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SUMMARY
Lifestyle, obesity, and the gutmicrobiome are important risk factors formetabolic disorders.We demonstrate
in 1,976 subjects of a German population cohort (KORA) that specific microbiota members show 24-h oscil-
lations in their relative abundance and identified 13 taxa with disrupted rhythmicity in type 2 diabetes (T2D).
Cross-validated prediction models based on this signature similarly classified T2D. In an independent cohort
(FoCus), disruption of microbial oscillation and the model for T2D classification was confirmed in 1,363 sub-
jects. This arrhythmic risk signature was able to predict T2D in 699 KORA subjects 5 years after initial sam-
pling, being most effective in combination with BMI. Shotgun metagenomic analysis functionally linked 26
metabolic pathways to the diurnal oscillation of gut bacteria. Thus, a cohort-specific risk pattern of
arrhythmic taxa enables classification and prediction of T2D, suggesting a functional link between circadian
rhythms and the microbiome in metabolic diseases.
INTRODUCTION

Increasing evidence links the human gut microbiome to meta-

bolic health (Sonnenburg and B€ackhed, 2016), and altered mi-

crobial profiles are associated with obesity, insulin resistance,

and type 2 diabetes (T2D) (Goodrich et al., 2014; Karlsson

et al., 2013a, 2013b; Pedersen et al., 2016; Qin et al., 2010,

2012; Thingholm et al., 2019; Turnbaugh et al., 2006; Zhou

et al., 2019). Population-based studies highlighted a significant

degree of variability in inter-individual microbiomes (Falony

et al., 2016; Zhernakova et al., 2016), regional effects (He

et al., 2018), and drug-associated changes in the gut micro-

biome (Forslund et al., 2015; Pryor et al., 2019). Despite the

extensive efforts to define the role of the gut microbiome in
258 Cell Host & Microbe 28, 258–272, August 12, 2020 ª 2020 Elsev
metabolic diseases, especially obesity and T2D, limited repro-

ducibility and specificity of disease-associated taxa across co-

horts, e.g., members of Christensenellaceae, Collinsella, and

Escherichia coli are also associated with Crohn’s disease

(Pascal et al., 2017), complicates the identification of microbial

risk factors.

The circadian clock, which synchronizes daily food intake

behavior and metabolism with the day and night cycle (Panda,

2019), has recently been proposed to influence microbial ho-

meostasis (Thaiss et al., 2014). Daytime-dependent fluctua-

tions were identified in both the oral and fecal microbiota (Kacz-

marek et al., 2017; Thaiss et al., 2014). In murine models,

circadian rhythms in gut microbiota composition and function

are sensitive to diet and feeding patterns (Thaiss et al., 2014;
ier Inc.
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Figure 1. Microbiota Profiling of a Cross-Sectional Population-Based Cohort

(A) Taxonomic tree of the gut microbiota of 1,976 KORA subjects. Colors indicate phyla. Taxonomic ranks are from kingdom (center) to genera indicated by the

individual branches. Black bars on the outer ring indicate the prevalence of each genus, the name of which is shown if found in >10% of the individuals (Table S2).

(B) Relative abundances of phyla across the whole cohort. Samples are ordered according to increasing relative abundances of Firmicutes. Colors are as in (A).

(legend continued on next page)
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Zarrinpar et al., 2014). Diet-induced obesity dampens cyclic mi-

crobial fluctuations in rodents (Leone et al., 2015; Zarrinpar

et al., 2014), and epidemiological studies continue to show as-

sociations between circadian clock dysfunction due to modern

lifestyle and T2D (reviewed in Onaolapo and Onaolapo, 2018),

supporting the hypothesis that diurnal oscillations in microbiota

composition and function may contribute to metabolic health.

The lack of documentation of stool sampling time in addition

to the well-documented regional and individual differences in

microbiota profiles may account for discrepancies between

studies. We therefore suggest to consider circadian oscillations

to better understand the underlying mechanisms of disease-

associated microbiome alterations and to validate risk profiles

in prospective cohorts.

We provide clear demonstration of robust diurnal oscillations

in fecal microbiota composition, using stool across a 24-h sam-

pling period of three large-scaled human populations with a total

of 4,131 subjects in Germany (KORA, FoCus, and enable). Most

importantly, we demonstrate that loss of circadian rhythmicity

affectsmicrobiome features related to the onset and progression

of T2D and identified bacterial signatures for metabolic risk

profiling in human populations.
RESULTS

Microbiota Profiling of the Population-Based
Cohort KORA
KORA is a prospective cohort in the region of Augsburg (Ger-

many) designed to understand the role of genetic, lifestyle, and

environmental factors in disease progression including meta-

bolic diseases (Table S1). As part of the second follow-up of

the S4 KORA cohort, stool was sampled from 1,976 individuals

in 2013, for whom we performed high-throughput 16S rRNA

gene amplicon sequencing (Tables S2 and S3). Comparing indi-

vidual microbiota compositions confirmed diverse ecosystems

dominated by the two major phyla Firmicutes and Bacteroidetes

(cumulative mean relative abundance, 91%) (Figures 1A and 1B).

In comparison with other studies, compositional variations were

marginally affected by geography (0.9%), since KORA is

restricted to a single city (Augsburg, Bavaria, Germany) and its

close surrounding (Arumugam et al., 2011; He et al., 2018; Yat-

sunenko et al., 2012) (Figure 1C). The cohort was characterized

by an average individual richness of 348 ± 77 operational taxo-

nomic units (OTUs) and 118 ± 37 Shannon effective number of

species (Figure 1D).
(C) Geographical map of the city of Augsburg (Bavaria, Germany) and its rural are

show taxonomic distributions at the phylum level (colors as in A) in individuals liv

(D) Alpha-diversity of the fecal microbiota in KORA. Richness (left; 384 ± 77) and

normally distributed across the whole cohort (Shapiro test > 0.05).

(E) Beta-diversity of the fecal microbiota in KORA. The dendrogram shows sim

between 1,976 subjects represented by individual branches. Unsupervised hierar

branches). Individual taxonomic composition at the phylum level is shown as stack

figure indicate disease status: first ring, diabetes (red, T2D; gray, prediabetes; no

fourth ring, cardiovascular diseases (green).

(F) Differences in alpha-diversity between the de-novo clusters from E (colors als

(G) Differences in relative abundances of the three genera Bacteroides, Ruminoc

1 3 10�5.

(H) Explained variations in fecal microbiota composition by covariates. All variab

explained variations based on R2 calculated by multivariate analysis of Bray-Cur
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Unsupervised analysis based on generalized UniFrac dis-

tances identified three fecal microbiota clusters (C1, N = 744;

C2, N = 981; C3, N = 249) similar to previously reported entero-

types (Arumugam et al., 2011) (Figures 1E, 1F, and S1A). Individ-

uals in C1 had the lowest microbiota richness and showed signif-

icantly higher relative abundances of Bacteroides. The most

diverse cluster C2 (highest number of subjects) was dominated

by members of the genus Ruminococcus, while Prevotella domi-

nated in C3 (Figure 1G). Individuals with obesity (BMI R 30, N =

558), T2D (N = 277), and prediabetic conditions (N = 356) classi-

fied according to their oral glucose tolerance (WHOcriteria), can-

cer (N = 200) as well as cardiovascular disease (CVD) (N = 66)

were evenly distributed across these clusters (Figure 1E). Multi-

variate analysis of metadata co-varying with the fecal microbiota

profiles identified 40 of 113 features related to physiology (e.g.,

blood triglyceride levels, body weight, muscle mass, and time

of defecation), lifestyle and environment (geographical region,

beer/alcohol consumption, and seasons), disease-associated

parameters (mostly related to glucosemetabolism), andmedica-

tion, collectively explaining 9.1% of variability (Figure 1H).
Diurnal Rhythms in Fecal Microbiota Composition
Time of defecation was among the most significant factors (p

value = 0.004; R2 = 0.001) explaining inter-individual variabilities

in microbiota structure (Figure 1H). Thus, diurnal rhythmicity of

fecal microbiota profiles was studied in 1,943 subjects for

whom time at sampling was available (Figures 2A–2C). Commu-

nity diversity (both species richness and Shannon effective num-

ber of species) fluctuated significantly throughout the day (Fig-

ure 2A). Diurnal rhythmicity was also evident in relative

abundances of the two most dominant phyla, which oscillated

in antiphase. Bacteroidetes showed 6% higher mean relative

abundance at night, whereas the phylum Firmicutes was higher

during the day. Since more than 70% of all samples were

collected at morning hours between 5 and 11 am, we re-

analyzed the data using 10 random sub-samples of 25 patients

for every time point and thereby confirmed initial results

including all subjects (Figure S1A).

