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Context: There is a need for novel biomarkers and better understanding of the 
pathophysiology of diabetic kidney disease.

Objective: To investigate associations between plasma metabolites and kidney function in 
people with type 2 diabetes (T2D).

Design: 3089 samples from individuals with T2D, collected between 1999 and 2015, from  
5 independent Dutch cohort studies were included. Up to 7 years follow-up was available in 
1100 individuals from 2 of the cohorts.

Main outcome measures: Plasma metabolites (n = 149) were measured by nuclear magnetic 
resonance spectroscopy. Associations between metabolites and estimated glomerular filtration 
rate (eGFR), urinary albumin-to-creatinine ratio (UACR), and eGFR slopes were investigated 
in each study followed by random effect meta-analysis. Adjustments included traditional 
cardiovascular risk factors and correction for multiple testing.

*These authors contributed equally.

ISSN Print 0021-972X ISSN Online 1945-7197
Printed in USA
© Endocrine Society 2020. All rights reserved. For permissions, please e-mail: journals.
permissions@oup.com
Received 27 November 2019. Accepted 8 April 2020.
First Published Online 9 April 2020.
Corrected and Typeset 25 May 2020.

Copyedited by: OUP

D
ow

nloaded from
 https://academ

ic.oup.com
/jcem

/article-abstract/105/7/dgaa173/5818360 by G
SF H

aem
atologikum

 user on 30 June 2020

http://orcid.org/0000-0002-5331-9168
http://orcid.org/0000-0002-6261-9445
http://orcid.org/0000-0002-7464-3354
http://orcid.org/0000-0002-5331-9168
http://orcid.org/0000-0002-6261-9445
http://orcid.org/0000-0002-7464-3354


2  Tofte et al  Metabolomics markers of impaired renal function J Clin Endocrinol Metab, July 2020, 105(7):1–13

Results: In total, 125 metabolites were significantly associated (PFDR = 1.5×10–32 − 0.046; 
β = −11.98-2.17) with eGFR. Inverse associations with eGFR were demonstrated for branched-
chain and aromatic amino acids (AAAs), glycoprotein acetyls, triglycerides (TGs), lipids in 
very low-density lipoproteins (VLDL) subclasses, and fatty acids (PFDR < 0.03). We observed 
positive associations with cholesterol and phospholipids in high-density lipoproteins (HDL) and 
apolipoprotein A1 (PFDR < 0.05). Albeit some metabolites were associated with UACR levels 
(P < 0.05), significance was lost after correction for multiple testing. Tyrosine and HDL-related 
metabolites were positively associated with eGFR slopes before adjustment for multiple testing 
(PTyr = 0.003; PHDLrelated < 0.05), but not after.

Conclusions: This study identified metabolites associated with impaired kidney function in T2D, 
implying involvement of lipid and amino acid metabolism in the pathogenesis. Whether these 
processes precede or are consequences of renal impairment needs further investigation. (J Clin 
Endocrinol Metab 105: 1–13, 2020)
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D iabetic kidney disease (DKD) is a frequent com-
plication of diabetes. DKD may lead to end-stage 

renal disease (ESRD) and is independently associated 
with a higher risk of all-cause and cardiovascular mor-
tality (1). DKD is often asymptomatic until the very late 
stages. Therefore, yearly screening of individuals with 
type 2 diabetes (T2D) with measurement of kidney 
functions through estimated glomerular filtration rate 
(eGFR) and urinary albumin-to-creatinine ratio (UACR) 
is recommended in clinical practice. eGFR and UACR 
are surrogate markers of DKD (2); however, UACR may 
not be affected in all individuals with DKD and the de-
cline in eGFR, albeit gradual, is majorly detectable in 
the later stages of DKD (chronic kidney disease [CKD] 
stage 3 onward). Moreover, targeted treatment options 
for DKD are missing and, thus, are currently limited to 
control of traditional cardiovascular risk factors such as 
levels of blood pressure, blood lipids, and blood glucose 
(3). There have been several genome-wide association 
studies for DKD and kidney function (4-7) suggesting 
a genetic component. There is an urgent need to iden-
tify lifestyle-associated biomarkers for early detection 
of individuals at a risk for DKD and related metabolic 
functions (8). Using surrogate quantitative measures 
for DKD (kidney function decline and albuminuria) 
may offer greater statistical power and a better under-
standing of DKD pathophysiology, further leading to 
discovery of novel treatment targets.

Advances in metabolomics technologies have allowed 
for a more in-depth characterization of circulating me-
tabolites, thereby adding information simultaneously on 
multiple metabolic pathways and allowing for a better 
understanding of the underlying metabolic processes 
in DKD (9). Additionally, this also adds to the missing 
lifestyle information required to uncover novel disease 
mechanisms. Nuclear magnetic resonance (NMR) 

spectrometry provides a platform for the targeted meas-
urement of amino acids, lipoprotein subclasses, and 
other metabolites (10,11).

