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Abstract

In this paper, we consider the sparse regularization of manifold-valued data with respect to an
interpolatory wavelet/multiscale transform. We propose and study variational models for this task
and provide results on their well-posedness. We present algorithms for a numerical realization of
these models in the manifold setup. Further, we provide experimental results to show the potential
of the proposed schemes for applications.
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Keywords: Manifold-valued Data, Sparse Regularization, Interpolatory Wavelets, Interpolatory Multiscale

Transforms, Denoising, Symmetric Spaces.

1 Introduction

In various problems of applied sciences the data take values in a manifold. Examples are circle and
sphere-valued data. They appear in interferometric SAR imaging [63], as wind directions [72], and
as orientations of flow fields [3, 75]. Further, in color image processing they appear in connection
with color spaces such as HSI, HCL, as well as in chromaticity based color spaces [27, 84, 59, 60].
Other examples are data with values in the special orthogonal group SO(3) which may express cam-
era positions or orientations of aircrafts [83], Euclidean motion group-valued data [70] representing,
e.g., poses as well as shape-space data [64, 20]. Another prominent manifold is the space of positive
(definite) matrices Posn of dimension n endowed with the Fisher-Rao metric [69]. For each n ∈ N,
Posn is a Cartan-Hadamard manifold which has nice differential-geometric properties. On the appli-
cation side, Pos3 is the data space in diffusion tensor imaging [68] which allows the quantification
of diffusional characteristics of a specimen non-invasively [13, 56] and which is therefore helpful
in the context of neurodegenerative pathologies such as schizophrenia [41] and autism [6]. Another
application of positive matrices are deformation tensors; cf. [83].

There are various directions on processing manifold valued data. Manifold-valued partial differ-
ential equations have for instance been considered in [82, 29]. In particular, finite element methods
for manifold-valued data are the topic of [51, 71]. Work on statistics on Riemannian manifolds can
be found in [66, 22, 40, 23, 67, 39]. Optimization problems for manifold-valued data are for example
the topic of [2, 1, 48] and of [55] with a view towards learning in manifolds. We also mention related
work on optimization in Hadamard spaces [10, 9]. Nonsmooth variational methods for segmentation
and denoising using Potts and Mumford-Shah models for manifold-valued data were considered in
[92, 78]. TV functionals for manifold-valued data were considered in [42, 43, 44]; algorithmic ap-
proaches for TV minimization were considered in [79, 61, 49, 91, 19, 77]. Examples of applications
of TV regularization for medical imaging tasks can be found in [15, 74, 16]. Recently, TV type reg-
ularization with indirect data terms, which in particular may be used to realize deconvolution models
in the manifold setting, has been considered in [76].
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Interpolatory wavelet transforms for linear space data have been investigated by D. Donoho in
[34]. Their analogues for manifold-valued data have been introduced by Ur Rahman, Donoho and
their coworkers in [83]. Such transforms have been analyzed and developed further in [50, 47, 89].
Typically, the wavelet-type transforms employ an (interpolatory) subdivision scheme to predict the
signal on a finer scale. The ‘difference’ between the prediction and the actual data on the finer scale
is realized by vectors living in the tangent spaces of the predicted signal points which point to the
actual signal values; i.e., they yield actual signal values after application of a retraction such as the
exponential map. These tangent vectors then serve as detail coefficients. Subdivision schemes for
manifold-valued data have been considered in [85, 45, 93, 88, 86]. Interpolatory wavelet transforms
and subdivision are discussed in more detail in Section 2.1 below which deals with preliminaries. All
the aforementioned approaches in this paragraph consider explicit schemes, i.e., the measured data is
processed in a forward way using the analogues of averaging rules and differences in the manifold
setting. In contrast, we here consider an implicit approach based on a variational formulation.

In this paper, we consider wavelet sparse regularization for manifold-valued data. Let us briefly
describe the univariate situation here; details and the multivariate setup are considered in Section 2.
Let f ∈ MK be data living in the manifoldM defined on a discrete grid of length K. We consider the
problem (which, for q = 1, α = 1, is a variant of the LASSO [80, 26] for manifold-valued data)

arg min
u∈MN

dist(A(u), f )p +W
α,q
λ (u). (1)

Here, u denotes the argument to optimize for; it may be thought of as the underlying signal gen-
erating the response A(u) where A is a (necessarily) nonlinear operator which models for instance
a system’s response. In the simplest case of pure denoising, A may be implemented as the iden-
tity on MN . Further instances of A are detailed in Section 2; examples are the manifold valued
analogues of convolution operators. The nearness between A(u) and the data f is measured by
dist(A(u), f )p =

∑K
i=1 dist(A(u)i, fi)p which denotes the pth power of the distance inMK . The param-

eter vector λ = (λ1, λ2) regulates the trade-off between the data fidelity, i.e., the distance to the data
and the regularizing term Wα,q. Let us more precisely describe the term Wα,q

λ which is the central
topic of the paper. We let

W
α,q
λ (u) = λ1 ·

∑
n,r

2
rq

(
α+

1
2−

1
q

)
‖dn,r(u)‖qûn,r

+ λ2 ·
∑

n

dist(ũn−1,0, ũn,0)q. (2)

Here the symbol ‖ · ‖ûn,r denotes the norm induced by the Riemannian scalar product in the point ûn,r,

which is the point where the detail dn,r(u) is a tangent vector at. The parameter α is a smoothness
parameter and the parameter q ≥ 1 stems from a norm type term. The details dn,r at scale r of the
interpolatory wavelet transform for manifold valued data are given by

dn,r = dn,r(u) = 2−r/2 (
ũn,r 	 ûn,r

)
, ûn,r = Sũn,r−1. (3)

Here ũn,r−1 = u2R−r+1n and ũn,r = u2R−rn (R the finest level) denote the thinned out target u at scale r− 1
and r, respectively. The coarsest level is denoted by ũn,0 = u2Rn. Sũn,r−1 denotes the application of an
interpolatory subdivision scheme S for manifold-valued data to the coarse level data ũ·,r−1 evaluated
at the index n which serves as prediction for ũn,r. Then, ũn,r 	 Sũn,r−1 = exp−1

Sũn,r−1
ũn,r denotes the

tangent vector sitting in ûn,r = Sũn,r−1 which points to ũn,r. Here, we use the symbol exp−1 to denote
the inverse of the Riemannian exponential function exp . We point out that we use the normalization
of the coefficients dn,r employed in [34] in the linear case. Details are discussed in Section 2.1. The
second term addresses the coarsest scale; it measures the qth power of the distance between the target
items on the coarsest scale. As already pointed out, the case q = 1, α = 1 in (1), corresponds to the
manifold analogue of the LASSO or `1-sparse regularization which, in the linear case, is addressed
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by (iterative) soft thresholding [35]. This choice q = 1, α = 1 is particularly interesting since it
favors solutions u which are sparse w.r.t. the considered wavelet expansion. The manifold analogue
of `0-sparse regularization is obtained by using the regularizer

W0
λ(u) = λ1 #{(n, r) : dn,r(u) , 0} + λ2 #{n : ũn−1,0 , ũn,0}. (4)

The operator # is used to count the number of elements in the corresponding set. Note that so the
number of non-zero detail coefficients of the wavelet expansion is penalized. Similar to the linear case
[87, 35, 26], potential applications of the considered sparse regularization techniques are denoising
and compression.

1.1 Contributions

The contributions of the paper are as follows: (i) we introduce and study a model for wavelet sparse
regularization in the manifold setup; (ii) we provide algorithms for the proposed models; (iii) we
show the potential of the proposed algorithms by applying them to concrete manifold-valued data.
Concerning (i), we propose a variational scheme employing manifold valued interpolatory wavelets
in the regularizing term. In particular, we consider a sparsity promoting `1 type term as well as an `0

type term. We obtain results on the existence of minimizers for the proposed models. Concerning (ii)
we provide the details for an algorithmic realization of the proposed variational model. In particular,
we apply the concepts of a generalized forward backward-scheme with Gauss-Seidel type update
and a trajectory method as well as the well-established concept of a cyclic proximal point algorithm.
To implement these schemes we derive expressions for the (sub)gradients and proximal mappings
of the atoms of the wavelet regularizing terms. This includes the manifold analogues of `1 and `0

sparse wavelet regularization. Concerning (iii), we provide a detailed numerical study of the proposed
scheme. We provide experiments with data living on the unit circle, in the two-dimensional sphere as
well as in the space of positive matrices.

1.2 Outline of the paper

The paper is organized as follows. The topic of Section 2 is to derive a model for wavelet sparse
regularization for manifold valued data and show its well-posedness. In Section 3 we consider the
algorithmic realization of the proposed models. In Section 4 we provide a numerical investigation of
the proposed algorithms. Finally, we draw conclusions in Section 5.

2 Model

In Section 2.1 we provide basic information on subdivision schemes and interpolatory multiscale
transforms needed to define a variational model for wavelet sparse regularization for manifold valued
data. In Section 2.2 we give a detailed formulation of the manifold analogue of the variational problem
for wavelet sparse regularization. In Section 2.3, we obtain well-posedness results for the variational
problem, i.e., we show that all considered problems have a minimizer.