After removal of OTUs low in mean relative abundance

(<0.1%) and prevalence (<10% subjects), the heatmap of re-

maining 422 OTUs illustrated heterogeneous distribution of their

peak relative abundances, ranging from early day to late night,

suggesting that the microbiota at different times of the day are

dominated by different microbial taxa (Figure 2B; Table S7). Ac-

cording to cosine-wave regression analysis, 15.2% of the OTUs
a. Subjects are grouped according to their place of residence. The pie charts

ing outside (rural) or in the city (city).

Shannon effective number of species (right; 118 ± 37), which were both not

ilarities between microbiota profiles based on generalized UniFrac distances

chical clustering identified three main clusters of individuals (gray scale next to

ed bar plots around the dendrogram (colors as in A). Bars in the outer part of the

color, nonT2D); second ring, cancer (blue); third ring, obesity (gray, BMIR 30);

o follow E).

occus, and Prevotella for the three microbiota clusters as in Figure 1E. ***p %

les shown had a significant influence (p % 0.05), displayed as proportions of

tis dissimilarity.
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Figure 2. Diurnal Rhythms in the Human Gut Microbiota

(A) Diurnal profiles of alpha-diversity and of relative abundances of the phyla Bacteroidetes and Firmicutes in 1,943 subjects with known defecation time.

Significant rhythms are illustrated with fitted cosine-wave curves (cosine-wave regression, p % 0.05). Data are represented as mean ± SEM.

(B) Heatmap depicting the overall phase relationship and periodicity of 422 OTUs (mean relative abundance > 0.1%; prevalence > 10% individuals) ordered by

their cosine-wave peak phase according to time of day and normalized to the peak of each OTU.

(C) Amount of rhythmic (white) and arrhythmic (gray) OTUs and their relative abundance in percent (compare with B).

(legend continued on next page)
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were rhythmic (rOTUs) (Figure 2C). Similar proportions of rOTUs

were identified using other non-parametric (12.3%) and para-

metric methods (13.5%; Figure S1B), demonstrating validity of

the analysis. Oscillating fluctuations in alpha-diversity and Bac-

teroidetes as well as similar numbers of significant rhythmic

OTUs were confirmed in a smaller, age-matched, and regionally

nearby located (Munich/Freising), independent cohort with mul-

tiple sampling per person (enable cohort N = 93 subjects with n =

357 fecal samples, 19.9% rOTUs, Figures 2D and 2E). Even in a

single individual (subject 1, S1), for whom 58 samples were

collected consecutively over 3 years, microbiota oscillations

(3% rOTUs) were demonstrated (Figure 2F).

Microbial Oscillations Are Disrupted in Obesity and T2D
Since KORA is best suited for the study of metabolic conditions,

we focused on obese, prediabetic, and T2D subjects. Species

richness and alpha-diversity were lower in individuals with T2D

and obesity (BMI R 30), whereas Firmicutes-to-Bacteroidetes

ratios remained unchanged compared with healthy subjects

(Figure 3A). Significantly different relative abundances were

identified for 30 OTUs in T2D subjects (N = 277) versus all others

(N = 1,270) (Figure 3B; Table S7). Robust daily oscillations in

alpha-diversity, phyla, and molecular species were observed in

KORA subjects without T2D (nonT2D, N = 1,255) and subjects

with BMI < 30 (N = 1,393) (Figures 3C–3E, S1C, and S1D). In

contrast, rhythmicity in alpha-diversity and phylum proportions

(Bacteroidetes and Firmicutes) were absent in subjects with

either T2D (N = 401) or a BMI R 30 (N = 545) (Figures 3C–3E).

A heatmap showing peak relative abundances of OTUs

confirmed the disruption of rhythmicity in subjects with T2D

regardless of BMI (Figure S1D). All 10.4% OTUs that oscillated

in nonT2D subjects lost rhythmicity in subjects with T2D (Fig-

ure S1C). Of note, 3.5%of OTUs gained rhythmicity in T2D cases

(Figure S1C). To account for the difference in sample size be-

tween subject groups (T2D, N = 269; nonT2D, N = 1,255), the

circadian analysis was validated using 10 different randomly

selected and sample size-matched groups (Figure S1E). Loss

of diurnal oscillations in diabetic subjects was well reflected in

the relative abundances of single OTUs (Figures 3D and S1C).

OTUs with disrupted rhythmicity in T2D were largely (>60%)

not shared with arrhythmic OTUs in obese individuals, indicating

a BMI-independent loss of rhythmicity in T2D (Figure 3F). Inter-

estingly, intermediate phenotypes were noted in prediabetic

subjects (N = 352) with a loss of rhythmicity for the two major

phyla but not alpha-diversity (Figure 3C). In prediabetes, the pro-

portion of rOTUs was reduced from 10.4% to 7.6% (Figures 3D

and S1C). Similar results were obtained using JTK_CYCLE or

harmonic cosine-wave regression, demonstrating robustness

of the findings (Figure S1C).
(D) Diurnal profiles of alpha-diversity and of relative abundances of the phyla Bac

defecation time. Significant rhythms are illustrated with fitted cosine-wave curve

(E) Upper part: scheme showing the sampling time points and their distances for t

and periodicity of OTUs in the enable cohort (N = 388 OTUs from n = 372 samp

individuals) ordered by their cosine-wave peak phase according to time of day

arrhythmic (gray) OTUs and their relative abundance in percent.

(F) Upper part: scheme showing the sampling time points and their distances for

relationship and periodicity of OTUs in one subject (N = 384 OTUs from 58 longitu

ordered by their cosine-wave peak phase according to time of day and normaliz

OTUs and their relative abundance in percent.
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We identified 87 OTUs that oscillated in controls but lacked

rhythmicity in T2D. They belonged to the genera Akkermansia,

Bacteroides, Bifidobacterium, Blautia, Clostridium, Coprococ-

cus, Dorea, Prevotella, Roseburia, and Ruminococcus (Fig-

ure 3G; Tables S2 and S7), which accords with recently pub-

lished data describing oscillations in two subjects (Thaiss

et al., 2014). Interestingly, the majority of these arrhythmic

OTUs (66 from 87) identified in T2D also lost rhythmicity in pre-

diabetes. In addition, the comparison of two paired stool sam-

pling times with more than 8-h distance in the prospective sub-

cohort of KORA confirmed the presence of daytime-related

differences in nonT2D and, most importantly, also confirmed

their absence in T2D (Figure S3B), supporting at least to some

extent the population data at individual levels. Altogether, these

population-based findings clearly indicate that rhythmicity of the

fecal microbiota is disrupted in subjects with obesity and T2D.

Analysis of eating behavior and dietary intake as influencing

factors for time related microbial shifts (Collado et al., 2018)

showed no significant differences between nonT2D, prediabe-

tes, and T2D subjects. The number of meals individuals were

consuming over one day was equally distributed among the

groups with a similar total caloric intake for the groups. No differ-

ence was found in the type of consumed meals, e.g., no prefer-

ences of late-night eating within one group (Figure 4A), suggest-

ing that eating habits and dietary intake are most likely not the

underlying reasons to explain arrhythmicity of microbiota

composition observed in T2D cases. Of note, percentage of

missing or incomplete information varied between the groups:

7.1% of nonT2D and 20.2% of subjects with T2D provided no

or insufficient dietary information. This highlights the problems

of dietary assessment, including validity and misreporting (King

et al., 2016) and argues for the combination of food question-

naires with objective biomarkers (Figure 4B).

