ulanowski et al. 2016).

The multipath models for PTC and lung adenocarcinoma feature two distinct

molecular pathways of which only one pathway was associated with radiation exposure

(Kaiser et al. 2016, 2020; Castelletti et al. 2019). This dichotomy entails additive

pathway-specific hazard functions and can be exploited to improve the accuracy of

POC determination. The conventional POCcon is given by the ratio h
(1)
r /htot with

h
(1)
r and htot denoting the radiation-induced hazard in the first pathway and the total

hazard, respectively. It does not fully account for the pathway-specific incidence, only

in addition to the sporadic hazard h
(1)
0 . The total hazard consists of three components

htot = h
(1)
r + h

(1)
0 + h(2). The hazard h(2) in the second pathway is not radiation-

dependent and can be omitted in the POC definition.

Now we introduce the pathway-specific POC(1) = h
(1)
r /(h

(1)
r + h

(1)
0 ) > POCcon.
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Compared to POCcon by harnessing molecular profiles POC(1) yields a better approx-

imation of a sharp step function, which provides precise evidence for the radiogenic

origin of PTC. As a starting point Kaiser et al. (2020) have discussed a practical

application of risk assessment for PTC incidence after the Fukushima accident.

Dose and dose rate effectiveness factor

Based on broad radiobiological knowledge an upward curvature for the risk response

at moderate-to-high doses and high dose rates is often assumed for low-LET radiation.

Even if a linear dose response yielded the best fit with a descriptive model at moderate-

to-high doses and high dose rates, a dose and dose rate effectiveness factor (DDREF)

is applied to appropriately modify the response at low doses and dose rates. At present

the best estimate for a DDREF is still uncertain and may even include the value of

one (Rühm et al. 2015).

For purposes of radiation protection the DDREF issue merits a revision with

BBCR models. The assumption of upward curvature can be tested with biologically-

based dose responses. In BBCR models linear responses on the biological level (i.e.

for mutation rates) do not necessarily produce linear responses on the epidemiological

risk level. To date, the actual shape of organ-specific risk responses over a wider dose

range has not been investigated. A systematic response evaluation with published

organ-specific BBCR models would help to assess the validity of the upward-curvature

assumption and the application of DDREFs.

Future research

Guidance for experiments

Facilitated by growing availability of omics technologies the search of radiation-induced

signals in molecular data was often conducted without pertinent hypotheses. Although

such search has merits of its own it proved quite costly due to the high number of neg-

ative and false positive results. BBCR models offer interfaces for data from a variety of

sources including molecular profiles. Based on this integrating property they are able

to generate hypotheses on the prevalence of such profiles in cancer tissue of cohort
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participants. For example, a BBCR model for PTC incidence in the LSS provides a

detailed prediction of radiation marker prevalence stratified by attained age, age at

exposure and thyroid dose (Kaiser et al. 2020). The BBCR model for lung adenocar-

cinoma in the LSS predicts a dose response for molecular damage in receptor-mutant

genes, most notably EGFR (Castelletti et al. 2019). For colon cancer in the LSS the

BBCR model yields a detailed prediction of the number of cases burdened with either

microsatellite instability or chromosomal instability (Kaiser et al. 2014). Hence, with

BBCR models clearly defined hypotheses are formulated to guide molecular measure-

ments which can validate or falsify model concepts.

Intermediate stages

Experiments and measurements are performed either shortly after radiation exposure

or in the event of a clinically relevant tumor. Carcinogenesis from early oncogenic

mutations to full-blown cancer takes several decades but subclinical information on

disease development during this long period is scarce (Luebeck et al. 2013). Neverthe-

less, data on the intermediate stages of carcinogenesis are urgently needed for more

complete model parametrization. For example, measurements on adenoma as preneo-

plastic lesions for colon cancer could help to estimate model parameters pertaining to

clonal expansion (Luebeck et al. 2019). The BBCR model for colon cancer predicts

an influence of radiation on clonal growth which could be checked with data of ade-

noma prevalence in LSS participants (Kaiser et al. 2014). The potential benefits of

evaluating routinely generated data from colonoscopies or from CT scans to obtain

information on model parameters pertaining to intermediate stages of disease devel-

opment should be investigated. Such data would shed light into the prolonged time

tunnel of carcinogenesis from early mutations to tumor growth.

Persistent radiation effects and radiation-associated inflammation

Radiation can modulate cancer initiation, progression, and transformation in multiple

ways thereby leading to multiple cancer types. Interpreted in the AOP framework

radiation is able to trigger multiple MIEs as hinted by Figure 1. The tumor cell killing

effects of relatively high radiation doses against established cancers are well known
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and are reviewed elsewhere (Schaue and McBride 2015). Widely studied in cellular and

animal models as well as in human cohorts is acute and persistent genomic damage

from radiation exposure such as double-stranded DNA breaks, indels, and balanced

inversions, or gene fusions (Rothkamm and Löbrich 2002; Behjati et al. 2016; Efanov

et al. 2018).