2.1 Preliminaries: Subdivision schemes, interpolatory multiscale transforms

We here provide information on subdivision schemes and interpolatory multiscale transforms we need
later on.
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Subdivision schemes. We consider the multivariate setup. The purpose of a subdivision scheme
is to refine a grid function. More precisely, given a function p = (pi)i∈Zs which lives on a coarser s
dimensional grid, a subdivision scheme S assigns a function Sp living on a finer s dimensional grid.
Here, we use the multiindex notation i = (i1, . . . , is) ∈ Zs to specify the points in the domain of the
grid functions. In case of dyadic refinement and a linear subdivision scheme, the assignment of Sp to
data p is done via the rule

Spn =
∑
k∈Ns

an−2k pk, for n ∈ Zs. (5)

Here, a = (ai)i∈Zs is called the mask of the subdivision scheme S. We always assume that
∑

i∈Zd ai =

1, which means that S reproduces constants. For simplicity, we will use dyadic refinement in the
following. We point out, that our approach in this paper is also amenable for refinement using general
dilation matrices; references dealing with subdivision schemes for more general dilation matrices
are [53, 54, 52, 90]. In the following we are interested in interpolatory subdivision schemes. To
explain the notion of an interpolatory scheme we notice that the mask a on an s-variate domain
actually encodes 2s convolution operators a(l) = (al+2i)i, l ∈ {0, 1}s. A scheme is interpolatory if
the convolution operator corresponding to the coarse level grid (l = 0) is the identity operator. In
formulas, this means that a2i = δi0, for all i ∈ Zs, were δ denotes the Kronecker symbol which equals
one if and only if the indices are equal, and zero else. Examples of interpolatory schemes are the
well-known four-point scheme [36] or the schemes of Delaurier and Dubuc [32] with the particular
instances of the first order interpolatory scheme and the third order interpolatory Deslaurier-Dubuc
scheme given by the masks

a = (. . . , 0, 1
2 , 1,

1
2 , 0, . . .), and a = (. . . , 0,− 1

16 , 0,
9
16 , 1,

9
16 , 0,−

1
16 , 0, . . .), (6)

respectively. These are univariate schemes which can be adapted such as to work in any multivariate
domain of dimension s by a tensor product construction: the mask a′ of the multivariate scheme is
given by a′n =

∏s
i=1 ani where a is the mask of the univariate scheme, and n ∈ Zs is a multiindex.

In recent years, there has been a lot of interest in nonlinear subdivision schemes and in particu-
lar in subdivision schemes dealing with geometric or manifold-valued data [85, 45, 93, 88, 86]. For
geometric data, typically geometric analogues of linear subdivision schemes are considered. This
means that the coefficients stored in the mask a are used to define a geometric scheme employing a
manifold construction replacing the averaging operation in affine space. Examples of such construc-
tions include geodesic averaging [85], log-exp schemes [83] and intrinsic means [88]. The latter have
turned out to be particularly suitable [86, 46, 47]. For this reason, and due to their variational nature,
we concentrate on geometric schemes based on intrinsic means. The intrinsic mean variant of the
subdivision scheme S is given by

Spn = mean(an−2·, p). (7)

The intrinsic mean in the manifoldM is given by

mean(an−2·, p) = arg min
v∈M

∑
j

an−2 j dist(v, p j)2. (8)

It replaces the affine average on the right hand side of (5) (which is the affine space variant.) The
coefficients of the scheme are the coefficients of mask a which are the same for a linear scheme and
its geometric analogue. Although the subdivision operator S is nonlinear in the general manifold
setting we omit the brackets in the notation Su since this is particularly convenient in connection with
index notation.

The first definition of the intrinsic mean can be traced back to Fréchet; a lot of work has been
done by Karcher [57]. For details including an historic overview we refer to [4]; see also [58]. Due
to its use as a means of averaging in a manifold, it is employed as a basic building in various works;
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e.g., [68, 39, 81] as well as many references in the paragraph above. Various work deals with the
numerical computation of the center; see, for instance [5, 38, 7].

The mean mean(ai,·, u) is not unique for all input constellations. However, for data living in a
small enough ball uniqueness is guaranteed. For a discussion, precise bounds and an extensive list
of reference concerning this interesting line of research we refer to Afsari [4]. A reasonable way to
deal with the nonuniqueness is to consider the whole set of minimizers in such a case. In this paper
we do so where – in case of nonuniqueness – we add an additional constraint originating from our
variational formulation described in Section 2.2.

Interpolatory wavelet transforms. Interpolatory wavelet transforms for data living in linear spaces
have been considered by D. Donoho in [34]. To explain the idea, we consider grid functions pn,r, pn,r−1
at the finer scale r and the coarser scale r − 1 which are related via p2n,r = pn,r−1 for all multiindices
n and levels r (which might originate from point samples of a function f defined on Rs with values in
R.) The interpolatory wavelet transforms for real valued data in [34] are then defined by mapping the
signal p to the details

dn,r = dn,r(p) = 2−sr/2 (
pn,r 	 p̂n,r

)
, p̂n,r = Spn,r−1, (9)

where n is a multiindex, 	 denotes the ordinary subtraction in a vector space, and S denotes a linear
interpolatory subdivision scheme. Please note the slight abuse of notation in the expression Spn,r−1
which represents the scheme S applied to the data p·,r−1 evaluated at the multiindex n. The transfor-
mation then maps

pn,R 7→ (dn,R, . . . , dn,1, pn,0), (10)

where p·,R is a grid function at the finest scale used as input.
Interpolatory transforms for manifold-valued data have been introduced in [83]. In the manifold

situation, we interpret (9) as follows: (i) the symbol S denotes a geometric subdivision scheme S, here
concretely the intrinsic mean analog given by (8) of a linear interpolatory scheme, e.g., a multivariate
tensor product Deslaurier-Dubuc scheme; (ii) the symbol 	 is interpreted via the the inverse of the
Riemannian exponential mapping exp, concretely, pn,r 	 Spn,r−1 = exp−1

Spn,r−1
pn,r. We note that, in

contrast to the real valued situation, where the tangent spaces at all points are naturally identified,
the details now are tangent vectors with dn,r sitting in Spn,r−1. Concerning analytic results for these
transforms we refer to [50, 47, 89].

2.2 Wavelet Sparse Regularization in the Manifold Setup – Variational Formulation

The previously discussed interpolatory wavelet transforms are explicit means of processing data in
the sense that analogues of averaging rules and differences in the manifold setting are applied to the
data directly. In contrast, we here consider an implicit approach based on a variational formulation
where the interpolatory wavelet transform is used as a regularizing term.

In the following, we always consider a complete and connected Riemannian manifold M (with
its canonical metric connection, its Levi-Civita connection). More precisely, we consider a manifold
M with a Riemannian metric which is a smoothly varying inner product 〈·, ·〉p in the tangent space
of each point p. According to the Hopf-Rinow theorem, the complete manifold M is geodesically
complete in the sense that any geodesic can be prolongated arbitrarily. The Levi-Civita connection is
the only connection which is symmetric and which is compatible with the metric. For an account on
Riemannian geometry we refer to the books [73, 33].

Extending the discussion started in the introduction, we derive a model for wavelet sparse regu-
larization for manifold-valued data in the multivariate situation. We consider data f ∈ MK , where

5



K = (K1, . . . ,Ks′) ∈ Ks′ denotes a multiindex consisting of s′ components. We propose to consider
the problem

arg min
u∈MN

dist(A(u), f )p +W
α,q
λ (u). (11)

where the target variable u ∈ MN =MN1 × . . . ×MNs is a multivariate function defined on a regular
grid, and, in contrast to (1), N = (N1, . . . ,Ns) ∈ Ns denotes a multiindex consisting of s components
representing the s-dimensional domain of u. For instance, for a classical image s = 2, and for a
volume s = 3. Further, we use the usual multiindex notation to denote

dist(A(u), f )p =

K−1∑
i=0

dist(A(u)i, fi)p =

K1−1∑
i1=0

. . .

Ks′−1∑
is′=0

dist(A(u)i1,...,is′ , fi1,...,is′ )
p (12)

the pth power of the distance inMK . The parameter vector λ = (λ1, λ2) regulates the trade-off between
the data fidelity, i.e., the distance to the data and the regularizing termWα,q

λ . Possible choices of the
imaging operatorA are discussed below.

Our central topic is the precise definition of the wavelet sparse regularizing termWα,q
λ in an s-

variate situation. We assume that the signal dimensions N = (N1, . . . ,Ns) and the scale level R are
related via N = 2R ·N′ with the scalar R and the multiindices N,N′. Then, the coarsest scale r = 0 has
size N′ = (N′1, . . . ,N

′
s) with N′ν data points in the νth component, 1 ≤ ν ≤ s, ν ∈ N. We define ũ by

ũn,r = u2R−rn, 0 ≤ r ≤ R. (13)

Here, n denotes a multiindex, which, in dependence on the level r, takes values in the range 0 ≤
n < 2rN′. With the details dn,r(u) = 2−sr/2 (

ũn,r 	 ûn,r
)

where ûn,r = Sũn,r−1 defined by (9) of the
interpolatory wavelet transform, we have

W
α,q
λ (u) = λ1 ·

∑
n,r

2
rq

(
α+

s
2−

s
q

)
‖dn,r(u)‖qûn,r

+ λ2 ·
∑
n,i

dist(ũn−ei,0, ũn,0)q. (14)

Here, ‖ · ‖ûn,r denotes the norm induced by the Riemannian scalar product in the points ûn,r = Sũn,r−1,

and we recall that the symbol s denotes the spatial dimension of the domain of u. Concerning the sec-
ond term which addresses the coarsest level, we let ei = (δi j)1≤ j≤s, i ∈ 1, . . . , s, be the ith unit vector.
The term measures the qth power of the distance between neighboring data items on the coarsest scale
w.r.t. any of the coordinate directions. We note that often three parameters α, q, q′ are considered in
connection with the linear space analogue of the regularizer in (14), cf. [26]. In this respect, we here
consider the particular case of q = q′. As already pointed out we are particularly interested in the case
q = 1 in (14), which corresponds to the manifold analogue of `1-sparse regularization.