Classification of T2D Using Arrhythmic Microbial
Signatures
We then sought to identify diagnostic biomarkers for T2D devel-

opment using microbiota profiles of 1,340 subjects sampled in

2013 as training data and another 699 subjects for whom

matched samples at the 5-year follow-up (2018) were available

as independent test data (Figure 5A; Table S3). Among the 87

arrhythmic OTUs (Figure 3G), we selected 13 arrhythmic OTUs

(s-arOTUs) with differential 24-h time-of-day patterns using the

detection of differential rhythmicity (DODR) R packages (Thaben

andWestermark, 2016) (Figure 5B; Table S7), which overlap with

the 30 differentially abundant OTUs detected in the whole cohort

(Figure 3B). We trained a generalized linear model (GLM) on

these 13 s-arOTUs to classify T2D. The model performed signif-

icantly better than an equal number of randomly selected control
teroidetes and Firmicutes in 94 subjects (with multiple time points) with known

s (cosine-wave regression, p % 0.05). Data are represented as mean ± SEM.

he enable cohort. Lower part: heatmap depicting the overall phase relationship

les and N = 94 subjects; mean relative abundance >0.1%; prevalence >10%

and normalized to the peak of each OTU. Amount of rhythmic (white) and

the single male individual S1. Lower part: heatmap depicting the overall phase

dinal samples; mean relative abundance >0.1%; prevalence >10% individuals)

ed to the peak of each OTU. Amount of rhythmic (white) and arrhythmic (gray)
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Figure 3. Disrupted Microbial Oscillation in Obesity and T2D

(A) Significant differences in richness (nonT2D = 391 ± 75; prediabetes = 372 ± 76; T2D = 371 ± 79; p value = 0.0002 and BMI < 30 = 390 ± 76; BMIR 30 = 368 ±

76; p value < 10-8) and shannon effective number (nonT2D = 121 ± 37; prediabetes = 112 ± 36; T2D = 114 ± 37; p value = 0.0037 and BMIR 30 = 121 ± 37; BMI

(legend continued on next page)
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OTUs (rndOTUs), which were not rhythmic in either of the groups

(repeated 100 times, mean area under curve [AUC] = 0.79 versus

0.59; p value for 100 permutations = 2.033 10�8) (Figure 5C). As

a complementary and hypothesis-free approach for identifying

T2D biomarkers, we also trained a random forest (RF) model,

in which a 5-fold cross validation was applied to 80% of the

data, while the remaining 20% were used to assess perfor-

mance. We repeated this random split 100 times and identified

63 out of 425 OTUs that were consistently selected as being pre-

dictive, with a mean AUC of 0.73 on the test set (Figure 5D). BMI,

as an additional variable in the model, reduced the number of

selected OTUs to 14 (rfOTUs) with significant differences in rela-

tive abundance (mean AUC = 0.77, Figures S2I and 3B; Table

S7). This signature included Bifidobacterium longum (OTU 37),

Clostridium celatum (OTU 101), Intestinibacter bartlettii (OTU

63), Romboutsia ilealis (OTU 76), and several taxa closely related

to Fecalibacterium prausnitzii (OTU 1,014, OTU 1,860, OTU

3,247, OTU 11,374, and OTU 34,127) and Escherichia coli

(OTU 12 and OTU 34,182). However, a model trained on the

outcome obesity was not able to differentiate T2D (mean

AUC = 0.68), suggesting that the selected 14 rfOTUs are not

merely surrogates of the confounding variable BMI (Figure S2B).

In reverse, the selected 14 rfOTUs failed to differentiate obesity

(mean AUC = 0.63; Figure S2B), supporting the finding that

obesity and T2D differentially affect microbiota profiles. In addi-

tion, BMI did not perform well in a mixed effect RF model (AUC =

0.69; 63 selected OTUs; Figures S4F and S4G). Strikingly, 13 of

these 14 rfOTUs are the same as the above identified 13 s-arO-

TUs (Figures 5B and S2I), supporting the importance of

arrhythmic OTUs in the diabetic risk signature. We further

show robustness of our results when adjusting for composition-

ality bias (Tsilimigras and Fodor, 2016) (Figure S4E). AGLMusing

the selected rfOTUs and BMI (rfOTUs + BMI) classified T2D with

an AUC of 0.79, performing significantly better than a set of 14

randomly picked OTUs (rndOTUs, AUC = 0.60; repeated 100

times, Figure 5E). Due to a comparable performance of both

models and the extensive overlap of OTUs, all 13 s-arOTUs

were used for further analysis. The integration of miscellaneous

diabetes risk markers improved the classification up to an AUC

of 0.87. A RFmodel trained on an expanded set of miscellaneous
R 30 = 110 ± 37; p value < 10-10) and Firmicutes-to-Bacteroidetes ratios dependi

1.80 ± 1.16; p value = 0.58 and BMI < 30 = 2.1 ± 1.31; BMIR 30 = 1.82 ± 1.19; p va

BMI < 30).

(B) Thirty OTUs with significantly different relative abundances between T2D and

BLASTn search.

(C) Diurnal profiles of alpha-diversity and of relative abundances of the phyla Ba

prediabetes (Pre, orange; N = 352), or without diabetes (nonT2D, blue; N = 1,254). S

cosine-wave curves; data points connected by straight lines indicate no significa

mean ± SEM.

(D) Heatmaps of the normalized daytime-dependent relative abundance of OTUs

ordered by the peak phase according of subjects without diabetes (left, nonT2D

(E) As (A), of subjects with diabetes (T2D), either shown for a BMI < 30 (black,

regression, p% 0.05) are illustrated with fitted cosine-wave curves; data points co

thus no rhythmicity. Data are represented as mean ± SEM.

(F) As (B), but of subjects with diabetes (T2D) and a BMI < 30 (left, N = 124) or a

(G) Quantification of rhythmicity fromOTUs in B shows diurnal rhythms in control g

arrhythmic in disease stages like prediabetes (Pre, orange, N = 352), diabetes

rhythmicity (y axis) is indicated by p values above the dashed line (p% 0.05; cosin

rhythmic in healthy controls but arrhythmic in T2D. Of 422 OTUs (see Figure 1I), 8

fluctuation amplitude in healthy controls: light gray, decreased; dark gray, increa
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risk markers selected 9 OTUs which are all shared with the 13 s-

arOTUs (Figure S2C).

In agreement with previous results (Forslund et al., 2015; Pryor

et al., 2019), metformin (MET) intake significantly affected T2D

classification (+MET T2D AUC = 0.87 versus �MET T2D

AUC = 0.60; Figure S2D), but a risk signature based on +/MET

intake was not able to classify T2D in the KORA cohort (AUC =

0.60; Figure S2E). Although MET was found to synchronize pe-

ripheral circadian clocks (Barnea et al., 2012), indicating that

MET may directly interfere with the circadian analysis, MET did

not change rhythmicity in alpha-diversity and phyla nor the over-

all percentage of rOTUs in subjectswith T2D in our study (Figures

S2F and S2G). Of note, 9 of 14 OTUs that gained rhythmicity in

T2D showed diurnal oscillation in T2D only when taking MET

and, thus, may represent rather protective OTUs. Importantly,

none of the rOTUs identified in +/�MET-T2D overlap with the

13 s-arOTUs used for the classification of T2D (Figure S2H).

Consequently, MET did not affect the predictability of T2D based

on the s-arOTU signature. Considering the fact that 5 OTUs

gained rhythmicity in T2D, these OTUs may have been chosen

alternatively for T2D classification, nevertheless we focused on

the larger proportion of arrhythmic OTUs.

Validation of Arrhythmic Microbial Signatures in
Independent and Prospective Cohorts
Disruption of microbial rhythmicity in T2D was confirmed in

another large-scaled and KORA-independent cohort from the

northern part (Kiel) of Germany (FoCus: N = 1,070 nonT2D, N =

293 T2D) (Relling et al., 2018). Loss of daily oscillations in rich-

ness and alpha-diversity was associated with a significant

reduction of rhythmic OTUs in T2D (1.4% rOTUs) compared

with nonT2D (8.5% rOTUs) (Figure 5F). Based on a BLAST

search we assigned the corresponding s-arOTU and presented

the differences in relative abundances between nonT2D and

T2D (Figure S2J; Table S8). In combination with BMI the relative

abundance values were considered as input for the imported

KORA GLM, classifying T2D with an AUC of 0.76 and respective

values for sensitivity and specificity of 75% and 69% (Figures 5G

and 5H). Interestingly and different from FoCus, the across coun-

try validation of the T2D risk signature using the twin cohort from
ng on metabolic status nonT2D = 2.08 ± 1.30; prediabetes = 2.03 ± 1.34; T2D =

lue = 0.73) (red, T2D; yellow, prediabetes; blue, nonT2D; gray, BMIR 30; black,

nonT2D subjects (Table S6). Species names are given to the closest match in a

cteroidetes and Firmicutes of subjects with diabetes (T2D, red; N = 269), with

ignificant rhythms (cosine-wave regression, p% 0.05) are illustratedwith fitted

nt cosine fit curves (p > 0.05) and thus no rhythmicity. Data are represented as

based on 422 OTUs (see A). Data are normalized to the peak of each OTU and

), with prediabetes (middle), or with diabetes (right, T2D).