Previous studies involving NMR metabolomics and 
DKD have mainly been performed in individuals with 
type 1 diabetes (12-16). Two recent European studies, 
using NMR metabolomics in T2D, demonstrated 
that tyrosine is a marker of microvascular complica-
tions, but DKD was not investigated separately (17). 
Second, Barrios et al demonstrated associations of sev-
eral metabolites, mainly lipids, amino acids, and energy 
metabolites, with measures of kidney function and in-
cident DKD in 926 persons with T2D and 4838 per-
sons without diabetes (18), although only taking into 
account a limited number of relevant confounders.

The aim was to investigate associations between plasma 
metabolites and kidney function in 5 independent Dutch 
cohorts of individuals all diagnosed with T2D. This study 
is hypothesis-generating and may identify more metabolic 
traits of both amino acids and lipids in DKD.

Materials and methods

Participants
In total, 3089 persons with T2D from 5 independent Dutch 

cohort studies, the Hoorn Diabetes Care System (DCS) West-
Friesland (19), the Maastricht study (20), the Rotterdam study 
(RS) (21), the Netherlands Epidemiology of Obesity (NEO) 
study (22), and the Cohort of Diabetes and Atherosclerosis 
Maastricht study (CODAM) (23) were included. The selec-
tion processes of the independent studies have previously been 
described in detail; a brief description of the selection from 
each cohort for the present study, is provided in the following 
paragraphs. The studies were all conducted following the 
Declaration of Helsinki, the local ethics committees approved 
the original protocols, and all participants gave written in-
formed consent.
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The Hoorn Diabetes Care System West-Friesland
The DCS provides diabetes care to people with T2D living 

in the West-Friesland region, who yearly visit the DCS re-
search center (19). At the yearly visits, a medical exam is per-
formed, and blood is drawn for biochemistry. Individuals are 
advised on health and treatment and have been invited to par-
ticipate in the DCS research and biobank (n =  5000+). For 
the present study, a random sample of individuals from the 
DCS biobank (n = 750) as well as a selected group of individ-
uals (n = 245) was included, all with available plasma samples 
collected in 2008-2009. The selected group consisted of in-
dividuals with known diabetes complications and individuals 
who were unable to reach the treatment target of hemoglobin 
A1c (HbA1c) < 53 mmol/mol. Annual measurements of eGFR 
were available for calculation of eGFR slopes (median 4 years, 
interquartile range 2-6 years) in all participants.

The Maastricht Study
The Maastricht Study is a prospective population-based 

cohort study of individuals aged between 40 and 75 years in 
the southern part of the Netherlands. Inclusion began in 2010 
and is ongoing (20). The cohort is enriched with people with 
T2D. The study is an in-depth phenotyping study focusing on 
etiology, complications, and comorbidities of T2D. For the 
present study, all participants with T2D and available plasma 
samples (n = 848) were included.

The Rotterdam Study
The Rotterdam Study is a prospective population-based 

cohort study in the Ommoord district in Rotterdam (21). All 
inhabitants in the district, aged above 55 years, were invited 
to participate in this study since 1989, with visits being per-
formed every 3 to 4 years. The plasma samples analyzed for 
the present study were from RS 1-4 and RS 2-2 cohorts (2002-
2005) including people with T2D (n = 426).

The Netherlands Epidemiology of Obesity Study
The NEO study is a prospective population-based cohort 

study, including individuals aged between 45 and 65  years 
(n = 6671) from 2008 to 2012, designed for deep phenotyping 
of pathways leading to obesity-related diseases (22). In the 
present study, all individuals with T2D at baseline (n = 675) 
were included.

The cohort of diabetes and atherosclerosis 
Maastricht study

The CODAM study is a prospective observational cohort 
study of individuals at increased risk of T2D and cardiovas-
cular disease aged above 40 (n = 574) aiming to investigate the 
effects of glucose metabolism, lipids, lifestyle, and genetics on 
(development of) T2D and cardiovascular complications (23). 
Baseline samples were collected from 1999 to 2002, and eGFR 
measurements were available from a follow-up visit 7 years 
after baseline. All individuals with T2D and available plasma 
samples (n = 145) were included in the present study.

Outcome
The eGFR was calculated from serum creatinine meas-

ured locally by the Chronic Kidney Disease Epidemiology 

Collaboration equation (24). eGFR slope was calculated 
based on measurements from annual visits in DCS, in partici-
pants with at least 2 measurements and a minimum follow-up 
of 3 years and from the 7-year follow-up visit in CODAM.

UACR was measured in first-morning void spot urine in 
NEO, CODAM, and DCS. In the Maastricht study, urine 
albumin excretion (UAE) was based on the average of two 
24-hour urine collections. Urine albumin excretion was not 
measured in the Rotterdam study. People were stratified as 
having microalbuminuria if UACR was ≥2.5  mg/mmol for 
men and 3.5 mg/mmol for women. In the Maastricht study, 
microalbuminuria was present if the UAE was ≥30  mg/d. 
Macroalbuminuria was defined as UACR  ≥  25  mg/mmol 
(men) and 35 mg/mmol (women), and in the Maastricht study, 
as UAE ≥ 300 mg/d.

