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ABSTRACT 

Motivation: High-throughput phenotypic assays reveal information 

about the molecules that modulate biological processes such as a 

disease phenotype and a signaling pathway. In these assays, the 

identification of hits along with their molecular targets is critical to 

understand the chemical activities modulating the biological system. 

Here, we present HitPick, a web server for identification of hits in 

high-throughput chemical screenings and prediction of their molecu-

lar targets. HitPick applies the B-score method for hit identification 

and a newly developed approach combining 1-Nearest-Neighbour 

(1NN) similarity searching and Laplacian-modified naïve Bayesian 

target models to predict targets of identified hits. The performance of 

the HitPick web server is presented and discussed. 

Availability: The server can be accessed at http://mips.helmholtz-

muenchen.de/proj/hitpick 

Contact: monica.campillos@helmholtz-muenchen.de 

1 INTRODUCTION  

Chemical biology experiments are increasingly used to search for 

chemical modulators of biological processes in cell-based and even 

whole-organism assays as illustrated by the thousands of phenotyp-

ic screenings stored in public repositories (Seiler et al., 2008; 

Wang et al., 2010). In these assays, the identification of the molec-

ular targets of hits is essential to understand the molecular basis of 

the chemical activities in the bioassay. Recently, drug target pre-

diction methods have been applied to the hits of cells (Young et al., 

2008) and zebrafish (Laggner et al., 2012) phenotypic screenings 

showing that computational approaches are suitable tools that facil-

itate the interpretation of the biological activity of chemicals.  

Although diverse in silico methods have been proposed to identify 

hits (Makarenkov et al., 2007; Malo et al., 2006) and predict tar-

gets for chemicals (reviewed in (Kuhn et al., 2008)), only few of 

them are available as easy-to-use online tools  (Keiser et al., 2007; 

Wang et al., 2012). To overcome this situation and assist in the 

analysis and interpretation of chemical phenotypic screens, we 

introduce HitPick, the first web server for hit identification and 

target prediction of chemical screenings. HitPick provides the 

functionality to detect bioassay hits using the B-score method and 

predict targets of a chemical of interest using a new integrative 

approach that combines 1NN similarity searching and a machine 

learning method. On cross-validation, the target prediction ap-
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proach of HitPick performs better than each of the methods alone, 

achieving a sensitivity of 60.94%, a specificity of 99.99% and a 

precision of 92.11%. 

2 METHODS 

We apply the widely used B-score method for hit identification, which uses 

the median polish procedure to remove the bias in rows and columns in a 

plate (Malo et al., 2006). Hits are determined by a p-value cut-off of 0.05, 

and replicates of compounds will be considered as hits when all the repli-

cates are identified independently as hits. 

For target prediction, HitPick employs a newly developed approach that 

combines two methods based on 2D molecular fingerprints, namely, 1NN  

similarity searching (Schuffenhauer et al., 2003) and Laplacian-modified 

naïve Bayesian target models (Nidhi et al., 2006). For each query com-

pound the most similar compound from a dataset of known ligand-target 

interactions is determined by calculating the pairwise Tanimoto coefficient 

(Tc) (Willett, 1998). Then, Laplacian-modified naïve Bayesian target mod-

els generate a score for all known targets of the most similar compound 

(Nidhi et al., 2006), resulting in a list of ranked target predictions.  

For the implementation of this approach we used a set of 145,549 human 

chemical-protein physical interactions extracted from the STITCH 3.1 

database (Kuhn et al., 2012). In this study, we restrict the target prediction 

to human proteins, as it is currently the species with the largest number of 

known drug targets, enabling thus more accurate predictions. In total, we 

obtained 99,572 compounds with unique SMILES strings with known 

interactions for which we generated 2D circular fingerprints based on the 

Morgan algorithm with feature invariants similar to the FCFP (Rogers and 

Hahn, 2010) using RDKit (http://rdkit.org). Using these molecular finger-

prints we created Bayesian models for 1,375 proteins with at least three 

known ligands. For benchmarking, we randomly assigned 85% of the 

known ligands to the training set and the remaining 15% to the validation 

set. In total, the validation set contained 22,868 positive and 20,779,507 

negative compound-target relationships, respectively. 

To facilitate the analysis of experiments with many hits, the target predic-

tion for screenings with more than 100 hits is carried out for a structurally 

diverse subset of 100 compounds obtained by applying the MaxMin-

Algorithm (Ashton et al., 2002) implemented in RDKit. 