N = 1,393) or a BMI R 30 (gray, N = 545) Significant rhythms (cosine-wave

nnected by straight lines indicate no significant cosine fit curves (p > 0.05) and

BMI R 30 (right, N = 145).

roups (nonT2D, dark green, N = 1,254; BMI < 30, light green, N = 546), which are

(T2D, red, N = 269), or obesity (BMI R 30, gray, N = 1,396). Significance of

e-wave regression). Right panel: amplitude of the cosine curve of OTUs that are

7 OTUs oscillated in controls only. These OTUs are ordered according to their

sed in relative abundance in T2D compared with nonT2D (Table S7).
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Figure 4. Dietary Habits and Food Intake between NonT2D, Prediabetes, and T2D

(A) Meal frequencies and daily energy intake in subjects with nonT2D, prediabetes, and T2D. Left panel: shows individuals’ self-reported number of meals per day

preceding the study center visit ranging from 1 to 6, number of subjects (N) assigned to the mean-number are shown in brackets below the meal number in gray.

Individuals are grouped according to diabetes status (left column) and the number of individuals per group (N) are shown in gray. Sizes of the blue circles are

referring to the proportion of subjects within each group. Panel in the middle: shows the type of meal noted above. The size of the blue circles indicates the

number of individuals within each group (same as in the left panel) reported to have had the indicated type of meal. Right panel: boxplot showing the long-term

usual calorie intake in kcal per day for each group (as indicated in the left panel, color code as in A). In total, 7.1% of nonT2D, 10.1% of prediabetes, and 20.2% of

T2D no or insufficient information

(B) Boxplots illustrated the general intake of macro nutrients: energy intake [kcal/d] (nonT2D = 1114.50 ± 1304.70; prediabetes = 1110.74 ± 1337.69; T2D =

914.21 ± 1386.65; p value = 0.72), fiber [mg/d] (nonT2D = 13031.18 ± 9421.08; prediabetes = 12606.54 ± 9529.90; T2D = 11366.77 ± 9455.23; p value = 0.76),

water-insoluble fiber [mg/d] (nonT2D = 8654.83 ± 6475.80; prediabetes = 8325.33 ± 6516.57; T2D = 7488.11 ± 6487.03; p value = 0.77) and water-soluble fiber

[mg/d] (nonT2D = 4048.09 ± 3310.40; prediabetes = 3911.26 ± 3330.361; T2D = 3464.94 ± 3346.22; p value = 0.775), stratified according to the diabetes status.

Color code as indicated.
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UK (TwinsUK; N = 1,399 including N = 1,259 nonT2D, N = 46

iT2D, and N = 94 pT2D cases) performed substantially worse

in classifying T2D (AUC = 0.68 for pT2D) and predicting incident

T2D (AUC = 0.69 for iT2D) (Figures S3C–S3E; Table S8). This

concords with previously published data from a Chinese study

with cohorts from different districts (He et al., 2018).

We next addressed the question of whether these 13 s-arO-

TUs are also able to predict T2D in the prospective arm of

KORA, which included 699 paired samples from 2013 and

2018 with 17 persisting T2D (pT2D) and 20 newly incident

T2D (iT2D) cases (Figure 6A; Table S4). Here, rhythmicity was

found for alpha-diversity, phyla proportions, and taxa in

nonT2D but were lost for T2D cases (Figures 6B and S3A).

Similar to the cross-sectional analysis (Figure 5C), the GLM

was able to predict individuals at risk of developing T2D with
an AUC of 0.69 (s-arOTUs) and 0.78 (s-arOTUs + BMI) (Figures

6C and S3C).

Functional Analysis of Rhythmic Microbiota and Their
Association with T2D
We finally investigated functional changes within the fecal micro-

biome across diabetes disease states in the predictive subco-

hort of KORA by performing shotgun metagenomic in paired

samples (from 2013 and 2018) from 50 KORA subjects (N =

100) (Figures 6D–6F). Subjects were selected based on an equal

distribution of iT2D, nonT2D controls, and pT2D cases (Table

S5). Functional pathways were identified using the HMP tool HU-

MAnN2 and annotated using KEGG. To identify those associated

with diabetes, we applied a RF-based approach revealing an

optimal set of 30 microbiome-encoded pathways (Figure S3F).
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Figure 5. Arrhythmic Microbial Signature for Classification of T2D

(A) Number of KORA subjects of the prospective subcohort with samples from both years, 2013 and 2018 (N = 699; Table S4).

(B) Left panel: among the 87 arOTUs (green circle), which oscillated in controls (Figure 2G) but are arrhythmic in subjects with T2D or BMI R 30, 13 OTUs (blue

circle) showed differential rhythmicity based on DODR analysis and overlapped with the previously defined 30 OTUs (yellow circle) showing a significantly

different relative abundance between nonT2D and T2D (Figure S1B). These 13 selected arrhythmic OTUs (s-arOTUs) were used for a further GLM (Table S7). Right

panel: heatmap representing the relative abundance of the s-arOTUs according to the time-of-day different groups (e.g., nonT2D, prediabetes, and T2D). OTUs

(legend continued on next page)
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Models created by including only these 30 top pathways distin-

guished between T2D and controls with a mean AUC of 0.81,

while excluding them resulted in a significant reduction of AUC

to 0.60 (p < 8 3 10�10, Mann-Whitney tests) (Table S6). In order

to address the compositionality of microbial data, we repeated

the above steps using centered log-scale transformed data (Tsi-

limigras and Fodor, 2016). The result remained unchanged with

27 of the 30 pathways retained and with similar patterns of

AUC values (Figure S3G). This is indicative of a strong associa-

tion between these pathways and T2D, including themetabolism

of amino acids (phenylalanine, cysteine, methionine, alanine,

glutamine, and aspartate), aromatic compounds (toluene, fluoro-

benzoate, and chlorocyclohexane), and fatty acids (alpha-lino-

leic acid and riboflavin) (Figures 6E, 6F, and S3H).

Twenty-six of the 30 pathways outlined above were associ-

ated (Spearman Correlation; false discovery rate (FDR) % 0.1)

with at least 2 of the 13 previously identified predictive s-arOTUs

(Figure 6D; Table S6). The pathways could be partitioned into

two different groups based on their association patterns with

the s-arOTUs. While one group of pathways (G1) was associated

with bacteria related to E. coli (i.e., those that had significant pos-

itive associations with clinical markers of T2D, such as fasting

blood glucose, HOMA, and Hb1AC), the other (G2) showed as-

sociations with relatives of F. prausnitzii (negatively correlated

with clinical markers of T2D) (Figure 6D). Strong positive correla-

tions were observed between E. coli and xenobiotic metabolism,

which are also negatively associated with short-chain fatty acid

biosynthesis as well as metabolism of co-factors and vitamins.

The E. coli group of taxa was negatively associated with the

F. prausnitzii group, which mostly occurred in combination with

C. barletti (Figure 6E). In contrast, B. longum was not associated

with the presence of other taxa but negatively correlated with

xenobiotic biodegradation pathways. We next determined

whether the functional associations identified could be validated

in datasets from previous studies. Previous major shotgun

sequence data-based studies have investigated the gut micro-

biome alterations associated with T2D (Karlsson et al., 2013a,

2013b; Qin et al., 2012). While Karlsson et al. (2013a, 2013b)

had primarily focused on elderly women above the age of 70

years, the cohort of Qin et al. (2012) had included individuals

across a much wider age range (similar to the KORA cohort).