Standardized methods measured levels of HbA1c, serum/
plasma cholesterol, and TG. Brachial blood pressure was 
measured after at least 5 min rest with an automatic device 
and an appropriately sized cuff. Body mass index (BMI) was 
calculated as weight in kilograms divided by height in meters 
squared. Smoking status was defined as yes or no current 
smoker. Diabetes duration was obtained from medical records 
or self-reported. Medication use was registered according 
to Anatomical Therapeutic Chemical classification coding: 
statins (C10AA, C10BA, C10BX), other lipid-modifying 
agents (C10AB, C10AC, C10AD, C10AX, C10BA), renin-
angiotensin system–blocking agents (angiotensin-converting 
enzyme inhibitors and angiotensin II receptor blockers; C09), 
all other antihypertensives (C02, C03, C07, C08), oral glucose 
lowering drugs (A10B; mainly metformin and sulfonylurea), 
and insulins (A10).

Metabolic biomarker profiling
The fasted ethylenediamine tetra-acetate plasma samples 

were stored at −80°C until analysis. The sample storage time 
varied from 1-15 years. Metabolic biomarkers (n = 149) were 
quantified from plasma samples of 3089 individuals using 
high-throughput proton NMR metabolomics (Nightingale 
Health Ltd, Helsinki, Finland). The method provides concur-
rent quantification of lipids, 14 lipoprotein subclasses, fatty 
acid composition, and various low-molecular metabolites, 
including amino acids, ketone bodies, and gluconeogenesis‐re-
lated metabolites in molar concentration units (25). The sam-
ples do not undergo any extraction steps and the serum samples 
are never in contact with the NMR detector; thus, there is no 
significant batch effect in the NMR-based metabolite quanti-
fication. Since the preanalytical conditions may vary slightly 
between different studies, it is recommended to meta-analyze 
the data as has been done in the present study. Details of the 
experimentation and applications of the NMR metabolomics 
platform have been described previously (10,11). Metabolites 
with equal to or less than 20% missing values were included. 
After excluding missing data (on metabolomics measures), 
we performed quantile normalization (using the R functions, 
“scale” and “quantile”) where we added the 10th percentile to 
the normalized values, on natural log-transformed data (nor-
mally distributed).

To check the relatedness between individual metabolite 
levels found associated with renal function, we performed 
a sensitivity analysis (pairwise correlation) within the DCS 
 cohort (n = 995).
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Statistical analyses
Continuous variables were reported as means ± standard 

deviation (SD) for normally distributed data, skewed data 
were reported as median (interquartile range). Categorical 
variables were presented as total numbers with corresponding 
percentages. The combined summary for all variables was per-
formed using a weighted arithmetic mean method.

Cross-sectional analyses of each cohort using linear regres-
sion were performed to assess associations of single plasma 
metabolites with 2 continuous outcome variables: eGFR and 
UACR/UAE. Cross-sectional analyses of each cohort using 
logistic regression were performed to test associations be-
tween single plasma metabolites and the following two cat-
egorical outcomes related to deteriorating kidney function: 
eGFR < 60 mL/min/1.73m2 and micro- or macroalbuminuria. 
Longitudinal eGFR measurements were used to calculate an-
nual slopes for 2 of the cohorts (DCS and CODAM). Linear 
regression analysis was performed to assess associations 
between metabolites and eGFR slopes. Adjustment of po-
tential confounders included age, sex, use of statins, other 
lipid-modifying agents, oral glucose-lowering medications, 
insulins, renin-angiotensin system–blocking agents and other 
antihypertensives, systolic blood pressure, BMI, smoking, dia-
betes duration, HbA1c, and baseline UACR/UAE or eGFR, 
where appropriate. In RS, no urine albumin or HbA1c assess-
ment was performed, and no data on diabetes duration was 
available. This cohort was, therefore, only included in ana-
lyses of eGFR and not adjusted for UAER, diabetes duration, 
or HbA1c. Results from NEO were not adjusted for diabetes 
duration because of many missing observations. Individual 
small-sized cohorts (n < 200) having a low number of cases 
(ncases_eGFR and ncases_UACR ≤ 10%) while running the logistic 
regression models were excluded from the meta-analysis (25). 
Also, individuals with missing covariate data were excluded 
from each analysis.

A random effects meta-analysis of the respective study sets 
was performed using the R meta-package (Meta v4.8-4) for 
cross-sectional and longitudinal data (eGFR slopes). We com-
pared the results from the meta-analyses of 4 cohorts in the 
logistic models and of 5 cohorts in the linear models with the 
results from the meta-analyses including only the 3 cohorts 
with all covariates available (DCS, Maastricht study, and 
CODAM). For this analyses, a meta regression model in the 
R package called metaphor (26) was applied. We used a fixed 
effects model because the (residual) heterogeneity within each 
subset has already been accounted for by fitting random ef-
fects models (27). The fixed effects model did not substantially 
change the results (P > 0.05) (25), and therefore data from the 
meta-analyses including data from all 5 cohorts are presented, 
unless stated otherwise. Further, sensitivity analyses were per-
formed in the largest cohort (the DCS cohort) (i) excluding 
persons aged above 75 years and (ii) including only individ-
uals with eGFR ≥ 60 mL/min/1.73m2.

