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A B S T R A C T

The daily pollen forecast provides crucial information for allergic patients to avoid exposure to specific pollen.
Pollen counts are typically measured with air samplers and analyzed with microscopy by trained experts. In con-
trast, this study evaluated the effectiveness of identifying the component pollens using the metabolites extracted
from an air-sampled pollen mixture. Ambient air-sampled pollen from Munich in 2016 and 2017 was visually
identified from reference pollens and extracts were prepared. The extracts were lyophilized, rehydrated in opti-
mal NMR buffers, and filtered to remove large proteins. NMR spectra were analyzed for pollen associated metabo-
lites. Regression and decision-tree based algorithms using the concentration of metabolites, calculated from the
NMR spectra outperformed algorithms using the NMR spectra themselves as input data for pollen identification.
Categorical prediction algorithms trained for low, medium, high, and very high pollen count groups had accu-
racies of 74% for the tree, 82% for the grass, and 93% for the weed pollen count. Deep learning models using
convolutional neural networks performed better than regression models using NMR spectral input, and were the
overall best method in terms of relative error and classification accuracy (86% for tree, 89% for grass, and 93%
for weed pollen count). This study demonstrates that NMR spectra of air-sampled pollen extracts can be used in
an automated fashion to provide taxa and type-specific measures of the daily pollen count.

1. Introduction

Pollen allergies in the United States affect 30% of the population
(Salo et al., 2014). Similarly, in Europe 40% of the people are es-
timated to suffer from pollen allergy (D'amato et al., 2007; Bur-
bach et al., 2009). After a diagnosis of pollen allergy, patients can
treat the symptoms with medication, and depending on the severity,
immunotherapy may be suggested. However, avoidance of the aller-
gen source is a primary part of the recommendations for a patient
(Platts-Mills, 2004). For pollen allergies, the daily pollen count is the
fundamental source of this information.

The pollen count is determined from air samplers that trap partic-
ulate matter by impaction (Verein-Deutsche-Ingenieure, 2017). The
particulate matter is typically analyzed using microscopy by trained
experts to identify up to 30 different pollen species. To improve ei-
ther the accuracy, speed, or cost various other methods have been
explored including image classification (Oteros et al., 2015; Mar-
cos et al., 2015; Holt et al., 2011), DNA next generation sequenc-
ing (Kraaijeveld et al., 2015; Brennan et al., 2019), and

chemical analysis (Buters et al., 2015). In Bavaria, multiple air sam-
plers with robotic automated image classification have been installed
representing a major investment (Buters et al., 2018). In terms of ar-
tificial intelligence, pollen grain images have been identified with deep
learning artificial neural networks (Sevillano and Aznarte, 2018),
and time series analyses of pollen forecasts have been attempted (Va-
lencia et al., 2019). Other spectroscopic methods that have been ex-
amined include SERS Raman scattering (Seifert et al., 2016) and
Fourier transform Raman scattering. (Zimmermann, 2010; Bagcioglu
et al., 2015). While many of these systems are highly accurate, they
are all still improving and other methodologies may be more efficient in
other locations.

In our recent analysis of metabolites in extracts of major pollen
species, we noticed that the metabolite concentrations could be used
to differentiate the major pollen types: tree, grass, and weed (Mueller
et al., 2016). We therefore hypothesized that measuring the metabo-
lites in an extract of air sampled pollen may be useful in differenti-
ating the pollen taxa that were present. A number of technical chal-
lenges needed to be resolved that were not present in the

∗ Corresponding author. 111 T.W. Alexander Dr., Research Triangle Park, NC, 27709, USA.
E-mail address: Geoffrey.Mueller@nih.gov (G.A. Mueller)

https://doi.org/10.1016/j.atmosenv.2020.117746
Received 18 March 2020; Received in revised form 24 June 2020; Accepted 26 June 2020
Available online xxx
1352-2310/© 2020.