Given this scenario, we compared differentially abundant genes
given on the right are shownwith their proposed species name (rRNA fragment ide

(proxy for species level).

(C) Curves of receiver operating characteristics (ROC) for classification of T2D in

arOTUS + BMI (light blue) as well as on 100 times randomly selected sets of each

significantly different between the model types.

(D) ROC curve for a RF model using a training set (train set) of 80% of the data (da

the data (ROC curves in the right panel). The mean AUC over 100 random data

generated models for the corresponding training and test sets, respectively.

(E) ROC curve for classification of T2D in an independent test set consisting of 20%

rfOTUs + BMI (dark orange) as well as on the average performance of 100 rando

models is shown by boxplots and differed significantly between the three model

(F) Circadian analysis of the FoCus cohort. Left panel: diurnal profiles of alpha-d

wave curves (cosine-wave regression, p % 0.05, non-significance is shown by s

arrhythmic (gray) OTUs and their relative abundance in percent. Data are repres

(G) ROC curve for classification of T2D in the FoCus cohort. The curve was calc

values from the 13 assigned OTUs in the FoCus cohort + BMI (as in Figure 3H).

(H) Confusion matrix for the classification of T2D in the FoCus cohort. Shows th

positive and false negative (specificity) values.
from the study by Qin et al. (Qin et al., 2012) with the relative rep-

resentation of the corresponding pathways in the T2D and

nonT2D individuals of the KORA cohort (identified as either en-

riched in T2D or nonT2D). Notably, 19 of the 26 pathways could

be validated in the Qin et al. cohort, along with their directionality

(Figure 6D). The second unique characteristic of these functional

markers was their association with the arrhythmic OTUs. There-

fore, we next checked if any of these identified pathways were

previously observed to show arrhythmic behaviors (or diurnal cy-

cles). A recent study by Beli et al. (Beli et al., 2019) investigated

the microbiome changes in the diurnal cycles of experimental

murine T2D and control mice using a combination of metabolo-

mics and predictive functional profiling of amplicon sequence

data. Notably, seven of the 26 pathways identified here,

including xenobiotic metabolism, cysteine andmethioninemeta-

bolism, alpha-linoleic metabolism, and taurine and hypertaurine

metabolism, were also reported to undergo diurnal rhythmicity in

the study by Beli et al. (Figure 6D). Thus, the metagenomic anal-

ysis linked functions of the arrhythmic risk signature (s-arOTU) to

the metabolic features of T2D (Figures 6E and 6F).

DISCUSSION

Extending a seminal study introducing the concept of rhythmicity

of the gut microbiota in two individuals (Thaiss et al., 2014), here,

we demonstrate diurnal oscillation of microbial taxa in three inde-

pendent large-scaled populations (KORA, enable, and FoCus)

and, using serial sampling, we evenprovide evidence for circadian

rhythmicity of the microbiota profiles in one healthy subject. In

addition, we demonstrate that T2D is associated with a disruption

of gutmicrobiota rhythmicity andmost importantly, we identified a

risk pattern of arrhythmic taxa, which significantly contributes to

the classification of T2D. A hypothesis-free machine-learning

strategy confirmed the predictive validity of the selected

arrhythmic OTUs. Disrupted microbial oscillation and the validity

of this model to discriminate T2D from healthy populations were

validated in the KORA-independent FoCus cohort. Interestingly,

we also detected disrupted rhythmicity in the microbiota of obese

individuals, but there was little overlap between arrhythmic OTUs

of obese and diabetic individuals, indicating that BMI contributes

to T2D risk stratification independent of disrupted circadian

rhythms in the microbiome. In addition to BMI, we used several
ntity given in brackets; bold indicates identity values to known speciesR 97%)

an independent test set. The GLM is based on 13 s-arOTUs (dark blue), 13s-

13 OTUs (gray curve). The distribution of AUCs are shown by boxplots and are

shed lines in the left panel) as well as using a test set with the remaining 20% of

splits is shown. The boxplots below show the distribution of AUCs across all

of the data. The GLM is based on 14 selected OTUs (rfOTUs; light orange), 14

m sets of each 14 OTUs (rndOTUs, gray curve). The distribution of AUCs of all

types.

iversity in 1,363 subjects. Significant rhythms are illustrated with fitted cosine-

traight lines between data points. Right panel: amount of rhythmic (white) and

ented as mean ± SEM.

ulated by the imported GLM generated in KORA using the relative abundance

e true positive (sensitivity) and true negative values (blue) as well as the false
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Figure 6. Arrhythmic Microbial Signature for Prediction of T2D and T2D-Associated Functional Pathways
(A) Phylogenetic tree of 1,401 paired individuals from year 2013 and year 2018 (similarly composed as Figure 1E). Subjects are grouped according to their

similarity in their microbial profile calculated by generalized UniFrac distance. Based on unsupervised hierarchical clustering, individuals are assigned into three

(legend continued on next page)
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other markers related to metabolic syndrome and insulin resis-

tance to improve T2D classification, but in all combinations, the

13 selected arrhythmic bacterial taxa significantly contributed to

the risk profiling of T2D. Although arrhythmic bacterial signatures

have an additional value for the classification of T2D, these results

aim at not replacing commonly used diabetes risk markers but

rather support the hypothesis that daily oscillations of microbial

profiles are functionally linked to metabolic health. Considering

the loss of predictive validity of our model in the TwinsUK cohort,

we cannot exclude the possibility that regional differences in indi-

vidual microbiota profiles affect the repertoire of selected

arrhythmic bacteria in T2D, emphasizing the need to acquire the

daily timepointsof stool sampling for better interpretationsof pop-

ulation data. In addition to regional differences (He et al., 2018),

another possible limitation for the applicability of T2D risk signa-

tures are the different diabetes classifiers. In the prospective part

of the KORA cohort from year 2018, T2D was classified based

on HbA1c, whereas TwinsUK used fasting blood glucose and

FoCus the HOMA index. Even though all these measurements

are based on values measured in blood and represent accepted

biomarkers, some of the T2D cases might be misclassified by

either one. Differences in the reported arrhythmic taxa between

our study and the report from Thaiss et al. may again be explained

by variations inmicrobiota composition of the different subjects at

the individual and regional level, but also methodological differ-

ences in the studydesign, suchasdifferences in the 16S rRNAvar-

iable target gene region for amplicon sequencing (KORA, FoCus,

and enable: V3/V4, TwinUK: V4, Thaiss et al.: V1/2) and the sam-

pling intervals (2 versus 6 h) allowing a better resolution in

this study.

The development of obesity and T2D has been associated with

circadian clock disruption (e.g., shift work) and gut microbiota

dysbiosis (Marcheva et al., 2010; Pedersen et al., 2016; Qin

et al., 2012; Szosland, 2010; Zhou et al., 2019). Despite emerging

evidence for an interrelated dependency of microbiota and the

host circadian system, we cannot completely exclude shift work

schedules in T2D, eating behavior, or the microbial communities

themselves as being driver(s) of oscillating bacterial population

levels in the gut. Nevertheless, the patterns of daily food intake,
cluster C1 (N = 330), C2 (N = 918), and C3 (N = 167, colored in gray). Taxonomic co

around the circle. Color bars around the circle are referring to the sample collec

(B) Diurnal profiles of the relative abundance in alpha-diversity and the phyla of su

699, blue-green). Significant rhythms are illustrated with fitted cosine-wave curve

(C) Predictive analysis of T2D in the paired KORA subcohort (samples from 2013,

the 13 s-arOTUs ± BMI in the regression model to the right. Baseline data is from

(D) The heatmap shows the Spearman correlations for 26 disease-predictive micro

shotgun-sequenced metagenomes from 50 individuals, sampled 2013 and 2018

arrhythmic OTUs are shown. The heatmap on the bottom left shows the associati

entire cohort). Significant associations of both heatmaps were corrected using

indicated with3 in each field. On the right, a one-dimensional heat-plot shows rela

Qin et al. (2012), either enriched in T2D (dashed) or enriched in nonT2D (blue). Fu

(2019) are indicated in brown if affected.