BBCR models have consistently shown evidence for chronic promoting effects in

preneoplastic lesions not only for protracted but also for acute radiation exposure.

Radiation-induced promotion of tumor-initiated cells in growing clones has been re-

ported for both low-LET and high-LET radiation (Castelletti et al. 2019; Kaiser et al.

2012, 2014, 2020; Curtis et al. 2001; Heidenreich 2002; Heidenreich et al. 2001; Hei-

denreich and Paretzke 2008). Probably the net increase in growth is not caused by

accelerated cell division but by reduced cell inactivation. These observations can be

ascribed to radiation-induced changes in the microenvironment of tissue cells.

Confirming mechanistic model predictions, experimental evidence from a mouse

model showed that radiation can favor the clonal expansion of mutated cells over

normal adjacent ones because they are more resistant to oxidative stress (Fernandez-

Antoran et al. 2019). The subclinical inflammatory status of eight inflammation-related

cytokines and other plasma-related markers in LSS participants remained chronically

elevated decades after exposure (Hayashi et al. 2012). How acute radiation exposures

result in perpetual inflammation is obscure, but epigenetic changes, cytoplasmic chro-

matin, and radiation effects on non-epithelial cells that contribute to the tumor stroma

are likely key factors in this phenomenon (Bald et al. 2014; Schaue and McBride 2015;

Gandhi and Chandna 2017; Dou et al. 2017).

Other organs

Multipath models are tailored for specific organs, histology and molecular profiles.

There is no one-size-fits-all BBCR model and new organ-specific models need novel

conceptual designs based on observational and molecular data of high quality.

As a case in point the female breast is a very radiosensitive organ and risk projec-

tion for secondary malignancies after radiotherapy are of clinical relevance (Brenner

et al. 2018). BBCR models have already been developed for the LSS and the Swedish
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haemangioma cohort (Kaiser et al. 2012; Eidemüller et al. 2015). However, these mod-

els do not reflect the complexity of molecular profiles and their relation to morpholog-

ical phenotypes (Koboldt et al. 2012; Heng et al. 2017). More comprehensive BBCR

models for radiation-induced breast cancer need a better grasp on the complexity of

the disease process.

Conclusion

Future risk assessment will not only on rely on statistical association but will be quan-

titatively informed with radiobiological insight. To implement this claim we propose

to extract information from AOPs which can be used at first quantitatively to de-

velop conceptual model designs. In a more advanced stage BBCR models might apply

quantitative data provided by the AOP effectopedia, i.e. in the form of dose response

relations for biological processes. Generally speaking, BBCR models could harness ra-

diobiological knowledge of AOPs to estimate radiation risk, but practical methods still

need to be worked out.

Adequate BBCR models are embedded in a high-dimensional data environment

shown in Figure 2. Informed by these data BBCR models provide a finer stratification

of the radiation risk for a more personalized risk assessment. They leave behind the

one-size-fits-all approach of descriptive modeling with the downside of more involved

and time-consuming model development. As a gain risk estimates based on mechanistic

dose responses (KERs in the AOP framework) are based on both statistical associa-

tion and biological plausibility. Descriptive models associate fewer epidemiological risk

factors with broader outcome i.e. comprising all solid cancers. Their risk estimates are

derived on more global terms and appeal to the demands of radiation protection.

Importantly, predictions from BBCR models can be validated against molecular

measurements with standard omics procedures. Validated model results strengthen

the link between molecular biology and epidemiology. However, availability of cancer

tissue in good quality from patients with know radiation exposure constitutes a major

bottleneck. A comprehensive survey of data archived from previous radiation stud-

ies could help to address this shortcoming, especially if data were easily accessible in

17



electronic form from well curated biobanks. Ambitious initiative is needed to recover

stored tissue samples and make them available for molecular investigations. To con-

clude, application of advanced BBCR models informed by observational and molecular

data will improve accuracy and reduce uncertainty of radiation risk estimates in future

research.
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Figures

Figure 1. Juxtaposition of adverse outcome pathways (AOPs) and biologically-based modeling in radiation
research. In the top row the generic AOP structure with molecular initial events (MIEs) and key events (KEs) is

inspired by Figure 2 of Vinken et al. (2017); biological objects for experimental and observational investigation,

which are typically addressed in BBCR models, are given in the center row; selected biological processes acting
on these objects are cited in the bottom row; jagged arrow symbolizes a field of ionizing influencing biological

processes.
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Figure 2. Determining factors of a Biologically-Based Cancer Risk (BBCR) model for radiation risk assess-
ment. Classical covariables of descriptive models in red box, black boxes contain structural model elements,

blue boxes display key events of an adverse outcome pathway (AOP).
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