UN
CO

RR
EC

TE
D

PR
OO

F

L.J. Klimczak et al. Atmospheric Environment xxx (xxxx) xxx-xxx

previous study. First, purified pollens were previously used at very high
concentrations in order to sample as many metabolites as possible but
air sampled pollen rarely approaches the amounts previously used. Sen-
sitivity of the NMR methodology was a concern. Second, numerous
species-specific metabolites like the isoflavones and flavanones were ap-
parent in the NMR data but there was not enough material to chemi-
cally characterize them further. However, because the NMR spectral sig-
nals are reproducible, these chemical fingerprints could be an asset in
pollen type identification using algorithms trained to recognize the pat-
terns. Third, the same species of pollen are known to contain different
amount of allergen depending on day or location of harvest (Buters et
al., 2012, 2015; Galan et al., 2013), and it is not known if this vari-
ability exists in pollen metabolites too.

Herein, we explore the use of NMR data of air sampled pollen ex-
tracts to analyze the pollen types present. First, we examined the taxa
that were identified and how the data characteristics influenced the di-
rection of predictive algorithms. Then we identified metabolites from
the extract data and looked for patterns in the metabolites that might be
predictive of type. In addition, we explored using the NMR spectra with-
out human analysis as input to the predictive modeling. Interestingly,
deep learning methods that utilized the NMR spectra only were the best
performing of the predictive algorithms developed.

2. Materials and methods

2.1. Sampling

The pollen for the Hirst-type pollen trap were collected on a
Melinex-tape on a 7-days rotating drum. The Melinex tape was then cut
in 24 hrs pieces and analyzed according international standards by vi-
sual identification at 400× magnification using Safranine red stain and
pure pollen samples as a reference (Galan et al., 2014). Pollen sam-
ples for extracts were obtained using a high-volume Chemvol® cascade
impactor (Butraco Inc., Son, Netherlands) collected daily at the same lo-
cation on polyurethane PM 10 foam filters as described by Buters et
al. (2012). There were 119 samples from the peak pollen season 2016
in Munich, Germany (April 1 to July 30, 2016) and 10 samples from
2017. The 10 samples from 2017 were all from high pollen count days
in order to improve the number of samples with various taxa present. In
brief: 800 l min −1 ambient air was sampled daily on polyurethane foam
filters with the impactor equipped with different size class stages. The
polyurethane PM 10 filters were pre-washed twice using the same buffer
as used in the allergen extraction protocol, followed by 3 washes of dis-
tilled water and dried at 37 Celsius. The filter was cut into 3 equal parts
and stored at −80 °C. For extraction, the filter slices of impacted pollen
were thawed to room temperature.

2.2. Extraction

Samples were extracted from two of the PM 10 foam filter slices
in 15 ml/slice of an 0.1 M ammonium bicarbonate buffer pH 8.1 con-
taining 0.1% Bovine Serum Albumin (BSA). Extraction was done for
4 h at room temperature in a head-over-head rotator. Extracts were
aliquoted for various analyses, frozen at −80 °C and lyophilized (Buters
et al., 2015). For the NMR analysis 4 ml of dried extract was uti-
lized; a separate 4 ml portion was used for the extract duplicates an-
notated in Supplemental Table 2. The dried extract was re-hydrated
in 700 μl with a buffer of 50% 2H2O, and 50% 2H-phosphate buffered
saline (2H-PBS) and 0.2 mM 4,4-dimethyl-4-silapentane-1-sulfonic acid
(DSS), which was termed 50%-DPBS. DSS is used for a concentra-
tion and chemical shift reference, and the low salt 2H-buffer is de-
signed for maximum NMR sensitivity. The sam

ples were filtered with 3 kDa Amicon concentrator to remove large mol-
ecules. This removed broad peaks and resulted in a flat NMR baseline for
accurate quantitation and identification of metabolite peaks. The con-
centrators were rinsed and centrifuged twice with 2H2O to remove the
glycerol coating on the filters; however some exogenous glycerol re-
mained, see below.