Correction for multiple testing was performed by the false-
discovery rate (FDR) method (28). A 2-tailed FDR-adjusted 
P-value (PFDR) < 0.05 was considered statistically significant. 
Data analysis was performed with R-Studio v1.0.143.

For sensitivity analysis pairwise correlation coefficients 
(r) using Pearson’s method were estimated for the scaled, 
nonmissing metabolite levels associating with eGFR (n = 125). 
These measures (r) were plotted as a heatmap using the 

“heatmap.2” function in the statistical R package “gplots.” 
The dendrogram (hierarchical clustering) based on correlation 
as a distance measure and the metabolite groupings (n = 14) 
were also added to the correlation heatmap.

Results

In the combined populations, 59% of the individuals 
were men, the mean ± SD age was 64 ± 8 years, and 
the mean eGFR was 82 ± 16 mL/min/1.73m2. Clinical 
characteristics for each participating cohort and their 
combined summary are presented in Table 1. The largest 
differences between cohorts were observed in means of 
age, systolic blood pressure, diabetes duration, and use 
of different classes of medications. Heterogeneity be-
tween cohorts on baseline characteristics was accounted 
for using random effects meta-analysis. Overall, at base-
line, 332 individuals had microalbuminuria, 40 had 
macroalbuminuria, 293 had eGFR 30–60 mL/min/1.73 
m2, and 7 had eGFR ≤ 30 mL/min/1.73 m2. The eGFR 
slopes were based on a median of 4 measurements in 
994 participants in DCS and 2 measurements in 106 
participants in CODAM, respectively. The mean per-
centage of missing metabolite values in each of the co-
horts was between 0.1% and 0.6% (range 0%-19%).

Cross-sectional associations between metabolites 
and eGFR

As a continuous measure, eGFR was significantly as-
sociated with 125 metabolites (Fig. 1, Table 2) (25). The 
AAAs phenylalanine (β  =  −3.05, PFDR  =  1.5  ×  10−32, 
Phet = 0.99), and histidine (β = −1.11, PFDR = 3.6 × 10−5, 
Phet  =  0.5), the branched-chain amino acid (BCAAs) 
isoleucine (β = −1.92, PFDR = 3.8 × 10−10, Phet = 0.49) 
and leucine (β = −1.16, PFDR = 1.4 × 10−3, Phet = 0.22), 
and the nonessential amino acid glutamine (β = −1.54, 
PFDR = 8.2 × 10−10, Phet = 0.60) were strongly and in-
versely associated with eGFR, while the AAA tyrosine 
was positively associated with eGFR. The glycolysis-
related metabolites glucose and lactate were also 
positively associated with eGFR, while citrate and glyco-
protein acetyls were inversely associated with eGFR 
(PFDR  <  0.001). Inverse associations with eGFR were 
observed for acetoacetate, measures of fatty acids, TGs 
in all lipoprotein subclasses, cholesterols, phospholipids 
in and particle concentrations of VLDL, intermediate-
density lipoprotein, low-density lipoproteins (LDL), 
sphingomyelins, and apolipoprotein B (PFDR  <  0.05). 
Cholesterol and phospholipids in and particle concen-
trations of HDL subclasses, HDL particle size, and 
apolipoprotein A1 were positively associated with 
eGFR (PFDR < 0.05).
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In the logistic regression analyses of having a low 
eGFR  <  60  mL/min/1.73 m2, significant results were 
demonstrated for 106 metabolite measures, of which 
104 overlapped with those significant in the linear re-
gression analyses (25). Phenylalanine was the strongest 
signal associated with the maximum likelihood of 
having low eGFR in the logistic regression model (odds 
ratio = 1.67, PFDR = 4.1 × 10−13, Phet = 0.38).

Cross-sectional associations between metabolites 
and albuminuria

UAER/UAE level was associated with 11 metabol-
ites (P < 0.05) (Fig. 2) of which 9 were also associated 
with eGFR. Positive associations with glucose, glyco-
protein acetyls, phosphatidylcholine, and 2 lipid meas-
ures in VLDL subclasses were demonstrated. Citrate, 
glutamine, and (free) cholesterol and phospholipids in 
very large HDL were negatively associated with UACR. 
Significance for all tested associations was lost after cor-
rection for multiple testing (25). In the logistic regression 
analyses, albuminuria (micro- or macroalbuminuria) 
was associated with 22 metabolite measures (P < 0.05) 
of which 18 were also associated with eGFR. Tyrosine 
was inversely associated with albuminuria while glu-
cose; glycoprotein acetyls; phosphoglycerides; phos-
phatidylcholine; apolipoprotein B; content of TGs in 

lipoproteins, total, free, and VLDL cholesterol; some 
lipids in (very) small VLDL; and several fatty acids were 
positively associated with albuminuria. However, after 
adjustment for multiple testing, the results were no 
longer significant (25). In the Maastricht study, where 
albuminuria was measured in 24-h urine samples, 
we observed minor changes to βs and P-values when 
adjusting for eGFR. Moreover, the heterogeneity be-
tween studies was small.