The manifold analogue of `0-sparse regularization is given by using the regularizer

W0
λ(u) = λ1 # {(n, r) : dn,r(u) , 0} + λ2 # {(n, i) : ũn−ei,0 , ũn,0} (15)

which incorporates the number of non-zero detail coefficients dn,r.

Handling nonunique means. For the definition of the details in (9) we use geometric subdivision
schemes and we have defined geometric subdivision scheme using intrinsic means in (7). As ex-
plained above, intrinsic means are locally unique. (We note that it is often the case in differential
geometry that the considered objects are only locally unique, e.g., geodesics.) To avoid complica-
tions, we add an additional constraint originating from our variational formulation. In case of non-
uniqueness, we denote the set of all minimizers in (8) by Spn and single out those which minimize
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the corresponding expression used to define ‖dn,r(u)‖. More precisely, in such cases, we overload the
previously given definition in (9) by

dn,r(u) =

{
d̂n,r : d̂n,r = 2−sr/2 (

ũn,r 	 ûn,r
)
, ûn,r ∈ Sun,r−1, d̂n,r ∈ arg min

d′n,r∈Sun,r−1
‖d′n,r‖

}
. (16)

This means that we choose the details of smallest size (in the sense of the Riemannian metric).

Instances of the imaging operator A. We here discuss various instance of possible imaging op-
erators to give an impression to the reader. The discussion is by no means complete. At first, letting
A be the identity in the manifold Ms corresponds to pure denoising. Inpainting situations can be
modeled by removing the missing summands. Let us be more precise. To this end, let us consider a
matrix A with real-valued entries ai j given as

A =


a11 · · · a1N
...

...

aK1 · · · aKN .

 (17)

ith positive row sums, i.e.,
∑

j ai j > 0 for all i = 1, . . . ,K. (Note that we do not require the particular
items ai j to be nonnegative.) Here i, j,N,K can be read as multiindices. Using the matrix A as a kind
of kernel, we may define the ith component ofA(u) by

A(u)i = mean(ai,·, u) = arg min
v∈M

∑
j

ai, jdist(v, u j)2. (18)

Then, the denoising situation corresponds to A being the identity and the inpainting situation corre-
sponds to removing those rows of the identity matrix which correspond to missing data. But these
are only special cases; actually, we can use any matrix A with positive row sums; see [76]. In partic-
ular, by this construction, we can realize the geometric analogue of any convolution operator which
reproduces constants. Explicitly, in the bivariate situation (without multiindices), this reads

A(u)rs = arg min
v∈M

∑
k,l

a′r−k,s−l dist(v, ukl)2, (19)

where a′ denotes the bivariate convolution kernel. We further notice, that in the manifold case, where
each data item can be more complex than a real number, also A may denote an item/pixel-wise
construction or reconstruction process. An example of such a pixel-wise construction process is the
pixel-wise generation of diffusion tensor from DWI measurements in diffusion tensor imaging [16].
Another example in connection with shape spaces is [74].

Handling the boundary of the image or volume. In the context of wavelets, classical means of
dealing with data on a bounded domain consisting of a Cartesian product of intervals is to extend
the data beyond the domain by either extending the data by 0 (zero-padding), by periodizing, or
by extending the data by reflection. In the setup of interpolatory manifold valued data there is no
distinguished zero-element such that the notion of zero padding does not generalize immediately.
However, periodizing and extending the data by reflection are notions which directly carry over to
the manifold and interpolatory setup. In the context of orthogonal and biorthogonal wavelets on
the interval more sophisticated methods using tailored boundary rules have been developed. For
details we refer to [30] and the references therein. Inspired by these approaches for orthogonal and
biorthogonal wavelets in the linear case, we use specially tailored boundary rules in experiments in
this work. In particular, for a kth order linear univariate Deslaurier-Dubuc scheme, a natural boundary
treatment consists of fitting a kth order polynomial to the k + 1 leftmost or rightmost data points, and
evaluating these polynomials at the corresponding half-integers.
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2.3 Existence of minimizers

We here derive results on the existence of minimizers for the variational problem (11) of wavelet
sparse regularization using the regularizers Wα,q

λ (u) of (14) and W0
λ(u) of (15). For the Wα,q

λ (u)
regularizer with λ2 > 0 we get the existence of minimizers without additional constraints on the
measurement operator A and the manifold M. This result is formulated as Theorem 3. For the
W

α,q
λ (u) regularizer with λ2 = 0 we need some additional constraints onA. This result is formulated

as Theorem 4. In particular, existence is guaranteed for the denoising situation with A being the
identity. Finally, we give a corresponding existence result for wavelet sparse regularization using
`0 type regularizing terms in Theorem 6. We note that, for compact manifolds – which include the
spheres in euclidean space, the rotation groups, as well as the Grassmannian manifolds – we get
the existence of minimizers of the wavelet regularizers Wα,q

λ (u) regularizer with λ2 = 0 and of the
wavelet sparse regularizersW0

λ(u) using `0 type regularizing terms without additional constraints on
the measurement operatorA.

We start with some preparation.

Lemma 1. The regularizing termWα,q
λ (u) of (14) is lower semicontinuous.

Proof. In order to show that the sum in (14) is a lower semicontinuous function of u, it is enough to
show that each member of the sum is a lower semicontinuous function of u. The members of the form
u 7→ dist(ũn−ei,0, ũn,0)q are continuous by the continuity of the distance function dist. We show that
the mappings u 7→ ‖dn,r(u)‖qûn,r

are lower semicontinuous functions onMN . To this end, we consider
a sequence (u(l))l∈N, each u(l) ∈ MN , such that u(l) → u inMN , as l→ ∞. Since the power function is
increasing, it is sufficient to show that

‖dn,r(u)‖ûn,r ≤ lim inf
l
‖dn,r(u(l))‖û(l)

n,r
, for all n, r. (20)

Here, in case of non-unique details, we choose a realization d̂n,r(u(l)) ∈ dn,r(u(l)) and a corresponding
prediction û(l)

n,r ∈ Su(l)
n,r−1 according to (16). We note that, by (16), the value ‖dn,r(u(l))‖ does not depend

on the choice of d̂n,r(u(l)).
Since, by assumption, u(l) → u inMN , we find a point x ∈ M and a positive number r such that

all members u(l)
j together with all u j, j = 1, . . . ,N, and l ∈ N are contained in a common ball B(x,R′)

around x with radius R′, or in other words, all members of all sequences are contained in a common
bounded set. In particular, u(l)

n,r−1 ∈ B(x,R′), cf. (13). As explained in Section 2.1 a subdivision
scheme encodes 2s convolution operators with kernels given by a( j) = (a j+2i)i, j ∈ {0, 1}s, where a
denotes the mask of the scheme. Each convolution operator is defined via the intrinsic mean; cf. (7)
and (8). Hence, for each convolution operator defined via a( j), we may apply [76, Lemma 2] to obtain
a positive number R j such that all means mean(a( j)

i,· , u
(l)
n,r−1) are contained in a common ball B(x,R j).

Taking the maximum of this radii R = max j R j, w.r.t. the 2s − 1 averaging operators, where s denotes
the dimension of the domain, we have that all û(l)

n,r ∈ Su(l)
n,r−1 are contained in the common ball B(x,R)

for all l ∈ N. Hence, the û(l)
n,r form a bounded sequence. Further, the sequence ũ(l)

n,r is bounded as well
as a convergent sequence. As a next step, we choose a subsequence indexed by lk such that

lim
k
‖dn,r(u(lk))‖

û
(lk )
n,r

= 2−sr/2 lim
k
‖ũ(lk)

n,r 	 û(lk)
n,r ‖û

(lk )
n,r

= lim inf
l
‖dn,r(u(l))‖û(l)

n,r
, (21)

and now invoke the boundedness of the sequences. By the Hopf-Rinow theorem, sinceM is assumed
to be geodesically complete, we may extract convergent subsequences û(lk)

n,r , ũ
(lk)
n,r (which we, abusing

notation for better readability, also denote by the indexation nk) such that the limits

vn,r := lim
k→∞

û(lk)
n,r (22)
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exist, and such that ũ(lk)
n,r converges to un,r since u(l) is assumed to converge to u. Since ‖ũ(lk)

n,r 	û(lk)
n,r ‖û

(lk )
n,r

=

dist(ũ(lk)
n,r , û

(lk)
n,r ), and the distance function is continuous, we have

‖ũn,r 	 vn,r‖vn,r = lim
k
‖ũ(lk)

n,r 	 û(lk)
n,r ‖û

(lk )
n,r

= 2sr/2 lim inf
l
‖dn,r(u(l))‖û(l)

n,r
, (23)

using (21) for the last identity. We next show that vn,r ∈ Sũn,r−1. To see this, we assume to-
wards a contradiction that vn,r is not in Sũn,r−1 = mean(an−2·, ũ·,r−1). Then, there is an element y ∈
mean(an−2·, ũ·,r−1) such that, by the definition in (8),

∑
j an−2 j dist(y, ũ j,r−1)2 <

∑
j an−2 j dist(vn,r, ũ j,r−1)2.

Since û(lk)
n,r → vn,r as k → ∞ by (22), there is an index k0 such that

∑
j an−2 j dist(y, u

(lk0 )
j,r−1)2 <∑

j an−2 j dist(û
(lk0 )
n,r , u

(lk0 )
j,r−1)2 which contradicts u

(lk0 )
n,r being a minimizer of the corresponding sum.