2.3. NMR

NMR data were acquired on a Bruker 700 MHz Avance NEO spec-
trometer with a TCI cryoprobe and 60-sample changer. The pulse se-
quence was a 1D presaturation NOESY with 100 ms mixing time, 4s data
acquisition, 1s recycle delay, with 12 steady state scans and 1024 scans
for about 1.5 h of total sampling. The data were processed and analyzed
with Chenomx version 8.4 (Alberta, Canada) to measure metabolite con-
centrations. Metabolites were identified with the help of the standard
chemical library in Chenomx, by assessing the splitting patterns and cor-
responding peak intensities. Concentrations were measured with refer-
ence to DSS. The total number of spectra analyzed includes several du-
plicate data sets. The extraction was repeated and analyzed for 12 days
in 2016, and the NMR data acquisition was repeated for 6 days. These
are annotated in Supplementary Table 1. The final data set includes
129 days plus 18 replicates for 147 spectra analyzed.

2.4. NMR metabolite analysis and machine learning

The metabolite, NMR, and pollen data were imported into MAT-
LAB (Mathworks, Massachusetts, USA) for analysis. The following re-
gression and classification algorithms were tested to predict the pollen
count: linear, binary tree, support vector machines, ensemble learn-
ers, and gaussian process. For classification of low, medium, high, and
very-high pollen counts the following were tested: decision trees, dis-
criminant analysis, naïve Bayes classifiers, support vector machines,
K-nearest neighbor methods, and ensemble classifiers. For each method
2–7 variants of the method parameters were tested to optimize its per-
formance. As described below, the input data was tested using various
scaling techniques to improve the predictions. Since the size of the data
set is considered small (n = 147), the predictive value of the regression
and classification models were assessed by randomly dividing the data
into training (90%) and testing (10%) sets. This was repeated 10 times
and reported as the ten-fold cross validated performance. This was not
feasible for deep learning where the data was considered more limited
and leave-one-out cross validation was performed. In this case, all com-
binations of the training set (n = 146) and test data (n = 1) were as-
sessed in the model building, and repeated 5 times with different initial
conditions.

Principal component analysis (PCA) and t-distributed stochastic
neighbor embedding (t-SNE) (Van Der Maaten and Hinton, 2008)
analyses were also performed with MATLAB.

2.5. Additional NMR spectral processing

For the NMR spectral data as input to machine learning and deep
learning, several additional pre-processing measures were taken. The
signals from water and DSS were excised from the input because they
were very large compared to the metabolite data. The signal intensi-
ties in the NMR data varied over 10 orders of magnitude, making it
difficult to discern rare compounds with low intensities. The intensi-
ties were scaled by taking the square root to reduce the range of sig-
nal intensities to 5 orders of magnitude. In data not shown this ap-
peared to improve performance. However, this scaling can also have
the detrimental effect in that it can enhance the noise. The NMR data
was also smoothed with the MATLAB ‘loess’ function to
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reduce noise and avoid overfitting artifacts in the very large input vec-
tors. Regarding the size of the input vector, the NMR data was acquired
with over 70,000 points but was downsampled by binning adjacent data
points to ~2000 data points, which preserved reasonable spectral res-
olution, smoothed some noise artifacts, and reduced the computational
time for training.

2.6. Deep learning

After an initial exploratory analysis of various deep learning meth-
ods, convolution neural networks were selected for predictive analysis.
Details of the spectral processing, network architectures, and initial tests
are provided as supplementary material. In order to understand which
parts of the spectrum contributed most to the prediction, a series of
mathematical disruptions were applied to a series of non-overlapping
windows of constant size across the whole spectrum. The results with
and without disruptions were compared.

3. Results

3.1. Data analysis

The various pollen types, and taxa that were identified in Munich
during the 2016 pollen season are graphed in 3 different ways in
the panels of Fig. 1. Panel A shows the groups of tree, grass, weed,
and indeterminate pollen versus day of the year, while Panel B more
finely separates the top 14 taxa by total pollen count versus day. The
trees dominate the pollen count early in the year, while the grass
pollen emerges around day 150. Weed pollen emerges slightly later
and continues longer than the grass pollen until the end of the sam-
pling. Panel C shows the total pollen counts for the entirety of 2016
sorted by total. Panels B shows that the tree taxa dominate the total

pollen count on a daily basis, but the total annual pollen from weeds
(Urticaceae) and grasses (Poacea) are the in the top four in panel C.