Associations between metabolites and eGFR slope
Eleven metabolites were associated with eGFR 

slopes (P < 0.05) before adjustment for multiple testing. 
Tyrosine and HDL related metabolites were positively 
associated with eGFR slopes and thereby demonstrated 
the same directionality as in the cross-sectional ana-
lyses. However, after adjustment for multiple testing, the 
results were no longer significant (25).

Sensitivity analyses
Sensitivity analyses, including only the DCS cohort 

and excluding individuals aged above 75 years (n = 163), 
did not substantially affect the results. This result sug-
gests that the observed associations were not driven by 
age. We also did not observe significant differences in 
the metabolites most significantly associated with eGFR 

Figure 1. Volcano plot of eGFR and associated metabolites. The Y axis represents −log10 (PFDR value) for metabolite eGFR association. Blue line 
represents P-value = 0.05, and red line, PFDR-value = 0.05. Metabolites are mmol/L, log transformed. PFDR values < 1.0 × 10−10 are depicted as 
1.0 × 10−10, beta estimates ≥−3.0 are depicted as −3.0 to fit into the figure. Top 10 most significant metabolites are named. Each dot signifies 
1 metabolite, and the size of the dot relates to the observed estimates from the random effects meta-analysis. Color of the dot determines the 
metabolite group listed under the color key.
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Table 2. Metabolites Associated with eGFR (n = 3079)—Divided by Metabolite Subgroups

Metabolites β SE P PFDR Phet

Amino acids
 Phenylalanine −3.05 0.25 2.0 × 10−34 1.5 × 10−32 0.99
 Isoleucine −1.92 0.31 3.9 × 10-10 1.5 × 10−8 0.30
 Glutamine −1.54 0.25 8.2 × 10-10 2.5 × 10−8 0.49
 Histidine −1.11 0.25 1.0 × 10−5 3.6 × 10−5 0.50
 Leucine −1.16 0.35 8.4 × 10−4 1.4 × 10−3 0.22
 Tyrosine 0.62 0.26 1.7 × 10−2 2.1 × 10−2 0.68
Inflammation
 Glycoprotein acetyls, mainly a1-acid glycoprotein −1.68 0.38 8.9 × 10−6 3.5 × 10−5 0.10
Glycolysis related metabolites
 Citrate −2.27 0.47 1.4 × 10−6 8.9 × 10−6 0.02
 Lactate 1.04 0.25 2.6 × 10−5 8.1 × 10−5 0.47
 Glucose 1.12 0.38 3.0 × 10−3 5.0 × 10−3 0.99
Ketone bodies
 Acetoacetate −0.77 0.30 1.0 × 10−2 1.0 × 10−2 0.99
Fatty acids
 18:2 Linoleic acid −1.64 0.29 1.3 × 10−8 2.2 × 10−7 0.37
 Omega-6 fatty acids −1.28 0.30 1.6 × 10−5 5.4 × 10−5 0.33
 Polyunsaturated fatty acids −1.17 0.31 1.6 × 10−4 3.4 × 10−4 0.29
 Monounsaturated fatty acids; 16:1, 18:1 −1.10 0.32 6.4 × 10−4 1.1 × 10−3 0.21
 Total fatty acids −1.06 0.34 2.0 × 10−3 3.3 × 10−3 0.19
 Saturated fatty acids −0.73 0.35 3.9 × 10−2 4.6 ×10−2 0.16
Lipoprotein particle sizes
 HDL_D 1.74 0.38 5.7 × 10−6 2.4 × 10−5 0.11
 VLDL_D −1.07 0.30 3.0 × 10−4 5.0 × 10−4 0.29
Cholesterol
 Total cholesterol in HDL 2.05 0.31 3.2 × 10−11 1.6 × 10−9 0.29
 Total cholesterol in HDL2 2.17 0.37 5.7 × 10−9 1.3 × 10−7 0.13
 Total cholesterol in VLDL −1.81 0.38 2.1 × 10−6 1.1 × 10−5 0.10
 Remnant cholesterol (non-HDL, non-LDL -cholesterol) −1.89 0.46 3.9 × 10−5 1.1 × 10−4 0.19
 Free cholesterol −1.12 0.29 1.4 × 10−4 3.1 × 10−4 0.78
 Total cholesterol in IDL −0.88 0.29 2.2 × 10−3 3.7 × 10−3 0.52
 Total cholesterol in LDL −0.80 0.29 5.3 × 10−3 7.8 × 10−3 0.43
 Serum total cholesterol −0.63 0.30 3.4 × 10−2 4.1 × 10−2 0.59
Apolipoproteins
 Apolipoprotein A-1 1.52 0.28 7.6 × 10−8 1.1 × 10−6 0.87
 Apolipoprotein B −1.53 0.42 2.3 × 10−4 4.7 × 10−4 0.07
Glycerides and phospholipids
 Triglycerides in HDL −1.10 0.26 2.3 × 10−5 7.4 × 10−5 0.54
 Serum total triglycerides −1.41 0.35 5.1 × 10−5 1.4 × 10−4 0.15
 Triglycerides in VLDL −1.44 0.36 5.1 × 10−5 1.4 × 10−4 0.13
 Diacylglycerol −0.93 0.36 8.8 × 10−3 1.2 × 10−2 0.15
 Sphingomyelins −0.63 0.28 2.7 × 10−2 3.3 × 10−2 0.55
 Triglycerides in LDL −0.61 0.29 3.2 × 10−2 4.0 × 10−2 0.34
Lipoprotein subclasses of VLDLa