Hence vn,r ∈ Sun,r−1. By the definition in (16) this implies ‖ũn,r 	 ûn,r‖ûn,r ≤ ‖ũn,r 	 vn,r‖vn,r , for
any ûn,r as in (16). Hence, ‖dn,r(u)‖ûn,r ≤ 2−sr/2‖ũn,r 	 vn,r‖vn,r . Together with (23), this implies

‖dn,r(u)‖ûn,r ≤ 2−sr/2‖ũn,r 	 vn,r‖vn,r = lim inf
l
‖dn,r(u(l))‖û(l)

n,r
, (24)

which means that the mappings u 7→ ‖dn,r(u)‖qûn,r
are lower semicontinuous and, in turn, yields the

assertion of the lemma. �

Lemma 2. The `0 type regularizing termW0
λ(u) of (15) is lower semicontinuous.

Proof. We show that the mappings

f 1
n,r : u 7→

1, if dn,r(u) , 0,
0, else,

f 2
n,i : u 7→

1, if ũn−ei,0 , ũn,0,

0, else.
(25)

are lower semicontinuous functions of u. This implies the assertion of the lemma since W0
λ(u) =

λ1
∑

n,r f 1
n,r(u) + λ2

∑
n,i f 2

n,i(u). To see the lower semicontinuity of f 2
n,i, let u(l) → u inMN , as l → ∞.

If f 2
n,i(u) = 0 there is nothing to show, so we assume that f 2

n,i(u) = 1. Then, un−ei,0 , ũn,0, and since

u(l) → u, this implies u(l)
n−ei,0

, ũ(l)
n,0, for sufficiently large l. Hence, for suffiently large l, f 2

n,i(u
(l)) = 1,

and therefore, lim infl f 2
n,i(u

(l)) ≥ f 2
n,i(u). We next study the lower semicontinuity of f 1

n,r, and again
let u(l) → u. As above, if f 1

n,r(u) = 0, there is nothing to show. So we may assume that dn,r(u) , 0,
which means that ũn,r < Sun,r−1 by (16). We show that ũ(l)

n,r < Su(l)
n,r−1 for sufficently large l which

then implies that f 1
n,r(u

(l)) = 1. Assume to the contrary, that there is a subsequence u(lk) such that
ũ(lk)

n,r ∈ Su(lk)
n,r−1. Then, limk u(lk)

n,r (which exists by our assumption) is a mean for data limk u(lk)
n,r−1. But

this means ũn,r < Sun,r−1 which is a contradiction. Hence, f 1
n,r(u

(l)) = 1 for sufficiently large l, and
therefore lim infl f 1

n,r(u
(l)) ≥ f 1

n,r(u). In summary, f 1
n,r and f 2

n,i are lower semicontinuous which implies
thatW0

λ is lower semicontinuous. �

Theorem 3. The variational problem (11) of wavelet sparse regularization using the regularizers
W

α,q
λ of (14) with λ2 , 0 has a minimizer.

Proof. By Lemma 1, Wα,q
λ is lower semicontinuous. We consider a sequence of signals u(k), and

use the notation diam(u(k)) to denote the diameter of u(k). We show that Wα,q
λ (u(k)) → ∞, as

diam(u(k)) → ∞. To this end we consider the sums
∑

n,i dist(ũ(k)
n−ei,0

, ũ(k)
n,0)q in (14), an note that∑

n,i dist(ũ(k)
n−ei,0

, ũ(k)
n,0)q ≥

(
maxn,i dist(ũ(k)

n−ei,0
, ũ(k)

n,0)
)q
. Further, diam(u(k)) ≤ C maxn,i dist(ũ(k)

n−ei,0
, ũ(k)

n,0)
where the constant C is smaller than |N′| = |N′1| + . . . + |N

′
s| where N′ denotes the multiindex contain-

ing the dimensions of u on the coarsest scale; cf. the description near (13). Hence, diam(u(k)) ≤ C∑
n,i dist(ũ(k)

n−ei,0
, ũ(k)

n,0)q,with C independent of k. Therefore, diam(u(k)) ≤ CWα,q
λ , and soWα,q

λ (u(n))→
∞, as diam(u(n))→ ∞. Together with the lower semicontinuity ofWα,q

λ all requirements of [76, The-
orem 1] are fulfilled and we may apply this theorem to conclude the assertion. �
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We note that a statement analogous to Theorem 3 does not hold for the regularizerWα,q
λ of (14)

with λ2 = 0, since then coercivity cannot be ensured in general. To account for that, we give a variant
of Theorem 3 which imposes some additional constraints to A, but then also applies to the situation
λ2 = 0.

Theorem 4. The variational problem (11) of wavelet regularization using the regularizersWα,q
λ of

(14) with λ2 = 0 has a minimizer providedA is an operator such that there is a constant C > 0 such
that, for any signal u, the coarsest level of u may be estimated by

dist(un−ei,0, un,0) ≤ C max(diam(A(u)),R(u)), (26)

for all n, i. In particular, the problem (11) has a minimizer forA being the identity. Furthermore, the
problem always has a solution, when the manifoldM is compact.

For the proof of Theorem 4 we employ [76, Theorem 7] which we here state for the reader’s
convenience.

Theorem 5. Let (l0, r0), . . . , (lS , rS ) be S pairs of (a priori fixed) indices. We assume that R is lower
semicontinuous. We further assume that R is a regularizing term such that, for any sequences of
signals u(n), the conditions diam(u(n))→ ∞ and dist(u(n)

ls
, u(n)

rs ) ≤ C, for some C > 0 and for all n ∈ N
and all s ∈ {0, S }, imply that R(u(n)) → ∞. If A is an imaging operator such that there is a constant
C′ > 0 such that, for any signal u, dist(uls , urs) ≤ C′max(diam(Au),R(u)), for all s ∈ {0, S }, then the
variational problem

arg min
u∈MN

dist(A(u), f )p + λ R(u), λ > 0, (27)

has a minimizer.

The proof of Theorem 5 may be found in [76].

Proof of Theorem 4. We apply Theorem 5. The lower semicontinuity of the Wα,q
λ regularizer is

shown in Lemma 1. Towards the other condition of Theorem 5, let u(k) be a sequence such that
diam(u(k)) → ∞, and such that dist(u(k)

n−ei,0
, u(k)

n,0) ≤ C′ for some C′ > 0, all n, i and all k ∈ N. We have
to show thatWα,q

λ (u(k))→ ∞. Towards a contradiction, assume that there is a subsequence u(kl) of u(k)

and C′′ > 0 such thatWα,q
λ (u(kl)) ≤ C′′, for all l ∈ N. We show that there is a constant C′′′ > 0 such

that dist(u(kl)
n−ei

, u(kl)
n−ei

) ≤ C′′′, for all n and i. SinceWα,q
λ (u(kl)) ≤ C′′, and since dist(u(kl)

n−ei,0
, u(kl)

n,0 ) ≤ C′,

by the definition of the details, there is a constant C1 such that dist(u(kl)
n−ei,1

, u(kl)
n,1 ) ≤ C1, for all n, i and

all l ∈ N. Applying induction on the lever r there is a constant CR such that dist(u(kl)
n−ei,R

, u(kl)
n,R) ≤ CR,

for all n, i and all l ∈ N. Letting C′′′ = CR and noting that the finest level signal u(kl)
·,R equals u(kl)

yields that dist(u(kl)
n−ei

, u(kl)
n−ei

) ≤ C′′′, for all n and i. This implies that diam(u(k)) is bounded which con-
tradicts diam(u(k)) → ∞. Hence,Wα,q

λ (u(k)) → ∞ which allows us to apply Theorem 5 and, in turn,
to conclude the existence of minimizers.

Concerning the case whenA is the identity, we notice that dist(un−ei,0, un,0) ≤ diam(u) which im-
plies the condition (26). Hence, we may apply the already proved assertion to conclude the existence
of minimizers in caseA is the identity.

Concerning the case when the manifold M is compact we note that the condition on R in The-
orem 5 is trivially fulfilled since the boundedness of M implies that no sequence in MN can have
diameters tending to∞. Hence, we may apply Theorem 5 to conclude the existence of minimizers for
compact manifoldsM. �

Finally, we give an existence result for the variational problem (11) of wavelet sparse regulariza-
tion using `0 type regularizing termsW0

λ(u).
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Theorem 6. The variational problem (11) of wavelet sparse regularization using the `0 type regular-
izing terms W0

λ(u) of (15) has a minimizer provided A is an imaging operator such that there is a
constant C > 0 such that

diam(u) ≤ C diam(A(u)). (28)

In particular, the problem has a minimizer forA being the identity. Furthermore, the problem always
has a solution, when the manifoldM is compact.

Proof. We consider the functional F (u) := dist(A(u), f )p +W0
λ(u). The regularizing term W0

λ(u)
is lower semicontinuous by Lemma 2 and the data term is lower semicontinuous by [76, Lemma 3].
Together, the energyF is lower semicontinuous. Assuming the condition (28), we show the coercivity
of F , i.e., we show that, for σ ∈ MN and any sequence u(k) in MN , dist(u(k), σ) → ∞ as k → ∞
implies F (u(k)) → ∞ as k → ∞. Towards a contradiction suppose that F is not coercive. Then there
is σ ∈ MN and a sequence u(k) inMN , such that dist(u(k), σ) → ∞ and such that dist(A(u(k)), f )p is
bounded (by passing to a subsequence if necessary.) Then diam(A(u(k))) is bounded. By assumption
(28), diam(u(k)) is then bounded as well, i.e., there is a constant C′ > 0 such that diam(u(k)) < C′ for
all k ∈ N.