Fig. 1 illustrates several features of the pollen count data that will
need to be considered in a predictive algorithm. First, the pollen counts
vary over 3 orders of magnitude for a given type or taxa. Second, there
are days between which multiple types of pollen can also vary orders
of magnitude. Third, from panel C some of the taxa which are rare will
be difficult to predict from NMR data, which is traditionally signal lim-
ited. Based on this consideration, further analysis considered only the 10
most abundant pollens, which included 6 deciduous trees, Pinus, Poacea
(grasses), and Urticacea (nettles or weeds). The category indeterminant
was excluded from further analysis. Pinus was the lowest of the 10 abun-
dant pollens and as will be seen below it was problematic to create pre-
dictive models, suggesting this was a good cut off for further modeling.

Fig. 2 shows example NMR data of the pollen extract from day 164,
plotting intensity versus frequency. In terms of quality, there is good wa-
ter suppression (around 4.7 ppm) and flat baselines at the edges so that
neither can interfere with accurate quantitation. The black line is the
raw NMR data, and the red line indicates peaks that were identified and
fit with the Chenomx software. Not all peaks could be identified, but
most of the intense peaks were consistently identified in all spectra.

Nineteen compounds were readily identified in the NMR data and
key peaks are highlighted in Fig. 2: acetate, alanine, betaine, cit-
rate, DSS, formate, glycerol, lactate, proline, and sucrose. Less abun-
dant metabolites included choline, ethanol, glucose, methylguanidine,
N-acetylglycine, O-acetylcholine, pyruvate, succinate, and trigonelline.
Importantly, methylguanidine, N-acetylglycine, and O-acetylcholine are
pseudonyms for plant compounds that resemble these metabolites but
could not be confirmed as such. In other words, N-acetylglycine is
an alias for an N-acetyl peak typically in the chemical

Fig. 1. Pollen Sampled in Munich 2016. Panels A and B show the pollen count/m3 sampled by day of the year (2016) subdivided into A) Tree/Grass/Weed and B) by Taxa. Panel C shows
the total pollen for the year sorted by amount.
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Fig. 2. Example NMR data. Fig. 2 shows an example NMR spectrum of Day 164 in black overlayed with identified metabolites and the metabolite-simulated spectrum in red. DSS is the
concentration and chemical shift standard, see Methods. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

range of N-acetylglycine that was found consistently in many of the
spectra. The DSS was added as a reference standard and the glycerol is
most likely acquired from the concentrator filters. A control washing ex-
periment suggested that the approximately 20 μM glycerol in each sam-
ple is not endogenous to the pollen (data not shown). Hence this was
excluded from further analysis. Supplemental Fig. 1 plots the concen-
tration of each metabolite measured, at each day of calendar year sam-
pling.

The concentration data was probed for correlations between the
amount of the 3 main pollen types, and the concentration of the metabo-
lites. Fig. 3 shows the pairwise correlations of the different metabolites
with the tree, grass, weed pollen count sorted for positive and negative
correlations. Looking at the y-axis for each type, no very strong associ-
ations were found a single metabolite, likely reflecting the convoluted
nature of the pollen data. The strongest associations both positive and
negative were with the calendar day of the year. The day negatively cor-
related with tree pollen, which makes sense as most trees pollinate early
in the spring. The ordering of metabolite correlations (x-axis) with either
tree, grass, or weed pollen was unique to each type. Taken together, this
does suggest that underlying patterns might be found in the metabolite
concentration data that would be predictive of the pollen count.

To further probe if there were underlying patterns in the NMR
metabolite or spectral data that reflected the major pollen categories
various algorithms for dimensionality reduction were examined for clus-
tering. Fig. 4 shows some of the more promising figures using ei-
ther t-SNE or principal component analysis that suggested the input
data may be predictive of the various categories. Fig. 4 A-C shows
a t-SNE analysis of the metabolite data where the days are colored
for whether the total tree (A), grass (B), or weed (C) pollen count
was in the High, Medium, or Low categories. See Supplementary
Table 2 for the categorical ranges. In Fig. 4A the high tree days pri-
marily cluster to the left and in Fig. 4C the high weed days clus-
ter tightly on the right. In 4B the high grass days cluster to the right
and overlap significantly with the high weed days, as one might ex-
pect from examining the underlying pollen count data in Fig. 1A.
Fig. 4 D-F shows a principal component analysis of the NMR spec-
tral data with similar conclusions. The high tree days are separated
from the high grass days, and the high weed days appear

to be a subset of the high grass days. This figure is encouraging in that
there are underlying patterns in the data which might not be immedi-
ately apparent in the correlations of Fig. 3 that could be exploited with
a predictive algorithm.