 Cholesterol esters in medium VLDL −1.72 0.30 1.3 × 10−8 2.2 × 10−7 0.27
 Cholesterol esters in small VLDL −2.12 0.38 2.5 × 10−8 3.9 × 10−7 0.12
 Total cholesterol in medium VLDL −1.63 0.32 3.0 × 10−7 3.5 × 10−6 0.22
Lipoprotein subclasses of HDLa  
 Phospholipids in small HDL 1.55 0.26 2.0 × 10−9 5.0 × 10−8 0.61
 Free cholesterol in small HDL 1.35 0.26 2.0 × 10−7 2.6 × 10−6 0.90
 Total lipids in small HDL 1.30 0.26 6.3 × 10−7 5.6 × 10−6 0.82
Lipoprotein subclasses of IDLa    
 Cholesterol esters in IDL −0.99 0.29 5.5 × 10−4 1.0 × 10−3 0.43
 Total lipids in IDL −0.99 0.29 5.8 × 10−4 1.0 × 10−3 0.48
 Total cholesterol in IDL −0.87 0.29 2.3 × 10−3 3.7 × 10−3 0.52
Lipoprotein subclasses of LDLa    
 Triglycerides in small LDL −0.99 0.31 1.5 × 10−3 2.5 × 10−3 0.25
 Cholesterol esters in medium LDL −0.90 0.29 1.6 × 10−3 2.5 × 10−3 0.40
 Cholesterol esters in large LDL −0.88 0.29 2.1 × 10−3 3.3 × 10−3 0.41

Metabolites are mmol/L except apolipoproteins, which are g/L. All metabolites are log transformed. Phet-value for heterogeneity. Adjustment of po-
tential confounders included age, sex, use of statins, other lipid-modifying agents, oral glucose lowering medications, insulins, RAS-blocking agents 
and other antihypertensives, SBP, BMI, smoking, diabetes duration, HbA1c, and baseline UACR/UAE. In RS, no urine albumin or HbA1c assessment 
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after omission of people with eGFR  <  60  mL/min/m2 
(n = 237).

It is known that eGFR tends to increase initially and 
then decrease during DKD progression. Therefore we 
performed another sensitivity analysis within the DCS 
cohort where we compared metabolite associations 
with eGFR tertiles. We observed 74% consistency in 
the directionality of effects across tertiles (2 out of 3). 
Consistency of 100% could not be achieved due to a 
lack of statistical power for this nested analysis in the 
DCS cohort (data not shown).

To account for the relatedness between different 
metabolite levels associated with eGFR/UACR, a 
heatmap depicts the correlation between individual 
metabolites and metabolite groups within the DCS 
cohort (n = 995) (Fig. 3). The lipoprotein groups indi-
cate that the metabolites are not entirely independent. 
A  general trend shows highly correlated metabolites 
within a specific lipoprotein groups (VLDL lipopro-
teins, and HDL lipoproteins) while also highlighting 
intergroup differences (positive [blue] vs negative 
[red] correlations) (Fig. 3).

Discussion

In this study, we investigated associations between plasma 
metabolites and kidney function (cross-sectionally and 
longitudinally) in individuals with T2D. The key find-
ings include several novel associations between eGFR 
and circulating amino acids, TGs, lipids in VLDL sub-
classes, free fatty acids, and lipids in HDL subclasses 
cross-sectionally. eGFR slopes associated with tyrosine 
and subclasses of HDL lipoproteins (before correction 
for multiple testing). None of the metabolites measured 
were significantly associated with urinary albumin ex-
cretion. These findings are in line with results from a 
recent study in type 1 diabetes where metabolites were 
mainly associated with eGFR and not albuminuria (29).