Since dist(u(k), σ) → ∞ and diam(u(k)) is bounded we find for any given (ball radius) C′′ > C′ a
subsequence (indexed by kl) of closed, disjoint balls Bl such that all members of u(kl) are contained in
Bl, i.e., {

u(kl)
i : i = 1, . . . ,N

}
⊂ Bl, Bl ∩ Bl′ = ∅ for all l, l′ ∈ N. (29)

We next define a suitable (ball radius) C′′. By [76, Lemma 2], since u(kl) is contained in a ball of
radius C′, then there is a constant L ≥ 1(which depends on the weights in A) such that A(u(k)) j is
contained in in a ball of radius LC′. Accordingly, we choose C′′ := L C′ and consider the balls Bl of
(30) of radius C′′. Then,{

A(u(kl)
j ) : j = 1, . . . ,K

}
⊂ Bl, Bl ∩ Bl′ = ∅ for all l, l′ ∈ N. (30)

As a result, dist(A(u(kl)), f )p → ∞ which contradicts the assumption. Hence, the energy is coercive
which, together with its lower semicontinuity, yields the existence of minimizers.

If A is the identity, the condition (28) is obviously fulfilled. Hence, we may apply the already
proved assertion to conclude the existence of minimizers. If the manifold M is compact, the func-
tional is automatically coercive which together with its lower semicontinuity already observed above,
yields the existence of minimizers for compact manifolds. �

3 Algorithms

In the following we derive algorithms for the manifold valued variational problem (11) of wavelet
regularization using the regularizers Wα,q

λ (u) of (14) and W0
λ(u) of (15). We consider generalized

forward-backward as well as cyclic proximal point algorithms. These basic algorithmic structures
are presented and applied to the considered variational problems in Section 3.1. The differential
geometric details to implement these structures for the present problems are given in Section 3.2. In
particular, we there explain how to compute the derivatives and proximal mappings of the atoms of
the involved wavelet regularizers.

3.1 Algorithmic Structures

We denote the functional in (11) by F and decompose both the data term D and the regularizer
Wλ(u) =W

α,q
λ (u) orWλ(u) =W0

λ(u) into atoms Di and Wn,r, i.e., we let

F (u) = D(u) + Wλ(u) =
∑K

i=1
Di(u) + λ

∑R

r=0

∑
n

Wn,r(u) (31)
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with

Di(u) := dist(A(u)i, fi)p, (32)

and, for level r ≥ 1,

Wn,r(u) =

λ1 · 2
rq

(
α+

s
2−

s
q

)
‖dn,r(u)‖qûn,r

, if q ≥ 1,

λ1 # {dn,r(u) , 0}, if q = 0.
(33)

For level r = 0, we consider extended multiindices ñ = (n, i) and use the notation

Wñ,0(u) = W(n,i),0(u) =

λ2 · dist(ũn−ei,0, ũn,0)q if q ≥ 1
λ2 # {ũn−ei,0 , ũn,0} if q = 0

(34)

We note that the meaning of the employed symbols is explained near (14) and (15). We will omit the
tilde notation of (34) in the following keeping in mind that the index n in Wn,0 encodes a zeroth level
index together with a direction whereas the n in Wn,r, r ≥ 1, encodes an rth level index.

In the following we will employ the above decomposition into atoms within the proposed algo-
rithms. More precisely, for each atom we will either apply a gradient step (which is possible for
differentiable terms) or its proximal mapping within an iterative scheme. Here, the proximal map-
pings [65, 37, 8] of a function f on a manifoldMN is given by

proxµ f x = arg min
y

f (y) +
1

2µ
dist(x, y)2, µ > 0. (35)

For general manifolds, the proximal mappings (35) are not globally defined, and the minimizers are
not unique in general, at least for possibly far apart points; cf. [37, 8]. This is a general issue in the
context of manifolds that are – in a certain sense – a local concept involving objects that are locally
well defined. In case of ambiguities, a possibility is to consider the above objects as set-valued
quantities.

Generalized Forward Backward Scheme. In [16], we have proposed a generalized forward back-
ward algorithm for DTI data with a voxel-wise indirect data term. In [76], we have employed these
schemes for the variational regularization of inverse problems for manifold-valued signals. To im-
prove the method, we have proposed a variant based on a trajectory method together with a Gauß-
Seidel type update strategy as well as a stochastic variant of the generalized forward-backward scheme
there. We explain the ideas and apply the schemes to our regularizers.

The basic approach using a generalized forward-backward scheme is to decompose the considered
functional F into two summands F (u) = F 1(u)+F 2(u) where the one summand F 1 is differentiable,
and the other summand F 2 is further decomposed into atoms via F 2(u) =

∑
k F

2
k (u). The purpose is

to find a decomposition such that, for each of these atoms F 2
k , one has rather simple means to compute

the proximal mappings. A generalized forward-backward scheme then performs an (explicit) gradient
step for the differentiable term F 1, as well as an (implicit) proximal mapping step for each atom F 2

k
of the term F 2. One instantiation in our situation of wavelet regularization is

F 1 = D (with p > 1) , and F 2 =

Wα,q
λ (u), q ≥ 1, or

W0
λ(u),

with atoms Wn,r, (36)

where the Wn,r are given by (33) and (34), respectively. We note that, for p > 1, the data termsD are
differentiable. Another possible instantiation in our situation is

F 1 =W
α,q
λ (u), (with q > 1) , and F 2 = D (with p ≥ 1) , with atoms Di, (37)
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where the Di are given by (32).
If the differentiable term F 1 also allows for an additive decomposition of the form F 1(u) =∑

k′ F
1

k′(u) (which is the case in our examples above) the computation of the gradient of F 1 may be
interpreted as computing the gradients of the atoms F 1

k′(u) and then to apply a Jacobi type update.
Instead, one may use a Gauß-Seidel type update strategy instead of the Jacobi type update. This
means that the result of computing the gradient of F 1

k′ is already used as an iterate when computing
the gradient ofF 1

k′+1. The advantage of the Gauß-Seidel type update strategy is that it is amenable for a
trajectory method which is crucial for avoiding unreasonably small step sizes of the overall algorithm
which limits its performance. (For a detailed discussion of these step size issues and its resolution we
refer to the authors’ previous work [76].) Instead of computing only one (potentially large) gradient
step, the trajectory method applied to an atom F 1

k′ computes several smaller steps. More precisely, we
define the trajectory operator trajµ F

1
k′ applied to the atom F 1

k′ for input x0 (which may be thought of
as the result for F 1

k′−1) as the output x of the following algorithm, i.e., x = trajµ F
1

k′(x0) is given by

Iterate w.r.t. r until τ ≥ 1 :

xr := xr−1 + τr−1µ∇F
1

k′(xr−1); τ :=
∑r−1

l=0
τl (38)

x = xr−1 +

(
1 −

∑r−2

l=0
τl

)
µ∇F 1

k′(xr−1)

Here, τr−1 is a predicted step size for the gradient step at xr−1 (which may be realized by a line search
yielding a parameter with minimal functional value along the line.) Further µ > 0 is a parameter.
This scheme is inspired by solving initial value problems for ODEs. Instead of using a straight line
we follow a polygonal path normalized by evaluating it at “time” τ = 1. Using this trajectory method
instead of a gradient step, we obtain the following generalized forward backward algorithm with
Gauß-Seidel type update scheme.

Iterate w.r.t. n :

1. Compute u(n+k′/2K′) = trajµn
F 1

k′
(
u(n+(k′−1)/2K′)

)
for all k′ = 1, . . . ,K′ ; (39)

2. Compute u(n+0.5+k/2K′′) = proxµnλF
2
k
u(n+0.5+(k−1)/2K′′), for all k = 1, . . . ,K′′.

As explained above trajµ F
1

k′(·) denotes the application of the trajectory method defined by (38).
During the iteration, the positive parameter µn is decreased in a way such that

∑
n µn = ∞ and such

that
∑

n µ
2
n < ∞.

We get the generalized forward backward algorithm for wavelet regularization (including wavelet
sparse `0 and `1 regularization) for data terms with p > 1 by the scheme (39) with

F 1
k′ = Dk′ (with p > 1) , and F 2

k = F 2
k(n,r) = Wn,r, (40)

where the Dk′ are given by (32), and where the Wn,r are given by (33) and (34), respectively. The
index mapping k = k(n, r) serializes the pyramid like data of the wavelet scheme. Equation (40) is
an adaption of the instantiation (36) above. The corresponding adaption (37) above is to apply the
scheme (39) with

F 1
k′ = F1

k′(n,r) = Wn,r, (with q > 1) , and F 2
k = Dk (with p ≥ 1) . (41)

As above, where the Dk are given by (32), the Wn,r are given by (33) and (34), and k′ = k′(n, r) is the
index mapping which serializes the pyramid like data of the wavelet scheme.
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The Cyclic Proximal Point Scheme. Further, we consider proximal point algorithms which may
also be used in the case p = 1 and q = 1. A reference for cyclic proximal point algorithms in vector
spaces is [21]. In the context of Hadamard spaces, the concept of CPPAs was developed by [11],
where it is used to compute means and medians. In the context of variational regularization methods
for nonlinear, manifold-valued data, they were first used in [91] and then later in various variants in
[18, 12, 25]. The basic idea of CPPAs is to compose the considered functional F into basic atoms and
then to compute the proximal mappings of each of the atoms in a cyclic, iterative way. In the above
notation we have the algorithm

Iterate w.r.t. n :

1. Compute u(n+k′/2K′) = proxµnF
1
k′

u(n+(k′−1)/2K′) for all k′ = 1, . . . ,K′ ; (42)

2. Compute u(n+0.5+k/2K′′) = proxµnλF
2
k
u(n+0.5+(k−1)/2K′′), for all k = 1, . . . ,K′′.

As above, the parameters µn are chosen such that
∑

n µn = ∞ and such that
∑

n µ
2
n < ∞.