3.2. Developing predictive models using metabolite input

In data not shown, we experimented with the various regression and
classification algorithms listed above in the methods. Consistently, the
ensemble boosted regression, and binary decision tree algorithms were
superior to the others for these data. The RMSD and correlation of the
predicted versus true pollen count were very similar for both methods
and the best results from either are reported in Table 1 with 10-fold
cross-validated performance. Table 1 shows strong correlations of the
actual versus predicted values (R2), except for Pinus (see below). The
root mean squared error (RMSE) shows reasonable deviations propor-
tional to the total pollen. For a proportional comparison, the root rela-
tive squared error (RRSE) column can be used. For example, Betula has
an RMSE of 114 while Poaceae has an RMSE of 18, but both have an
RRSE of 0.52 because the total birch tree pollen is simply much greater
than the total for grasses on a given day.

To show the predictive accuracy from Table 1 visually, Fig. 5 plots
the actual and predicted pollen counts versus day of the year for the
groups and taxa studied. Fig. 5 highlights again the strong correlations
between the actual (black circle) and predicted (red x) values for the
models. Pinus showed the worst correlation among the taxa studied. As
there was one very high pollen count day, the value was rarely predicted
well with 10-fold cross validation. The plot shown in Fig. 5 is one of the
better of the 10 predictions. The genus Pinus was the lowest total pollen
count chosen for analysis (Fig. 1C), and occurred over a very limited
time range. Overall, the results are encouraging that the NMR data, com-
bined with the calendar day, can make a successful predictive model.

A key to the performance of the regression was to sort the in-
put data for the 9 strongest correlation magnitudes, either positive or
negative, for each taxa and discard the other input data. Then all 29

unique combinations of the input data were tested for their predic-
tive capacity with 10-fold cross validation. Typically, the top ten fits
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Fig. 3. Pairwise Correlations. The correlation of the input (calendar day or metabolite) versus the pollen count for A) tree pollen, B) grass pollen, and C) weed pollen.

were very close in their performance. Thus, to assess which input data
was the most important, the top ten performing models were ana-
lyzed in Supplementary Fig. 2. The bar graphs show which in

puts were used most often in the ten best models for each taxa. The
calendar day was almost always utilized in the best fit, but a variety
of different metabolites were used in different priorities by the vari
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Fig. 4. Dimensionality reduction of the NMR data. Panels A–C show a t-SNE analysis of the metabolite data colored for high (red), medium (green), and low (blue) pollen count days for
tree (A), grass (B), and weed (C). Panels D–E show a PCA plot of the first two principal components of the NMR spectral input colored as above for tree (D), grass (E), and weed (F) pollen
counts. The PCA and t-SNE x and y axes are unitless and scaled for maximum dispersion of points. (For interpretation of the references to color in this figure legend, the reader is referred
to the Web version of this article.)

Table 1
Performance of the Regression and Convolution Neural Networks. The predictive value of the different inputs and models were assessed.

Modeled Pollen Count Input Model R2 RMSE RRSE
Classification
Accuracy

Classifier
Accuracy

Betula Metabolites Regression 0.90 114 0.52 N.A. N.A.
Carpinus Metabolites Regression 0.81 81 1.10 N.A. N.A.
Fagus Metabolites Regression 0.77 26 0.80 N.A. N.A.
Fraxinus Metabolites Regression 0.89 65 0.73 N.A. N.A.
Quercus Metabolites Regression 0.84 21 0.90 N.A. N.A.
Tillia Metabolites Regression 0.90 42 1.30 N.A. N.A.
Pinus Metabolites Regression 0.27 55 0.62 N.A. N.A.
Tree (Deciduous) Metabolites Regression 0.87 212 0.55 82% 90%