The AAA phenylalanine was strongest inversely as-
sociated with eGFR levels, followed by the BCAA iso-
leucine and the polar amino acid glutamine. This result 
replicates findings from a recent study by Barrios et al, 
where a strong inverse cross-sectional association be-
tween phenylalanine and eGFR was demonstrated 
both in 926 individuals with T2D and 4838 individuals 

Figure 2. Volcano plot of UAER/UAE and associated metabolites. The Y axis represents −log10 (P-value) for metabolite albuminuria (UAER/UAE) 
association. Blue line represents P-value = 0.05, and red line, PFDR value = 0.05. Metabolites are mmol/L, log transformed. PFDR values < 1.0 × 10−10 
are depicted as 1.0 × 10−10. β estimates ≥0.15 are depicted as 0.15. Top 10 most significant metabolites have been named. Each dot signifies 
1 metabolite and the size of the dot relates to the observed estimates from the random effects meta-analysis. Color of the dot determines the 
metabolite group listed under the color key.

was performed, and no data on diabetes duration were available; results from RS were therefore not adjusted for UAER, diabetes duration, or HbA1c. 
Results from NEO were not adjusted for diabetes duration because of many missing observations.
Abbreviations: IDL, intermediate density lipoprotein; LDL, low-density lipoproteins.
aFor the lipoprotein subclasses, only the 3 most significant measures in each group are included (25).
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without diabetes, after adjusting for age, sex, BMI, statin 
use, and hormone replacement therapy (18). Barrios et al 
did not find an association between phenylalanine and 
longitudinal changes in eGFR, similar to the findings 
in this study. Higher phenylalanine and lower tyrosine 

levels due to impaired renal conversion of phenylalanine 
have previously been reported in renal disease (30,31). 
In our study, a positive association between tyrosine and 
eGFR was also observed cross-sectionally and longitu-
dinally. Recently, the results of ADVANCE trial in 3587 

Figure 3. Correlation heatmap of individual metabolites, metabolite groups, and hierarchical clustering. eGFR-associated metabolite levels 
(n = 125) within the DCS cohort are plotted (quantile normalized). Each small square on the X and Y axis depicts individual metabolites. Higher 
color intensity (blue/red) indicates high values of positive/negative pairwise correlation measure between metabolites. Dendrogram depict clustering 
based on correlation distance measures. Horizontal colored bar on top of the heatmap depicts the metabolite groups.
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individuals with T2D demonstrated a positive associ-
ation of phenylalanine with macrovascular diseases and 
all-cause mortality; however, this was attenuated after 
adjustment for cardiovascular risk factors. Moreover, 
this study showed an inverse association between tyro-
sine and microvascular complications (17). This trial 
demonstrated that higher levels of aromatic (histidine) 
and branched-chain (leucine) amino acids were associ-
ated with a lower risk of all-cause mortality. This is in 
line with our findings in which histidine and leucine were 
inversely associated with eGFR. In a study by Niewczas 
et al comparing T2D progressors (n = 40) to ESRD and 
nonprogressors (n = 40), higher levels of phenylalanine, 
tyrosine, and leucine were associated with a lower risk of 
progression to ESRD during 12 years follow-up, albeit 
the results were not statistically significant after adjust-
ment for HbA1c, albumin excretion, eGFR, and mul-
tiple testing (32). The population had a longer diabetes 
duration compared to this study, and one may speculate 
that a different metabolite profile could be observed in 
the early courses of T2D and/or DKD. Unfortunately, 
we were limited to examining the longitudinal associ-
ations with the eGFR slope and did not have data on 
ESRD. On the other hand, our study is statistically 
well-powered compared to the study by Niewczas et al. 
Moreover, methodological differences between the cur-
rent (NMR based) and the previously discussed studies 
(mass-spectrometry [MS] based) might explain some of 
the discrepancies.

In this study, isoleucine and leucine were inversely lin-
early associated with eGFR, and in line with this, higher 
isoleucine levels were also associated with an increased 
likelihood of decreased kidney function in the logistic 
model. In a previous paper from the same 5 cohorts, 
higher levels of isoleucine and leucine were associated 
with a higher risk of having an HbA1c >53 mmol/L as 
a measure of dysregulated diabetes (33). A link between 
BCAAs and the development of diabetes (34), as well as 
insulin resistance (35,36), has previously been demon-
strated. This suggests that BCAAs (isoleucine and leu-
cine) levels may be indicative of not only dysregulated 
diabetes and insulin resistance but also progression to 
DKD. Indeed, insulin resistance has previously been hy-
pothesized to play an essential role in DKD (37), es-
pecially in individuals with T2D. Several mechanisms 
could potentially explain the increased levels of BCAAs 
in individuals with insulin resistance. For instance, in 
individuals without diabetes, it has been proposed that 
high BCAA levels originate from the gut microbiome 
(38). Exploring this further in individuals with T2D 
could shed further light on the pathophysiology and po-
tentially reveal treatment targets.

We demonstrated in the current study an inverse as-
sociation between eGFR and glutamine in linear regres-
sion analyses. This inverse relationship is in line with 
the previous study by Niewczas et al, where higher glu-
tamine was associated with a higher risk of ESRD, al-
though not statistically significant after adjustment for 
HbA1c, albumin excretion, eGFR, and multiple testing 
(32). In contrast, we previously reported that higher glu-
tamine was most significantly associated with having an 
HbA1c < 53 mmol/L (33).