We implement the cyclic proximal point algorithm for wavelet regularization by using (40) in
(42). We note that we in particular use (42) when both the exponent p of the power of the distance in
the data term D equals one and the exponent q inWα,q

λ (u) of (14) equals one, or when we consider
p = 1 together with the regularizerW0

λ(u) of (15),i.e., when we consider the analogues of wavelet `1

or `0 sparse regularization with an `1 type data term.
Often the considered functionals are not convex; hence the convergence to a globally optimal

solution cannot be ensured. Nevertheless, as will be seen in the numerical experiments section, we
experience a good convergence behavior in practice. This was also observed in previous works such
as [18, 12] where the involved manifold valued functionals are not convex either.

Potential for Parallelization. We note that the algorithms given by the application of (40) and (41)
in (39) and (42) are in many situations massively parallelizable with minor modifications. Concerning
the wavelet termsWα,q

λ (u) of (14) andW0
λ(u) of (15) which the Wn,r(u) are based on, we notice that

each item u directly contributes to at most two scales r, and r + 1. On the finer scale r + 1, it only
contributes to one member dn,r+1. Further, on the coarser scale r it directly contributes to at most A
members dn,r+1, where A is the number of elements in the support of the mask a of the subdivision
scheme S given in (5). Hence, any two Wn,r, Wn′,r′ with |r − r′| > 1 may be computed in parallel.
Further, Wn,r,Wn′,r (which corresponds to to the case r′ = r) can be computed in parallel whenever
|n − n′| ≥ A′ where A′ is the smallest integer such the the support of the mask a is contained in
{−A′, . . . , A′}s, where s is the dimension of the multivariate domain. Finally, Wn,r,Wn′,r+1 (which
corresponds to to the case r′ = r + 1) can be computed in parallel whenever |n′ − 2n| ≥ A′, with
the same A′ as in the previous line. The computations for the data term D is parallelizable as well;
for details we refer to the corresponding discussion in [76]. The resulting minor modification in
the algorithms resulting from the parallelization of the wavelet term and the data term then consists
of another order of applying the operations trajµn

F 1
k′ and proxµnλF

2
k
, or the operations proxµnF

1
k′

and
proxµnλF

2
k
, within the cycle n.

3.2 Differential geometric derivation of the relevant gradients and the proximal map-
pings.

We here provide differential geometric expressions for the gradients and proximal mappings of the
atoms derived and employed in the algorithms of Section 3.1. In particular, we provide a derivation
of the gradients and proximal mappings of the atoms of the wavelet regularizers Wα,q

λ (u) of (14)
including the analogue of `1 sparse wavelet regularization. Further, for the atoms ofW0

λ(u) of (15),
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which is the analogue of `0 sparse wavelet regularization, we provide means to compute the proximal
mappings of the corresponding atoms.

Gradients of the atoms of the wavelet regularizersWα,q
λ (u). We here derive expressions for the

gradients of the atoms Wn,r ofWα,q
λ of (14) given in (33) and (34).

We first consider the zeroth level n = 0, and see how to compute the gradient of the corresponding
mappings given by

u′ 7→ Wñ,0(u′) = W(n,i),0(u′) = λ2 · dist(ũ′n−ei,0, ũ
′
n,0)q. (43)

Hence, we have to compute the gradient of the pth power of the distance mapping d : y 7→ dist(y, f )p,

f ∈ M. This gradient is given by (cf. [4]) ∇d(y) = 1
q‖ exp−1

y ( f )‖q−2 exp−1
y ( f ). Applied to our situation

in (43), we have

∇Wñ,0(u)n′,0 =


1
q‖ exp−1

ũn−ei ,0
(ũn,0)‖q−2 exp−1

ũn−ei ,0
(ũn,0), if n′ = n − ei,

1
q‖ exp−1

ũn,0
(ũn−ei,0)‖q−2 exp−1

ũn,0
(ũn−ei,0), if n′ = n,

un′ , else.

(44)

Concerning a general level r , 0, according to (33), we have to compute the gradients of the
mappings

u 7→ Wn,r(u) = λ1 · 2
rq

(
α+

s
2−

s
q

)
‖dn,r(u)‖qûn,r

. (45)

q ≥ 1. By the definition of dn,r in (16) and the properties of the exponential mapping we have that

‖dn,r(u)‖qûn,r
= 2−sr/2 dist(Sũn,r−1, ũn,r)q = 2−sr/2 dist(mean(an−2·, ũ·,r−1), ũn,r)q. (46)

Hence, in order to obtain the gradient of the mapping in (45) w.r.t. the argument u, we have to derive
the gradients of the mappings

ul 7→ Wn,r(u) = λ1 · 2
rq

(
α+

s
2−

s
q

)
2−srq/2dist(mean(an−2·, ũ·,r−1), ũn,r)q, (47)

for all indices l of u. For the index corresponding to ũn,r, i.e., the index l0 for which ul0 = ũn,r, we get
by applying the above formula for the gradient of the distance function that

∇Wn,r (u)n,r =
λ1
q · 2

rq
(
α−

s
q

)
‖ exp−1

ũn,r
mean(an−2·, ũ·,r−1)‖q−2 exp−1

ũn,r
mean(an−2·, ũ·,r−1), (48)

Here, the lower index n, r denotes the component of the gradient corresponding to the variable ũn,r

which corresponds to the l0th index of u.
As the major task, we have to compute the gradient of Wn,r w.r.t. the variables ũ·,r−1. To this end,

we notice that the mapping ũk0,r−1 7→ Wn,r(u) is the concatenation of the mean mapping

M : ũk0,r−1 7→ mean(an−2·, ũ·,r−1) = arg min
x∈M

∑
k

an−2k dist(x, ũk,r−1)2 (49)

and the qth power of the distance mapping. Hence, by the chain rule and the rules of transposition, the
gradient of Wn,r w.r.t. ũk0,r−1 is given by the application of the adjoint of the differential of the mapping
M of (49) to the gradient of the distance function already presented above. So, let us consider the
adjoint of the differential of the mapping M of (49). The point here is that the mapping M may
not be written down explicitly, since the function value itself is the minimizer of a corresponding
minimization problem which cannot be explicitly solved. However, we have found a rather explicit
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representation of the differential of the mean mapping (and its adjoint) as a function of the points in
[76]. We here provide some explanation and notation and recall the corresponding statement in the
notation of the present work then. We use the fact that every (weighted) mean M(x1, . . . , xK) of K
points x1, . . . , xK , is a zero of the mappingW, i.e.,

W(x1, . . . , xK ,M(u1, . . . , uK)) = 0, (50)

where the mappingW :MK+1 → TM is defined asW(x1, . . . , xK ,m) =
∑K

j=1 ai−2 jexp−1
m (x j). Here,

TM denotes the tangent bundle ofM. As a mapping of the argument m,W is a tangent vector field.
(If there is a unique mean M(x1, . . . , xK) of x1, . . . , xK , (49) it is characterized by (50). In case of
non-uniqueness, the characterization holds at least locally.) In [76], we use the notationW′ for the
function

W′ : (x1, . . . , xK) 7→ W(x1, . . . , xK ,M(x1, . . . , xK)). (51)

and calculate the derivative ofW′, which equals zero in view of (50) and so obtain a representation
of the derivative of M. To formulate this representation we need the linear mappings Rk0 and L, which
are defined in terms of Jacobi fields. For defining Rk0 we consider the Jacobi fields along the geodesic
γ connecting γ(0) = m = mean(an−2·, ũ·,r−1) and γ(1) = ũk0,r−1. As intermediate step, the mapping rk0

is given by the boundary to initial value mapping

rk0 : TMũk0 ,r−1 → TMm, J(1) 7→
D
dt

J(0), (52)

where the J are the Jacobi fields with J(0) = 0 which parametrize TMũk0 ,r−1 via the point evaluation
mapping J 7→ J(1). We note that this mapping is well-defined for non conjugate points which is the
case for close enough points. We then let

Rk0w := an−2k0rk0w, (53)

for tangent vectors w sitting at the point ũk0,r−1. Next, we define the mapping L. To this end, let γk be
the geodesic connecting γk(0) = m = mean(an−2·, ũ·,r−1) and γk(1) = ũk,r−1, for the indices k in the
r − 1th level for which the weight is nonzero. For each geodesic γk, we consider the Jacobi fields Jk

with Jk(1) = 0 and the mappings

lk : TMm → TMm, Jk(0) 7→
D
dt

Jk(0) (54)

where the Jacobi fields Jk (with Jk(1) = 0) parametrize TMm via the evaluation map Jk 7→ Jk(0).
Again, we note that this mapping is well-defined for non conjugate points which is the case for close
enough points. Then, we let

L v :=
∑

k
an−2k lk v, (55)

for tangent vectors v in the point m = mean(an−2·, ũ·,r−1). We have now gathered all information to
formulate [76, Theorem 11] adapted to the notation of the present work.