NMR
Spectra

Regression 0.73 325 0.76 56% 73%

Tree (All) Metabolites Regression 0.78 270 0.78 62% 74%
NMR
Spectra

Regression 0.67 365 0.87 54% 75%

NMR
Spectra

CNN 0.92 220 0.48 82% 86%

Poacea (Grass) Metabolites Regression 0.89 18 0.52 84% 82%
NMR
Spectra

Regression 0.60 34 0.94 62% 73%

NMR
Spectra

CNN 0.85 21 0.57 84% 89%

Urticacea (Weed) Metabolites Regression 0.88 23 0.48 91% 93%
NMR
Spectra

Regression 0.83 29 0.60 80% 88%

NMR
Spectra

CNN 0.94 17 0.35 88% 93%

Abbreviations: CNN- convolutional neural network.
R 2- Peason's correlation coefficient.
RMSE-root mean squared error.
RRSE-root relative squared error.

ous models. Without the calendar day input the average correlation be-
tween actual and predicted values was only 0.3.

The National Allergy Board of the United States (NAB) typically
does not identify pollen by genera in its forecast but instead catego-
rizes it by the three types: tree, grass, and weed. To model this, the
tree pollen counts for the individual genera were summed. The re

sults were poorer than the individual trees and we hypothesized that
this might be due to the Pinus pollen. By removing this genus the re-
sults improved as can be seen in Table 1 and Fig. 5 under the head-
ing DTree for deciduous trees. The pollen counts can also be mod-
eled in categorical manner using the metabolites and calendar day
as input, according the values prescribed by the NAB in Supplemen
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Fig. 5. Predicted pollen taxa compared to known pollen count. Each graph shows the actual pollen count per m3 for the calendar day with a black circle, and the predicted value from
the best model with a red x. The correlation coefficient of the predicted and actual value is shown inset for cross-validated performance. DTree is the sum of all deciduous trees. (For
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

tary Table 2. The results of these predictive models can also give some
perspective on the RMSD and RMSE values reported in Table 1. The ac-
curacy of predicting the correct category, i.e., low, medium, high, and
very high (for a few days in tree pollen season), is reported in Table 1.
Weed pollen counts achieved the highest categorical predictive accuracy
using 10-fold cross validation at 93%, tree pollen counts at 90%, and
grass pollen at 82%. Grass is the least abundant of the pollens, hence it
is most likely the one to be most difficult for NMR methods to measure
accurately. The influence of the date as an input parameter was assessed
for the categorical models as well. Without the date input, the accuracy
of predicting the correct categorical pollen count was 59%, 63%, and
76% for the tree, grass, and weed categories respectively. The individual
tree genera were not considered for categorical analysis because of the
limited time range for which the pollen count was not ‘low’. In other
words, guessing ‘low’ for the entire date range was potentially 85% ac-
curate.

3.3. Machine learning predictions using NMR spectra

The NMR spectra has numerous peaks from plant compounds that
could not be uniquely identified, as shown in Fig. 2 by the difference
between the red and black lines. This includes many flavanols and other
unidentified compounds. This suggested that regression models directly
using the spectral data directly may improve the classification. However,
Table 1 shows the results were typically worse than using the metabo-
lites alone. We suggest that the input vectors are too large for successful
analysis, even using partial least squares discriminant analysis (PLSDA)
regression techniques that seek to simplify large input vectors. However,
the classification accuracy for grass and weed pollens was on par with
the metabolite data.

3.4. Deep learning using NMR spectra

In order to more fully explore the potential of the spectral data be-
yond standard regression techniques, deep learning methods were exam-
ined. There were a number of challenges with the pollen data set com-
pared to a typical deep learning data set, which includes the small num-
ber of training samples. Leave-one-out cross validation with 5 replicates
was used to address the small number of training samples to insure that
the predictions are not biased by any one sample. Other technical issues
are addressed in the supplemental material.