(E) Correlation network of HbA1c associated pathways in relation to selected T2D

negative associations, respectively. The thickness of lines is proportional to correl

classes as indicated.

(F) A schematic flow, integrating T2D signature, rhythmicity, andmicrobiome func

metabolic pathways identified in this study, their associations with the disease/h

from these pathways, and the previously known associations of these (by-)produ

indicate positive and negative associations, respectively. Conflicting association

ciated to insulin sensitivity in some studies, whereas others showed no associat
mealtime, or number of meals per day showed no difference be-

tween healthy and diabetic individuals in KORA, suggesting that

the observed arrhythmicity in fecal microbiota composition was

independent of dietary habits. The circadian clock seems to be

required to maintain rhythmicity of microbiota composition

because oscillations are absent in mice with a genetically

dysfunctional circadian clock (Liang et al., 2015; Thaiss et al.,

2014). In addition, circadian signals from the microbiome affect

diurnal rhythmicity of histone acetylation in intestinal epithelial

cells controlling metabolic responses in the host (Kuang et al.,

2019). This supports the hypothesis that circadian mechanisms

of microbiota-host interactions contribute to metabolic homeo-

stasis. Accordingly, loss of rhythmicity of taxa in T2D subjects

identified in this study likely results in arrhythmicity of their meta-

bolic products. Shotgun metagenomic analysis identified 26 mi-

crobial pathways associated with ‘‘xenobiotic,’’ ‘‘branched-chain

amino acids,’’ ‘‘fatty acids’’ as well as ‘‘taurine metabolism,’’ sup-

porting a functional link between the diurnal oscillation of bacteria

in the gut and metabolic homeostasis. Branched-chain amino

acids were previously documented to follow circadian rhythmicity

in blood samples from humans kept under 40-h constant routine,

and their rhythmicity is lost in subjects with T2D (Skene et al.,

2018). However, 19 of the 26 pathways (73%) identified by meta-

genomic analysis could be validated in a regionally independent

cohort of T2D individuals (Qin et al., 2010), suggesting that the

functionalities of arrhythmic microbiota are relevant biomarkers.

Notable among these were pathways linked to the metabolism

of certain amino acids and degradation of aromatic compounds.

Among the amino acids, metabolism of alanine, aspartate, gluta-

mate, and cysteine were positively associated with health (i.e.,

positive association with the health-associated taxonomic

markers). The major (by-)products of the microbial fermentation

of alanine, aspartate, glutamate, and cysteine are short-chain

fatty acids (SCFAs) and hydrogen sulfide (H2S), respectively (Oli-

phant and Allen-Vercoe, 2019). While the SCFAs are known for

their health benefits including amelioration of insulin resistance,

especially H2S has been suggested as a positive regulator of insu-

lin sensitivity (Khan et al., 2014). In contrast, the negative associ-

ation with metabolic health observed for ‘‘phenylalanine
mposition on phyla level for each subject is shown as colored stacked barplots

tion year (2013, brown; 2018, blue-green).

bjects from the KORA subcohort 2013 (N = 699, brown) or subcohort 2018 (N =

s (cosine-wave regression, p % 0.05). Data are represented as mean ± SEM.

top and 2018, bottom). The prediction of incident T2D cases (iT2D) is based on

nonT2D individuals from 2013. Endpoint is iT2D in 2018 (N = 20).

bial pathways within the 13 OTUs becoming arrhythmic in T2D (across the 100

). Only pathways that were significantly correlated with at least one of the 13

on pattern for the 13 OTUs with clinical markers characterizing T2D (across the

the Benjamini-Hochberg procedure. Corrected p values, which are % 0.1 are

tive representations of each of the previous pathways observed in the cohort of

rthermore, pathways predicted to be influenced by diurnal cycles in Beli et al.

markers (s-arOTUs; orange circles). Green and blue lines indicate positive and

ation coefficients. The color of circles indicating metabolites refers to functional

tion of the metagenome data. The flow correlates themajor disease-associated

ealth-associated taxonomic markers, the metabolic (by-)products originating

cts with the various clinical phenotypes. The green and dashed black arrows

s are visualized by blue arrows (BCFA has been shown to be positively asso-

ion). Purple arrows link pathways to their metabolic (by-)products.
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metabolism’’ had been attributed to phenylethylamine and car-

bon dioxide (Khan et al., 2014; Oliphant and Allen-Vercoe,

2019). In a similar manner, p-cresol derived from the degradation

of aromatic compounds, such as toluene is suggested to be a

negative regulator of insulin sensitivity (Koppe et al., 2013).

Taken together, loss of diurnal oscillation in gut microbiota

composition and associated rhythmic functions may contribute

to the development of metabolic disorders. Whether disease-

associated arrhythmic taxa and their functionality are causally

linked to the metabolic phenotype of T2D remains to be studied,

but these findings clearly highlight the need to consider diurnal

changes in the gut microbiome for diagnostic and prognostic

investigations.
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Deposited Data
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the 16S rRNA gene sequencing of enable cohort

This paper SRA: PRJNA635239

Sequence data, analyses, and resources related to

the 16S rRNA gene sequencing of S1

This paper SRA: PRJNA635239
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the 16S rRNA gene sequencing of KORA cohort
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the 16S rRNA gene sequencing of FoCus cohort

Relling et al., 2018 https://portal.popgen.de

Sequence data, analyses, and resources related to

the 16S rRNA gene sequencing of TwinsUK cohort

Goodrich et al., 2014 SRA: PRJEB13747
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for resources and reagents should be directed to andwill be fulfilled by the LeadContact, Dirk Haller

(dirk.haller@tum.de).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
There are restrictions to the availability of 16S rRNA gene sequencing data due to the informed consent given by the cohort study

participants which does not allow the deposit of data in public databases. KORA data are available upon request from KORA by

means of a project agreement (https://epi.helmholtz-muenchen.de/). Data of the FoCuS cohort is available from the PopGen/P2N

biobank upon request (https://portal.popgen.de).

The accession number for the TwinsUk study raw sequencing data reported in this paper was accessed via the European Nucle-

otide Archive (ENA: PRJEB13747).

The accession number for the raw sequencing data as well as demographical informationof the enable cohort and longitudinal data

from S1 reported in this paper are available via Sequence Read Archive (SRA: PRJNA635239). Software used to analyze the data are

either freely or commercially available. Source code data are available from the corresponding author on request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Longitudinal Large-Scale Population-Based Cohort
Fecal samples were collected from participants of the longitudinal population-based cohort S4 KORA study (Cooperative Health

Research in the Augsburg Region) in southern Germany, which started in 1999 and focuses on cardio-metabolic health, especially

diabetes. KORA-FF4 samples were collected as follow-up of the cohort in 2013/2014 (for simplicity referred to year 2013 in the text)

and KORA-Fit in 2018, respectively. Detailed study design and methods have been published previously (Holle et al., 2005). For the

data analysis, 100 stool samples were excluded due to medication issues and gut-related diseases. T2D and prediabetes were

defined by oral glucose tolerance test or physicians-confirmation and classified by WHO in 2013. Cases with Type 1 Diabetes

were excluded.

The investigations were carried out in accordance with the Declaration of Helsinki, including written informed consent of all par-

ticipants. All study methods were approved by the ethics committee of the Bavarian Chamber of Physicians, Munich (KORA-FF4

2013/14 EC No. 06068 and KORA-Fit 2018/19 EC No. 17040). For further information about KORA-subject details see Holle et al.

(2005) or contact the corresponding author.

Prospective Sub Cohort within KORA
In 2013, fecal samples were collected from 2,076 individuals. Prospectively a subset of 800 individuals were sampled again in 2018.

Participants received sampling kit with collection tubes filled with 5 ml stool stabilizer (Invitek DNA Stool Stabilizer, No. 1038111100),

and to store the samples in their household refrigerator as short as possible. After delivery samples were finally stored at -80�C at the

study centre in Augsburg and thawing and freezing was prevented. A comprehensive data set on social-demographical character-

istics, risk factors profiles, diet and medical history was ascertained amongst others.
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Validation Cohort – TwinsUK
The collection of fecal samples, DNA extraction, amplification of the V4 hypervariable region of the 16S rRNA gene (primers 515F and

806R), purification and pooling were performed as previously described (Goodrich et al., 2014). The pooled amplicons were

sequenced using the Illumina MiSeq platform with 23250bp paired-end sequencing. The raw sequencing data was accessed via

the European Nucleotide Archive (ENA: PRJEB13747). The analysis was performed on N = 1,399 individuals, including N = 46

incident Type 2 Diabetes cases as well as N = 94 Type 2 Diabetes cases that were classified using a combination of self-reported

questionnaires as well as longitudinal glucose measurements. For further information about subjects details see Goodrich et al.