The fingerprint creation for the STITCH compounds, building and applica-

tion of Bayesian target-specific fingerprint models were implemented in a 

KNIME (http://www.knime.org) workflow making use of the chemoinfor-

matic functionality provided by KNIME itself as well as by RDKit. 

 

Associate Editor: Prof. Anna Tramontano

© The Author (2013). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 

 Bioinformatics Advance Access published May 28, 2013
 at G

SF Z
entralbibliothek on June 4, 2013

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

http://bioinformatics.oxfordjournals.org/


2 

3 PERFORMANCE 

 
We assessed the performance of the target prediction method in 

HitPick using as validation set 15% of all ligands that were not part 

of the training set. When evaluating the highest scoring target pre-

diction for each compound, HitPick achieves a sensitivity of 

60.94% (with 66.16% being the maximum possible sensitivity), a 

specificity of 99.99% and a precision of 92.11%, an improvement 

over naïve Bayesian models (sensitivity of 52.95%, specificity of 

99.98%, precision of 80.03%) and 1NN similarity searching (pre-

cision of 84.72%). HitPick performance is comparable to the target 

prediction quality achieved by the Similarity Emsemble Approach 

(SEA), a well-known target fishing application that relates proteins 

based on the chemical similarity of their ligands (Keiser et al., 
2007) (not shown). 

We also evaluated the performance of the HitPick target prediction 

method at different ranges of chemical similarity of the query 

compound to the closest training compound and for up to five top 

scoring known targets of this training molecule independently. In 

order to obtain robust precision estimates we require a minimum of 

30 compound-target predictions for each target rank in a given Tc 

interval (Table. 1). 

We observed that the precision increases with increasing Tc. For 

compounds with a Tc of 0.7 or higher to the training set, the first 

predicted target was nearly always correct. Furthermore, the preci-

sion reached at least 53% for a Tc in the range of 0.4~0.5 (Table. 

1) Thus, we chose 50% as default precision threshold for the pre-

dicted targets on the web server. 

 

Table 1. Precision (%) for the first five predicted targets in relation 

to the Tc similarity of a validation compound to the most similar 

molecule in the training set. The precision for cells marked as 

“NA” could not be determined due to the low number of com-

pound-target predictions (less than 30). 

4 IMPLEMENTATION 

HitPick offers two independent functions. The first function identi-

fies bioassay hits based on the B-score method and predicts targets 

for up to 100 hits. As input, it requires the data from a bioassay, 

including plate names, compound identifiers, well positions, activi-

ty values and SMILES strings. The output is a table listing the hits 

and their chemical structures. This table is used as input source for 

the target prediction method. The output of the target prediction is 

a list of target predictions for the input compounds ranked by de-

creasing precision. 

In addition, HitPick allows the prediction of targets for up to 100 

compounds independently from bioassay data. For this second 

function only SMILES strings are required as input.  

To ensure a high reliability of the target prediction outcome, 

HitPick reports only those targets per compound for which we can 

reliably estimate the precision. The precision depends on the 

similarity to the most similar compound in the set of known 

interactions as well as on the rank of the target's score. Users can 

select different precision thresholds for the target prediction results 

as desired. Under a lower threshold, more chemicals will have 

predictions at the cost of a lower precision. In addition, an 

overview of the predicted targets is given in form of pie chart.  
The processing time for hit identification depends on the size of 

the assay data. For bioassays containing less than 5000, 10,000 and 

100,000 compounds, the web server returns the results in less than 

one, two and 30 minutes, respectively. The target prediction takes 

around five minutes per batch of query. 
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Ranked 

prediction
[0.2~0.3) [0.3~0.4) [0.4~0.5) [0.5~0.6) [0.6~0.7) [0.7~0.8) [0.8~0.9) [0.9~1.0) 1

1st 15.7 26.4 53.3 77 89.8 94.8 96.7 97.7 97.3

2nd 15.4 14.5 43.5 54.3 64.1 68.9 75.7 88.2 83

3rd NA NA 24.6 39.1 48.3 63.2 71.9 77.9 66.7

4th NA NA 15.4 33.3 36.1 62 57.9 77.6 56.5

5th NA NA NA NA 29.6 46.1 51.8 NA NA
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