Another issue was the large number of samples with low pollen
counts. Sample weights were added to compensate for the underrep

resented (high) pollen counts to improve the achieved predictions. As
shown in Fig. 6, using sample weights caused the predictions for higher
pollen counts to align closer with the straight line of perfect predictions,
but – not surprisingly – the corresponding predictions for lower pollen
counts were now scattered away from the actual values. The correla-
tion coefficient of actual and predicted pollen counts was 0.919 without
sample weights and 0.908 with sample weights thus, the overall accu-
racy of predictions was not improved as shown in Supplementary Fig.
4. Neither was the accuracy of predictions improved when the numeric
predicted pollen counts were converted to categorical prediction (Sup-
plementary Fig. 4). The predictions of pollen count for grass and weed
pollen showed similarly high correlation coefficients of 0.854 and 0.945,
respectively (Fig. 6), as well as accuracies when converted to catego-
rized predictions (Supplementary Fig. 4). The overall accuracies are
reported in Table 1. The results were slightly better when training was
performed directly on categorical models, instead of just categorizing
numerical predictions from regression models (listed as “Classification
Accuracy” in Table 1; see also Supplementary Fig. 5). Similar to the
regression model, including sample weights for underrepresented pollen
counts did not result in increase of overall accuracy, although the accu-
racy for the Very High count group was dramatically improved.

In the cases of tree and grass pollen count predictions, the classifica-
tion predictions improved over traditional regression models, and in fact
the grass classification using deep learning and the NMR spectral input
was the best method found (Table 1). The accuracy of the weed pollen
count predictions using deep learning versus regression were equivalent.
Also, note that for deep learning all the deciduous and pine trees were
pooled together, and calendar day of the year was not included as input.

We identified the areas of the spectra that were responsible for pre-
dictions in the deep learning regression models by introducing vari-
ous localized disruptions of the input spectra (“in silico smudging”)
and analyzing their effect on the predictions. While many areas of
the spectra showed no effect (the same prediction before and after
the disruption), disruption of multiple areas resulted both in increases
(yellow) and decreases (purple) of the predicted outcome values in
the regression models (Supplementary Fig. 6). After testing a se-
ries of scanning windows of various sizes, we identified two major, al-
though still similar to each other, patterns: a larger-scale pattern with
the window size of 200 pixels and more and a finer small scale pat-
tern with the window size of 50 pixels and less. Interestingly, the
average width of an NMR peak in our dataset is around 100 pix-
els, so these two patterns appear to correspond to disruptions
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Fig. 6. Correlation of Actual and Predicted Pollen Counts. A, without sample weights for Trees B, with sample weights for Trees. C, Grass; D, Weed. The correlation coefficient of actual
versus predicted is inset for leave-one-out cross validation. Dotted vertical green lines indicate boundaries between pollen count groups: L, M, H, VH. Dotted & Dashed diagonal green line
indicates perfect agreement of the actual and predicted values. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

of either groups of multiple peaks or a single peak, respectively corre-
sponding to various metabolites. Some spectra were more sensitive to
disruption than others (for grass and weed, the resulting changes had
to be plotted on a log scale to accommodate the wide range of values)
– reflecting some instability of the trained models due to the low num-
ber of training samples. In spite of such instabilities, the spectra show
consistent patterns of sensitivity to disruption, indicating the underly-
ing peak components that are responsible for predictions. Given the low
number of training samples and the observed instabilities of the trained
models, it was difficult to derive detailed identification of the underly-
ing metabolites, such as that illustrated in Fig. 2. However, with more
example data and more robustly trained models this may be possible.

4. Discussion

This paper sought to demonstrate that the metabolite concentrations
or spectral data from a mixture of pollens could be used to identify the
component pollens. As a real-world example of pollen mixtures we uti-
lized ambient air-sampled pollen from Munich primarily in 2016 (Fig.
1) and supplemented with data from 2017. NMR spectra of pollen ex-
tracts (Fig. 2) were examined for metabolites (Supplemental Fig. 1).
Despite the general insensitivity of NMR, we were able to successfully
measure the concentrations of 18 metabolites. When we looked for cor-
relations between metabolites and the types of pollen in Fig. 3 there
were no obvious correlations for an individual metabolite with the tree,
grass, or weed pollen types. However, the ordering of importance for the
metabolites was unique for each suggesting there might be trends in the
multidimensional data that could be exploited in a predictive algorithm.
This suggestion was reinforced by looking for patterns using t-SNE mul-
tidimensional decomposition methods (Fig. 4A–C). This more clearly

showed that the metabolite data likely did contain tree, grass, or weed
pollen specific data. The PCA in Fig. 4 D-F also showed a different type
of input data, the NMR spectra with no analysis, also contained patterns
specific for tree, grass, or weed pollen counts. This gave us confidence
that predictive methods could be developed.