(2014) or contact the corresponding author.

Validation Cohort – Enable
The enable study included healthy volunteers from the region of Munich/Freising in the south of Germany at four defined phases of

life. Fecal samples were collected at the first visit between 2016-2018. From a subset of this cohort (N = 113, N = 50males and N = 63

females, mean age of 53 years) three additional samples were collected at the time of the second visit, after another 4 weeks and after

12 weeks. The sample preparation and MiSeq sequencing of the V3-V4 hypervariable regions was performed as described above.

After chimera checking and samples with low read counts were excluded. For the analysis N = 93 subjects with multiple time points

are considered. The raw sequencing data was accessed via the European Nucleotide Archive (ENA: PRJNA635239). All study

methods were approved by the ethics committee of the Technical University of Munich, School of Medicine (enable No. 452/15S).

Written informed consent was obtained from all subjects.

Validation Cohort – FoCus
The cohort originated from the Food Chain Plus (FoCus) project from 2011 to 2014. Sample collection and DNA preparation were

performed by the IKMB in Kiel, Germany as described previously (Relling et al., 2018) 16S rRNA gene sequencing targeting the

V3-V4 region was performed following the standard protocols as described above. In total 1,529 fecal samples were sequenced.

Samples with low read counts were excluded as well as samples with missing information in BMI, HOMA index values and sampling

time point. For the analysis 1,363 subjects are considered. T2D was classified based on HOMA index (T2D: HOMA > 5.0 (Stern et al.,

2005)). For further information about subject details see Relling et al. (2018) or contact the corresponding author.

Longitudinal Individual Data
Consecutive fecal samples (n = 58) of a 50-year old male subject were collected over three years (starting July 2018 to February

2020). The subject S1 was classified as healthy age-matched subject based on medical records including the documentation for

the absence of diseases such as T2D (and others) and the availability of annually recorded blood parameters demonstrating the

metabolic health of S1 (BMI < 25, HbA1c in the normal range, blood glucose in the normal range, blood pressure in the normal range).

Multiple timepoint sampling was conducted in four phases (July-August 2017 N = 22, December 2017 N = 12, February – March

2018 N = 15 and January 2020 N = 10). The sample preparation and MiSeq sequencing of the V3-V4 hypervariable regions was per-

formed following the standard protocols as described above. For further information about subject details contact the corresponding

author. The raw sequencing data was accessed via the European Nucleotide Archive (ENA: PRJNA635239). All study methods were

approved by the ethics committee of the Technical University of Munich, School of Medicine (enable No. 452/15S). Written informed

consent was obtained.

METHOD DETAILS

High-Throughput 16S rRNA Gene Amplicon Sequencing
Metagenomic DNAwas isolated by amodified version of the protocol byGodon et al. (Godon et al., 1997) from 600-ml aliquots of stool

mixed in DNA stabilization solution (Invitek). Briefly, microbial cells were lysed using a bead-beater with 0.1-mm glass beads (Fast-

Prep-24 fitted with a cooling adapter). DNA was then purified on NucleoSpin gDNA columns (Machery-Nagel, No. 740230.250). DNA

was either used immediately for amplicon analysis or kept frozen as aliquots of 35 ml for metagenomic analysis. After DNA extraction,

all pipetting steps until sequencing were conducted using a robotized liquid handler to maximize reproducibility.

PCRwere conducted in duplicates. DNAwas diluted in PCR-gradewater and used as template (24ng) for amplifying (25 cycles) the

V3-V4 regions of 16S rRNA genes using primers 341F-ovh and 785r-ovh (Kozich et al., 2013) in a two-step process shown tominimize

bias (Berry et al., 2011). PCR products were pooled during cleaning using magnetic beads (Beckman Coulter). PCR-fragment con-

centration was determined by fluorometry and adjusted to 2nM prior to pooling. The multiplexed samples were sequenced on an

Illumina HiSeq in paired-end mode (2x250 bp) using the Rapid v2 chemistry. Analysis were based on chimera checked high-quality

sequences, samples with low read counts were (< 4,700) were re-sequenced on an Illumina MiSeq using v3. Control sequencings

have shown no difference between both machine types (data not shown). To control for artifacts and reproducibility between

runs, two negative controls (a PCR control without template DNA and a DNA extraction control consisting of 600 ml Stool stabilizer

without stool) as well as a positive control using a mock community (ZymoBIOMICS, No. D6300) were included throughout for every

batch of 45 samples (processed on one single 96-well-plate).
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Amplicon Sequence Analysis
Sequencing data was preprocessed using the IMNGS pipeline (Lagkouvardos et al., 2016). Five nucleotides on the 5’ end and 3’end

are trimmed for the R1 and R2 read, respectively (trim score 5) and an expected error rate of 1. Chimera were removed using UCHIME

(Edgar et al., 2011) and the reads of de-multiplexed samples were merged and clustered by 97% similarity using UPARSE

v8.1.1861_i86 (Edgar, 2013). OTUs occurring at a relative abundance < 0.25% across all samples were removed to prevent the anal-

ysis of spurious OTUs (Reitmeier et al., 2020). Taxonomywas assigned using the RDP classifier version 2.11 and confirmed using the

SILVA database (Quast et al., 2013). For phylogenetic analyses, maximum-likelihood trees were generated by FastTree based on

MUSCLE alignments in MegaX (Kumar et al., 2018). We used the EzBioCloud database (Yoon et al., 2017) for precise identification

of OTU sequences of interest.

QUANTIFICATION AND STATISTICAL ANALYSIS

Statistical Analysis
Statistical analysis was performed in R version 3.5.0. Absolute read counts were normalized by minimum sum counts for the calcu-

lation of within samples diversity. The contribution of covariates towards differences in the microbial profile of the whole cohort was

determined by using multivariate permutational analysis using the R function adonis from the vegan package v.2.5-6. The explained

variation of a variable is shown in R2 values and is considered as significant with a P-value% 0.05. For the cumulative explained vari-

ation, all significant covariates are included in a multivariate model. Data was adjusted according to confounding factors (gender,

age, BMI, physical activity, PPI, metformin, and vitamin D intake) as well as stratified according to phenotypical characteristics.

Description of taxonomic composition is based on relative abundances. Between-sample diversity is calculated by generalized Uni-

Frac usingGUniFrac v1.1. distances. De-novo clustering is based onWard hierarchical clustering, the selected number of clusters is

chosen according to the Calinski and Harabasz index, performed with the R packageNbClust v.3.0. For the analysis of prevalence of

categorical variables between groups, a non-parametric Fisher test is used. Taxonomic differences between groups is determined by

generalized linear model based on relative abundance adjusted for confounding. P-values were corrected for multiple testing using

the Benjamini-Hochberg false discovery rate control procedure. Parts of this procedure have been assembled in the software pipe-

line Rhea (Lagkouvardos et al., 2017) used for this analysis.

Prospective Data
A subset of individuals from the KORA cross-sectional collection from 2013 was recruited again in 2018. Stool samples from 699

individuals were collected and paired-end sequenced on an Illumina MiSeq as described above. T2D was classified based on

HbA1c value (%) an incident T2D case is defined as HbA1c < 6.5% in 2013 and HbA1cR 6.5% in 2018 because oral glucose toler-

ance test was not available in 2018. Sequencing data from the sub-cohort of paired subjects is used to predict T2D. Subjects with

unclassified T2D status are excluded. To avoid bias due to overfitting, the 699 samples from 2013, which are part of the 2018 follow-

up dataset, are retained for independent validation.