Theorem 7. The derivative of the intrinsic mean mapping w.r.t. the input variable ũk0,r−1 in direction
w at TMũk0 ,r−1 is given by

∂ũk0 ,r−1 M(u) w = −L−1Rk0w (56)

where the linear mapping L is given by (55), and the linear mappings Rk0 , is given by (53).
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Combining these results with (57) we can descibe the gradients of the mappings Wn,r rather ex-
plicitly. We have

∇Wn,r (u)n′,r′ =


s

exp−1
ũn,r mean(an−2·,ũ·,r−1)

‖ exp−1
ũn,r

mean(an−2·,ũ·,r−1)‖2−q , if r′ = r, n′ = n,

s R∗n′L
−1∗

exp−1
mean(an−2· ,ũ·,r−1) ũn,r

‖ exp−1
mean(an−2· ,ũ·,r−1) ũn,r‖2−q , if r′ = r − 1, n − 2n′ ∈ supp a,

0 else,

(57)

where

s =
λ1
q · 2

r
(
α−

s
2−

s
q

)
2r/2. (58)

Here, R∗n′ denotes the adjoint of Rn′ given by (53), L−1∗ denotes the adjoint of L−1 given by (55), the
symbol supp is used to denote the support of the mask a of the subdivision scheme, and the condition
n − 2n′ ∈ supp a means that ur−1,n′ contributes to the computation of ûn,r, i.e., the corresponding
weight an−2n′ for averaging is nonzero.

If the manifoldM is a Riemannian symmetric space, the Jacobi fields needed to compute the map-
pings R j0 , and L in the above theorem can be made more explicit. This is as well discussed in [76], and
we here only state the corresponding results for completeness. In particular, we observe that basically
a series of low dimensional eigenvalue problems (instead of ODEs) has to be solved. As a refer-
ence on symmetric spaces we refer to [28]. We consider the geodesic γ and the Jacobi fields J with
J(0) = 0 along γ. Then the numerical task is to compute an orthonormal basis (wi)i of eigenvectors to-
gether with corresponding eigenvalues (λi)i of the self-adjoint Jacobi operator J 7→ R( γ′(0)

‖γ′(0)‖ , J) γ′(0)
‖γ′(0)‖ ,

where R denotes the Riemannian curvature tensor. In terms of this eigen-decomposition the adjoint
R∗k can then be written using the functional calculus together with a spectral mapping theorem, i.e.,
R∗k is given by

w =
∑

i
αiwi 7→ R∗kw = an−2k

∑
i
αi f1(λi) ptm,ũk,r−1

wn, (59)

where f1(λi) = 1 if λi = 0, f1(λi) =
√
λid

sin(
√
λid)

, if λi > 0, and d < π/
√
λi, and where f1(λi) =

√
−λid

sinh(
√
−λid)

,

if λi < 0, with d = dist(m, ũk,r−1). Here, ptm,ũk,r−1
wi denotes the parallel transport of the basis vector wi

from the point m = mean(an−2·, ũ·,r−1) to the point ũk,r−1. (For the parallel transport, there are typically
closed form expressions in a symmetric space.) Similarly, but even without parallel transport, we may
compute the adjoints l∗k defined by (54) which yield the adjoint L∗ via L∗ v :=

∑
k an−2k l∗k v, cf. (55).

We consider the geodesics γk we used above for (54) to connect m = γ(0) and ũk,r−1 = γ(1), and the
orthonormal basis (wn)n of eigenvectors of the self-adjoint Jacobi operator R w.r.t. the geodesic γk

and the above Jacobi fields J with J(1) = 0. We get, for l∗k : TMm → TMm,

l∗k : w =
∑

i
αiwi 7→ l∗k(w) =

∑
i

f2(λi) αi wi, (60)

where f2(λi) = −1, if λn = 0, where f2(λi) = −d
√
λn

cos(
√
λnd)

sin(
√
λnd)

, if λn > 0, and d < π/
√
λn, and

where f2(λi) = −d
√
−λn

cosh(
√
−λnd)

sinh(
√
−λnd)

, if λn < 0.

Proximal mappings of the atoms of the wavelet regularizersWα,q
λ (u). We here explain how to

compute the proximal mappings of the atoms Wn,r of the wavelet regularizerWα,q
λ of (14) given in

(33) and (34).
For the zeroth level n = 0, we notice that, by (34), we have to compute the proximal mapping

of (43). This essentially corresponds to computing the proximal mapping of the qth power of the
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distance function as a joint function of both arguments. The proximal mapping can be explicitly
computed in terms of geodesics as shown in [91]. It is given by

proxWñ,0
(u)n′,0 =


[ũn−ei,0, ũn,0]t, if n′ = n − ei,

[ũn,0, ũn−ei,0]t, if n′ = n,
un′ , else.

(61)

Here, [ũn−ei,0, ũn,0]t denotes the unit speed geodesic connecting ũn−ei,0 and ũn,0 evaluated at time
parameter t, with t dependent on q. For q = 1, 2 we can explicitly calculate t as

t =

 λ2
(2+2λ2) dist(ũ′n−ei,0

, ũ′n,0) for q = 2,

min
(
λ2,

1
2 dist(ũ′n−ei,0

, ũ′n,0)
)

for q = 1.
(62)

Concerning a general level r , 0, according to (33), we have to compute the proximal mappings
of (45). This means, for given iterate u ∈ MN , we have to find a minimizer of the functional

u′ 7→ 1
2µdist(u, u′)2 + Wn,r(u′) = 1

2µdist(u, u′)2 + λ1 · 2
rq

(
α+

s
2−

s
q

)
‖dn,r(u′)‖

q
ûn,r
. (63)

q ≥ 1. This is particularly interesting if the exponent q equals one since then the distance mapping
is not differentiable on the diagonal. Since for a general level r, no closed form expression of the
proximal mapping of (45) seems available, we use a gradient descent scheme for q > 1 , and a
subgradient descent for q = 1. Subgradient descent has already been used to compute the proximal
mappings in the context of higher order total variation type regularization [12, 25]. Let us explain
the (sub)gradient descent scheme to compute the proximal mapping of (45). We first recall that the
gradients of the mapping u′k 7→ dist(uk, u′k)2 are given by − logu′k

uk. The gradient of the summand
Wn,r in (63) is given by (57). Using these gradients we compute the gradient of the mapping (63) and
then apply a standard gradient descent scheme for q > 1. If q = 1, we apply subgradient descend
with an iteration dependent damping factor, i.e., for the lth iteration the subgradient of the (l − 1)th
iterate is scaled by a factor τl. The sequence (τl)l is chosen to be square-summable but not summable
for convergence reasons. For the computation of the subgradient of the summands Wn,r for q = 1, we
notice that the mapping is differentiable whenever mean(an−2·, ũ·,r−1) , ũn,r. For the degenerate case
of point constellations where Wn,r is not differentiable we notice that then at least 0 is contained in
the subdifferential of Wn,r.

Proximal mappings for the analogue of `0 sparse wavelet regularization. We here consider the
atoms ofW0

λ(u) of (15) which we also denote by Wn,r as in (33) and (34).
For the zeroth level n = 0, we notice that, by (34), we have to compute the proximal mapping of

u′ 7→ Wñ,0(u′) = W(n,i),0(u′) = λ2 #{ ũ′n−ei,0 , ũ′n,0}. (64)

We first notice that both ũ′n−ei,0
, ũ′n,0 correspond to data items of u′ whose indices we denote by

ι(0), ι(1), i.e., ũ′n−ei,0
= u′ι(0), and ũ′n,0 = u′ι(1). Then the computation of the proximal mapping of

Wñ,0(u) amounts to minimizing, for given u, the functional

u′ 7→ 1
2µdist(u, u′)2 + λ2 #{ ũ′n−ei,0 , ũ′n,0}. (65)

A short application of calculus shows that, if dist(uι(0), uι(1)) > 2
√
µλ2, then u∗ := u minimizes (68). If

dist(uι(0), uι(1)) > 2
√
µλ2, it follows that choosing both components ι(0) and ι(1) of u∗ by the geodesic
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midpoint of uι(0) and uι(1) and setting the other components to the corresponding values of u yields a
minimizer of (68), i.e., a minimizer u∗ is given by its components

(u∗)l =

mean
(
(0.5, 0.5), (uι(0), uι(1))

)
, if l ∈ {ι(0), ι(1)},

ul, else.
(66)

For a general level r , 0, we have to compute the proximal mappings of

u′ 7→ Wn,r(u′) = λ1 # {dn,r(u) , 0} (67)

where the right hand side equals zero if and only if ũ′n,r ∈ Sũ′n′,r−1, i.e., ũ′n,r is a mean of the ũn′,r−1
with the weights given by the subdivision scheme; see (16) and (7). Else, the right hand side equals
λ1. The computation of the proximal mapping of Wn,r(u) amounts to minimizing, for given u, the
functional

u′ 7→ W′(u′) = 1
2µdist(u, u′)2 + λ1 # {dn,r(u′) , 0}. (68)

We distinguish two cases depending on whether #{dn,r(u′) , 0} equals one or zero. Given that
#{dn,r(u′) , 0} = 1, the optimal solution of (68) subject to this constraint is given by

u# = u, W′(u#) = λ1. (69)

Given that #{dn,r(u′) , 0} = 0, we have by the discussion preceding (68) that

u## = arg min
u′:dn,r(u′)=0

W′(u′) = arg min
u′:ũ′n,r∈Sũ′n′ ,r−1

W′(u′) (70)

For minimizing the right hand side of (70), we set all the components of u## to the corresponding
components of u which do not correspond to ũ##

n,r or to ũ##
n′,r−1 with n − 2n′ ∈ supp a. The components

of u## corresponding to ũ##
n′,r−1 are given by minimizing the functional

u′ 7→ V(u′) := 1
2µ

 ∑
n′:n−2n′∈supp a

dist(ũ′n′,r−1, ũn′,r−1)2 + dist(mean(an−2·, ũ′·,r−1), ũn,r)2

 . (71)

Then, the component ũ##
n,r of u## is given by the point mean(an−2·, ũ##

·,r−1) of (71) for the minimizing
arguments ũ##

n′,r−1 of (71). For minimizing (71), we observe that (71) just states the minimization
problem for the proximal mapping of the mean mapping already discussed before. We note that the
gradient of the first summands are just the gradients of the distance map as discussed above. Further,
we notice that the last summand of the functional V equals the second line of (57). Then we use
gradient descent for computing the ũ##

n′,r−1. Summing up, we have

proxµWn,r
(u) =

u# if V(u##) > λ1,

u## if V(u##) ≤ λ1,
(72)

where V is given by (71).