Therefore, we tested predictive algorithms using traditional machine
learning with either metabolite concentrations or spectral input, and
deep learning was tested using spectral input (Figs. 5 and 6, Table
1). Table 1 shows that regression and decision-tree based algorithms
using the concentration of metabolites, calculated from the NMR spec-
tra outperformed algorithms using the NMR spectra themselves as input
data for pollen identification. This was somewhat surprising as we antic-
ipated the additional peaks in the NMR spectra might contain valuable
pollen type data. We suspected that the characteristics of the NMR data
(redundancy, large size, large dynamic range) might be better suited for
deep learning methods. Therefore, we attempted to train deep learn-
ing models using convolutional neural networks (CNN) similar to those
that perform image recognition. Table 1 shows that the CNN performed
better than regression models using NMR spectral input, and were the
overall best method in terms of relative error and classification accuracy
(86% for tree, 89% for grass, and 93% for weed pollen count). This is
especially impressive considering that the CNNs did not require the cal-
endar day as part of their input vector; they only used the NMR spectra.

This study is unique in that it utilizes a metabolomic or mixture
analysis to identify pollens from an ambient air-sampled extract. NMR
and Mass Spectrometry (MS) are commonly used for metabolomic and
mixture analyses. The sensitivity of NMR is much less than MS, but
in NMR there is a direct relationship between the signal intensities
and the concentration of the metabolites. The direct
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proportionality makes this advantageous for using the peak intensities
to measure the amount of sample (e.g. pollen) when this may be un-
known. NMR analyses of other plant metabolites has been utilized to
differentiate the geographic origin of hazelnut, coffee, and olive crops
just to name a few examples (Dais and Hatzakis, 2013; Bachmann
et al., 2018; Consonni and Cagliani, 2018). There have also been
analyses of pollen metabolites by both NMR and MS (Mueller et al.,
2016; Gilles et al., 2011). From our previous NMR analysis, we were
motivated to see if we could use pollen metabolite information to differ-
entiate pollen.

Looking into then future, development of an automated prediction
procedure should benefit in particular from the successful application
of deep learning methods, which require very little data processing and
can be applied directly to NMR spectra, and potentially mass spectrom-
etry data, without the need for manual feature extraction and curation.
We achieved quite satisfactory prediction accuracies using a very small
set of 147 samples and it should be possible to improve upon these ac-
curacies using a more comprehensive training set – resulting in a very
robust predictor. If we imagine a potential future workflow, air-sampled
pollen could be extracted directly into NMR amenable buffers instead of
being lyophilized and rehydrated. Previously we found excellent extrac-
tion of metabolites in only 30 min. Then filtration of the sample through
a 3 kDa filter to remove proteins can take up to an hour in a spin-con-
centrator. The NMR spectra acquired here took 90 min and the com-
puter processing of the data could be handled automatically. In terms of
cost, an hour of NMR time can be $30-$60. We imagine this could be
run in parallel with other existing analyses of pollen, or pollen metabo-
lites. In summary, it should be possible to develop an efficient and auto-
mated procedure that capitalizes on these findings. Alternatively, other
methodologies that measure metabolites like mass spectrometry may be
similarly successful.

As a cautionary note, there is the strong possibility that, while an
automated pipeline would likely have widespread geographic applica-
bility, the models trained on pollen sampled in Munich may not be as
applicable across the globe. For example, in regions of the U.S. ragweed
pollen dominates as opposed to Urticaceae in Munich. And given the nu-
merous papers on how the metabolites in other plants are sensitive to ge-
ography, the Munich pollen results may not be applicable to pollen sam-
pled as close as Vienna. There will likely be a need for local optimization
using studies like those conducted here to calibrate the metabolites to
the sampling region.

5. Conclusion

This paper demonstrates the proof of principle that chemical analy-
ses of the pollen metabolome may be useful in differentiating pollens,
and that it can be done in an automated fashion using various machine
learning and deep learning algorithms.
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