Diurnal Analysis of Microbiome Data Sets
Statistical analyses were conducted with GraphPad Prism v6.01 (GraphPad Software) and the R script JTK_CYCLE v3.1.R (Hughes

et al., 2010). To efficiently identify and characterize diurnal oscillations in large datasets, circadian variation was tested by fitting a

cosine-wave equation: y = baseline+(amplitude∙cos(2∙p∙((x�[phase shift)/24))) or a double harmonic cosine-wave equation: y =

baseline+([amplitude A]∙cos(2∙p∙((x�[phase shift A])/24))) + ([amplitude B]∙cos(4∙p∙((x�[phase shift B])/24))) on alpha-diversity

and relative abundance, with a fixed 24-h period. The goodness of fit was corrected for multiple comparisons and the significance

was determined using an F-test. Results from the cosine- and harmonic cosine-wave regression were compared with a widely used

rhythmicity detection algorithms JTK_CYCLE, which employs a non-parametric algorithm detecting sinusoidal signals (Hughes et al.,

2010), whereby JTK presents the highest false negative rates (Hughes et al., 2009). Each pvalue was Bonferroni-adjusted for multiple

testing. A statistically significant difference was assumed when p value % 0.05. The high-density time sampling allowed the identi-

fication of diurnal-regulated microbiota with a high statistical power (Hughes et al., 2009).

Illustration of Diurnal Profiles
A high-resolution time course was generated by merging samples taken between 5:00 am and 24:00 pm in two-hour intervals, and

a larger 4-hour interval at night from 00:01 am to 4:59 am to compensate for the low sample size in some groups during the night

time points. Themerged data points are illustrated using GraphPad Prism v6.01 (GraphPad Software) with the sample size of every

groups per time point indicated below the data point +/-SEM in the individual graphs. To demonstrate the overall phase relation-

ship and periodicity of all OTUs together, heatmaps have been generated using the online tool Heatmapper (http://www.

heatmapper.ca; (Babicki et al., 2016). The raw data of each OTU were merged in the above indicated intervals, sorted by the

peak phase based on cosine-wave regression analysis (described below) and scaled in each row according to the highest abun-

dance of the OTU.
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Detection of Selected Arrhythmic OTUs
The relative abundance of each OTU was assessed for a 24-hr rhythmicity using the cosine-wave regression. On total, 87 OTUs

showed diurnal fluctuation in subjects with nonT2D, Prediabetes or a BMI < 30, whereas no significant rhythmicity was detected

in subjects with T2D or BMI R 30 for those OTUs (Figure 2F; Table S6). These 87 OTUs were further analyzed for differential 24-h

time-of-day patterns using the Detection of Differential Rhythmicity (DODR) R packages (Thaben and Westermark, 2016). Resulting

DODR P-values were corrected for multiple comparisons and at the corrected P% 0.05 significance level DODR detected 26 OTUs,

referring to as arOTUs, with significantly different 24-h time-of-day patterns when comparing nonT2Dwith T2D, prediabetes with T2D

and BMI < 30 with BMR 30 (Figure 2D). An overlap of these 26 arOTUs with the previously defined 30 OTUs (abundant OTUs), which

showed a significantly different averaged abundance between nonT2D and T2D (Figure S1B, Table S7), identified 13 OTUs. The

abundance of these 13 OTUs followed a 24-h rhythm in the control groups (nonT2D, BMI < 30), but were arrhythmic in T2D and

BMI R 30 and in addition significantly changed their abundance (s-arOTUs).

Classification Model
A machine-learning algorithm is applied to the cross-sectional data (N = 1,340) from 2013 to classify T2D, excluding the paired-sub-

cohort (year 2013 N = 699; year 2018 N = 699). Further, the most prevalent (> 10%) and abundant (> 0.1%) OTUs are selected for the

analysis, resulting in 425OTUs. A random forest model was used to classify binary outcome variables based on a combination of BMI

and microbial composition with a 5-fold cross validation by using randomForest from the R package randomForest v4.6-14. To

receive a robust and generalizable classification model, the machine-learning algorithm was applied 100-times iteratively assigning

individuals at random to either the training (80%) or test set (20%). For the training set, a subset of equally distributed T2D (N = 150)

and nonT2D (N = 150) cases was taken to train the model (Figure S4D). The model was then validated on the 20% test set (Figures

S4A and S4B). Based on out-of-bag error rates andGini index, themost important features were selected for each iteration using rfcv

fromR package randomForest v4.6-14. Features which appeared in at least 50%of all 100 random forest models were considered as

classification feature for the final model. Feature importance was also assessed via SHapley Additive exPlanations (SHAP) values

using the R package DALAX v1.0.1 (Figure S4I). The training of a random forest model was repeated for centralized log ratio trans-

formed as well as for log ratios of relative abundances (n = 70,000 pairs) to address compositionality of microbial data (Figure S4E).

We further generated a mixed effect random forest model with BMI as random factor using the R packageMixRF v1.0 and otherwise

retaining the same procedure for selecting test and training data. Themodel selected 13 OTUs, two are overlapping with the selected

arrhythmic OTUs (s-arOTUs) (Figures 3C and S4F).

Prognostic Model for T2D
For the risk prediction of T2D, a generalized linear model for binomial distribution and binary outcome (logit) was generated using the

previously selected features based on arrhythmic OTUs including BMI as additional variable. For the model, a generalized linear

model was generated on the cross-sectional cohort excluding the paired sub-cohort. To verify the importance of the selected fea-

tures, a generalized linear model for control OTUs (rndOTUs, equal number of OTUs as in s-arOTUs) are implemented repetitively

100-times. The randomly selected control OTUs (rndOTUs) neither show rhythmicity in disease nor non-disease stages.

To apply the generated models to the unknown data from the paired sub-cohort of both time points, a blast search was performed

assigning sequences of the selected features to the corresponding sequences of the new dataset. Sequences with an identify of

97%, coverage of 80% and an E value % 10-5 are considered as a hit. If there is no matching sequence available when using the

above thresholds, the best match is taken instead. Sequences are uniquely assigned to a reference sequence. For the prediction

of T2D, the relative OTU abundance of year 2013 is considered as baseline. Individuals at this stage are not classified as T2D.

The two endpoints are incident T2D cases and nonT2D in 2018. For the validation cohorts the corresponding OTUs were assigned

by BLAST as well. Addressing the issue of different hypervariable region was possible since both cohorts overlap in the V4 region.

Hence, the selection of s-arOTUs in the TwinsUK study was possible. To avoid any misclassification, we further checked the V4 se-

quences in EzBiocloud to guarantee the correct taxonomic assignment

Metagenomic Data Selection
From of the prospective data, we chose a subset of 100 paired individuals showing interesting phenotypic characteristics for shotgun

sequencing and metabolomic analysis. The dataset includes incident T2D cases, T2D cases and nonT2D controls, which are other-

wise metabolically healthy. Shotgun sequencing of the isolated DNA from stool samples, as well as the analysis, were conducted by

the APC Microbiome Institute, Cork (Ireland).

The taxonomic and functional annotation of the shotgun feacal metagenomic datasets were performed using themetaphlan2 (Se-

gata et al., 2012) and HUMAnN2 (Franzosa et al., 2018) pipelines. Gene families detected using the HUMAnN2 approach were then

mapped to the KEGG pathway orthology (Kanehisa and Goto, 2000) scheme using internal mappings within HUMAnN2. Psych R

package v1.8.12 was used to compute the correlation between the OTU markers with the clinical markers and the KEGG pathways

(Spearman correlation filtered with Benjamini-Hochberg corrected FDR% 0.1). For identifying the top disease-predictive pathways,

we used an iterative random forest approach randomForest from R package randomForest v4.6-14, where we performed 100 iter-

ations, each time taking 50% of the samples with T2D (from both 2013 and 2018) and an equal number of controls and tested the
Cell Host & Microbe 28, 258–272.e1–e6, August 12, 2020 e5



ll
Article
same model on the remaining 50%, again with an equal number of controls. Mean AUC and mean feature importance scores were

then computed across iterations using standard R functions. For the validation in the cohort of Qin et al. (Qin et al., 2012) cohort, the

pathway affiliations of the differentially abundant KEGGorthologues identified in this studywere obtained. The relative representation

of themarker pathways in the T2D-enriched and control-enriched were then computed. Pathways that were only detected in a group

or had more than two-fold increase of representation in the given group were identified as enriched in that group (T2D or nonT2D),

respectively.
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