Gradients and proximal mappings for the atoms of the data term. Methods for deriving the
gradients and proximal mappings of the decomposition of the data termD into its atoms Di according
to (32) have been derived in [76]. For the data term, we employ the schemes derived there and refer
to this reference for details. (There, similar as above, the gradients of the intrinsic mean mapping are
employed for the computations.)
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Figure 1: Results of the proposed `1 wavelet regularization for manifold-valued signals. The given noisy data
is shown on the left, the result using the manifold analogue of the first order interpolatory wavelet and the
third order Deslaurier-Dubuc (DD) wavelet along with the corresponding signal-to-noise-ratio improvement
are shown in the center and on the right, respectively.
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Figure 2: Wavelet coefficients of the first signal in Figure 1 at the start (noisy data) and the end (reconstruction)
of the iteration using the manifold analogue of the first order interpolatory wavelet (first and second row) and the
third order Deslaurier-Dubuc (DD) wavelet (third and fourth row). Only a few coefficients remain significantly
larger than zero after the iterations.

4 Experimental Results

We carry out experiments for data with values in the circle S 1, the sphere S 2 and the manifold Pos3
of positive definite matrices equipped with the Fisher-Rao metric. S 1 valued data is visualized by
the phase angle, and color-coded as hue value in the HSV color space when displaying image data.
We visualize S 2-valued signal by points on the unit sphere. The abscissa is represented by a color
varying continuously from the start of signal (blue) to the end of the signal (purple). Data on the Pos3
manifold is visualized by the isosurfaces of the corresponding quadratic forms. More precisely, the
ellipse visualizing the point fp at voxel p are the points x fulfilling (x − p)> f −1

p (x − p) = c, for some
c > 0. The S 1-valued data are corrupted by Von Mises noise with concentration parameter κ [62].
The S 2-valued data are created from the original image g by fi j = expgi j

ηi j where ηi j is a tangent
vector at gi j and both its components are Gaussian distributed with standard deviation σ. The Pos3
valued signal are corrupted by Rician noise with noise parameter η [14]. To quantitatively measure
the quality of a reconstruction, we use the manifold variant of the signal-to-noise ratio improvement
∆SNR = 10 log10((

∑
i j d(gi j, fi j)2)/(

∑
i j d(gi j, ui j)2)) dB, see [91]. Here f is the noisy data, g is the

ground truth, and u is a regularized reconstruction. A higher ∆SNR value means better reconstruction
quality. We have implemented the presented methods in Matlab 2017b. We used functions of the
toolboxes CircStat [17], Manopt [24], MVIRT [12], and implementations from the authors’ prior
works [91, 25]. All examples were computed using 200 iterations. The cooling sequence (µk)k∈N used
as stepsize in the gradient descent for computing the non-explicit proximal mappings was chosen as
λk = µ0k−τ with τ = 1. For the spherical data we used a stagewise cooling similar to the one in
[25], i.e., letting the sequence fixed to λ0 for 50 iterations in the first stage, use the moderate cooling
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Figure 3: Results of the `0-variant of the propose method for the same data as given in Figure 1. The given
noisy data is shown on the left, the result using the manifold analogue of the first order interpolatory wavelet and
the third order Deslaurier-Dubuc (DD) wavelet along with the corresponding signal-to-noise-ratio improvement
are shown in the center and on the right, respectively.
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τ = 0.35 in the second stage until iteration 100 and then the cooling τ = 0.55 afterwards. For the
secondary regularization parameter, we used λ2 = 0 in all denoising experiments, and λ2 = 0.0001
in all deconvolution experiments. The primary regularization parameter λ1 was adjusted empirically
and is reported in the following.

Figure 1 shows the results of the proposed `1 wavelet regularization for noise signal using the first
order interpolatory wavelet and the third order Deslaurier-Dubuc (DD) wavelet for manifold valued
data given by the masks in (6). The noise parameters were chosen as κ = 5, σ = and η = 80, for the
S 1-valued, the S 2-valued and the Pos3-valued signals, respectively. The regularization parameters,
λ1 = 4 for the spherical data and λ1 = 8 for the Pos3 data, were chosen empirically. We observe that
the noise is reduced significantly with a signal-to-noise-ratio improvement of up to around 8.9 dB by
both the first order interpolatory wavelet and the third order Deslaurier-Dubuc (DD) wavelet. Both
schemes yield comparable reconstruction results.

Figure 2 displays the wavelet coefficients of the first signal in Figure 1 before the first iteration
(noisy data) and after the final iteration (reconstruction) for the first order interpolatory wavelet and
the third order DD wavelet. We observe that also in the manifold setup the method has a shrinkage
effect on the coefficients: only a few coefficients remain significantly larger than zero after the final
iteration.

In Figure 3, the `0 variant of the proposed method is applied to the same signals as in Figure 1.
We observe that the noise is reduced significantly with a signal-to-noise-ratio improvement which is
comparable to the `1 variant. We observe that `0 regularization and the `1 variant perform equally
well with only slight differences depending on the particular signal under consideration.

Figure 4 shows the results of a deconvolution experiment. Here the original signal was convolved
with the manifold analogue of a Gaussian kernel with standard deviation 2 (set to zero outside a
window of length 13) before corrupting it with noise. Then the signal was reconstructed using the
proposed wavelet sparse regularization method with the data term including the manifold-valued con-
volution operator as forward operator. Here, we use generalized forward backward algorithm with
Gauß-Seidel type update scheme (39). As the point deconvolution and denoising task is more in-
volved than pure denoising we used lower noise levels for these experiments; more precisely, for the
noise generation, we used the parameters κ = 20, σ = 0.1, and η = 60 for the S 1, the S 2, and the Pos3
data, respectively. The first regularization parameter λ1 was set equal to 6, 4 and 2, respectively. As
in the direct measurement case, the first order interpolatory wavelet and the third order DD wavelet
yield comparable reconstruction results.

We proceed with experiments considering bivariate data. We focus on denoising using `1 wavelet
regularization based on the manifold analogue of the tensor product third order DD wavelet. In
Figure 5 a synthetic S 1-valued image was corrupted by von Mises noise (κ = 10) and reconstructed
using λ1 = 32. In Figure 6, a synthetic Pos3-valued image was corrupted by Rician noise of level
η = 40 and reconstructed using λ1 = 8. As in the univariate case, the proposed method reduces the
noise significantly. We observe some block artifacts at the roundish structures which can be attributed
to the tensor product structure. Eventually we show the results on a real diffusion tensor image of
a human brain provided by the Camino project [31]1. The original tensors were computed from the
diffusion weighted images by a least squares fit based on the Stejskal-Tanner equation, and invalid
tensors were filled by averages of their neighboring pixels. The image shows a cutout of the axial
slice number 20. Figure 7 shows the smoothing effect of the proposed method using λ1 = 12.

1Data available at http://camino.cs.ucl.ac.uk/
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Figure 4: Results of the proposed variant for joint deconvolution and denoising. The given convolved noisy
data is shown on the left, the result using the manifold analogue of the first order interpolatory wavelet and the
third order Deslaurier-Dubuc (DD) wavelet along with the corresponding signal-to-noise-ratio improvement
are shown in the center and on the right, respectively.
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Figure 5: Denoising of a synthetic S 1-valued image. Left: Original, Center: Noisy data, Right: Denoising
using `1 regularization and the DD wavelet (∆SNR: 10.9 dB).

Figure 6: Denoising of a synthetic Pos3-valued image. Left: Original, Center: Noisy data, Right: Denoising
using `1 regularization and the DD wavelet (∆SNR: 4.5 dB).

Figure 7: Left: Section of a diffusion tensor image of the human brain; Right: Results of the proposed method
(using `1 sparse regularization based on the DD wavelet).
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5 Conclusion

In this paper we have introduced and studied a variational model for wavelet sparse regularization
in the manifold setup. We have proposed a variational scheme using manifold valued interpolatory
wavelets in the regularizing term, and, in particular, we consider a sparsity promoting `1 type as well
as an `0 type regularizing term. We have shown the existence of minimizers for the proposed models.
Further, we have provided algorithms for the proposed models. We have shown how to implement the
concepts of a generalized forward backward-scheme with Gauss-Seidel type update and a trajectory
method as well as the well-established concept of a cyclic proximal point algorithm for wavelet sparse
regularization in the manifold setup. To this end, we have derived expressions for the (sub)gradients
and proximal mappings of the atoms of the wavelet regularizing terms. This includes the manifold
analogues of `1 and `0 sparse wavelet regularization. Finally, we have shown the potential of the
proposed algorithms in the experimental section by applying them to data living in the unit circle, in
the two-dimensional sphere as well as in the space of positive matrices.
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