In this study, eGFR was inversely associated with TGs, 
lipid measures in VLDL subclasses, sphingomyelin, and 
fatty acids like omega-6 and linoleic acid but positively 
associated with lipid measures, except TGs, in HDL sub-
classes. This inverse relationship is in line with results 
in both individuals with and without diabetes from the 
previously mentioned study by Barrios et al (18). The 
associations between these lipid measures and longitu-
dinal endpoints of ESRD and macro- or microvascular 
complications have to our knowledge not been tested in 
any study in people with T2D. We identified the lipids 
in HDL to be associated positively with longitudinal 
eGFR slopes among T2D, which became nonsignificant 
after FDR correction. These could be correct signals re-
flecting cross-sectional results on eGFR in our study. 
The longitudinal results in our study may have missed 
the multiple testing threshold due to lower statistical 
power (n = 1100) compared to cross-sectional meta data 
where we had 3089 individuals. On the other hand, we 
cannot undermine the possibility of intermetabolite re-
latedness as suggested by the sensitivity analysis (cor-
relation heatmap) that may reduce the number of tests. 
However, in a longitudinal study by the FinnDiane Study 
Group including 3544 individuals with type 1 diabetes, 
the TG–cholesterol imbalance was associated with pro-
gression in albuminuria and all-cause mortality, as was 
a large HDL cholesterol (14). Previous studies in large 
cohorts of dyslipidemia and DKD have demonstrated 
associations between routinely measured higher TG and 
lower HDL cholesterol levels to the progression of DKD 
in individuals with T2D (39,40). Higher TG and lower 
HDL cholesterol are clinical components of the meta-
bolic syndrome and may also be consequences of the 
underlying insulin resistance (41). Targeting HDL chol-
esterol or phospholipids may be a future therapeutic 
approach, although previous clinical studies with HDL 
cholesterol increasing agents—for example, torcetrapib 
(42) in high-risk individuals of cardiovascular disease—
have demonstrated increased risk of mortality and mor-
bidity of unknown mechanism. In a small study by Drew 
et al (n = 13), intravenous reconstituted HDL infusion in 
patients with T2D increased plasma insulin. It activated 
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adenosine 5′-monophosphates–activated protein kinase 
in skeletal muscle when compared to placebo (43).

The major strengths of this study are the large number 
of individuals with T2D from 5 independent cohorts as 
well as adjustment for an extensive set of relevant clin-
ical covariates and multiple testing, which diminished 
the risk of false-positive results. Moreover, the use of 
the NMR platform provided standardized measures of 
metabolites, allowing exploration of measures beyond 
routinely measured biomarkers. This method was faster, 
cheaper, and thereby more accessible than the more ex-
tensive MS-based metabolomics methods and could po-
tentially be easier to adapt to a clinical setting, although 
it did not provide as in-depth a characterization as, for 
example, MS. The use of medications agents may affect 
the metabolome substantially. In a recently published 
paper, also from the Biobanking and Biomolecular 
Resources Research Infrastructure consortium, signifi-
cant associations between cardiometabolic agents and 
several of the measured metabolites were demonstrated 
(44). In the present study, results were adjusted for sev-
eral medications commonly used in diabetes. We further 
recognize some limitations of the study. Metabolites 
were measured at one timepoint and therefore did not 
provide information regarding within-subject variation 
in metabolite levels. In some of the original studies, 
information regarding albuminuria measurements 
and history of micro- or macroalbuminuria was very 
limited. Further, we were limited by a low number of 
cases in the CODAM study, no diabetes duration in 
the RS study, and only having follow-up measurements 
from 2 cohorts.

Information regarding diet, which may affect the 
measured metabolites, was not available in all cohorts 
and not uniformly captured. Therefore, we could not 
control for diet in this study. Information regarding other 
renal markers, such as vitamin D, parathyroid hormone, 
and calcium, was also not available. Since the samples 
originate from different studies, the storage time before 
metabolite measurements differed. Although all sam-
ples were stored at −80°C as recommended (45), we did 
find consistent results across studies, regardless of the 
year of sampling. This finding was also demonstrated by 
low heterogeneity between studies, suggesting no such 
influence.

In conclusion, the current largest-to-date study iden-
tifies metabolites associated with an impaired eGFR 
among individuals with T2D while none of the metabol-
ites measured were significantly associated with urinary 
albumin excretion. These results suggest that cholesterol 
and phosphoglycerides in HDL subclasses may be asso-
ciated with a better kidney function while high levels of 

several amino acids and fatty acids, lipids in VLDL sub-
classes, and TGs in all lipoproteins are associated with 
an impaired kidney function. The findings suggest alter-
ations in the metabolome associated with renal impair-
ment in T2D of primary importance in nonalbuminuric 
DKD or the early stages of disease before development 
of albuminuria. Further longitudinal studies are needed 
to clarify whether alterations in metabolite levels pre-
cede or are consequences of renal impairment and 
whether a biomarker panel of both amino acid and lipid 
measures could potentially lead to improved prediction 
in the development of DKD.
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